簡易檢索 / 詳目顯示

研究生: 吳祐福
Yu-fu Wu
論文名稱: 鉑銥雙金屬觸媒修飾之奈米碳管應用於葡萄糖生物感測器暨反應性濺鍍氮化鉬薄膜及其作為銅製程中阻障層等之研究
An Investigation of Bimetallic Nanocatalysts Pt-Ir Coated Multi-Walled Carbon Nanotubes for Glucose Sensing and Growth of MoNx Films by Reactive Sputtering and Investigation of Failure Mechanism as A barrier layer of Copper Metallization
指導教授: 李嘉平
Chia-Pyng Lee
口試委員: 王孟菊
Meng-Jiy Wang
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 163
中文關鍵詞: 葡萄糖感測器阻障層
外文關鍵詞: Biosensor, Barrier
相關次數: 點閱:140下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分別就兩個主題進行研究討論:一為生物感測器,另一為擴散阻障層之研究。在生物感測器部分,本研究首先探討了固定酵素方法的不同,對於葡萄糖量測線性範圍的差異,如直接將酵素溶於待測溶液當中,當溶液裡酵素量為181單位時,其線性範圍在1-6 mM,靈敏度為7.81 μA/mM;當將酵素利用溶膠凝膠法(sol-gel)的方式固定於電極上,加入酵素為7.2單位時,其葡萄糖線性範圍在2-12 mM,靈敏度為1.74 μA/mM。另外,利用高葡萄糖濃度及特殊電子傳遞介質搭配,計算在實驗凝膠中的酵素濃度,估計sol-gel凝膠後約有60 %酵素仍具有催化葡萄糖的能力。本研究也成功地將鉑銥雙合金金屬奈米粒子合成於奈米碳管上,利用交流阻抗分析實驗,得到裸金電極的阻抗值為1033.6 Ω,而修飾後的電極的阻抗為0 Ω。且此奈米複合物具有觸媒的特性,因此我們首先利用其高催化能力,在低電位下直接進行催化葡萄糖與酵素反應後生成的H2O2,但由於此方式會受限於溶液當中的含氧量,其葡萄糖偵測線性範圍在1-5 mM之間,靈敏度為0.52 μA/mM。以相同方式製備電極,並利用電子傳遞介質的幫助(不受限於溶液含氧量),其線性範圍在2-12 mM,靈敏度可提高為1.93 μA/mM。
    擴散阻障層則是以反應性濺鍍來成長MoNx薄膜於銅-矽基材多層膜系統中擴散阻障層失效機制的研究。觀察N2/Ar流量比對MoNx薄膜之沈積速率、N/Mo原子比、結晶結構、電阻率及表面粗糙度之影響。實驗結果顯示,所製備MoNx薄膜的沈積速率會隨著N2/Ar流量比的增加而下降,薄膜的結晶結構會依N2/Ar流量比的增加,會從cubic Mo轉變為γ-Mo2N;N/Mo原子比與電阻率會隨著N2/Ar流量比的增加而增加,當N2/Ar流量比為0時,薄膜電阻率為最低值(16.9 μΩ-cm)。接著以in-situ的方式成長Cu(60 nm)/MoNx(25 nm)/Si的多層膜系統,用以觀察不同的阻障層對於銅的阻障性質研究。利用SEM、XPS、XRD、TEM及FPP等儀器,分析在多層膜系統中,不同條件的阻障層在經由熱處理後的相互擴散及反應現象,並求出不同條件之阻障層的擴散係數及其擴散活化能;結果顯示Cu(60 nm)/MoNx(25 nm)/Si多層膜系統的失效溫度會隨著擴散阻障層的氮含量增加而上升,而在N2/Ar流量比為0.5時濺鍍的薄膜MoN0.75有著最好的阻障層性質,當退火時間為30分鐘時,其失效溫度為650~700 ℃。


    There are two topics investigated in this thesis. One is about biosensor, the other is diffusion barrier. For the research on biosensor, different enzyme immobilization methods were studied on the effect of the detection linear range and sensitivity. For the naked electrode immersed in enzyme solution with 181 units, the linear range of sensing was 1 to 6 mM and the sensitivity was 7.81 μA/mM. For the enzyme of 7.2 units entrapped in sol-gel, the linear range located at 2 to 12 mM and the sensitivity was 1.74 μA/mM. The estimated amount of impregnated enzyme was about 60%..
    In addition, we successfully coated the alloy of platinum and iridium nanoparticles on the multiwall carbon nanotubes which promoted electrochemical performance significantly. The equivalent resistance for the bare gold electrode and the modified gold were 1033.6 Ω and 0 Ω, respectively by the electrochemical impedance spectroscopy analyses. Moreover, the nanotube composites revealed characteristics of catalysts that it catalyzed H2O2 which was produced by enzyme and glucose under low voltage although the reaction was limited due to dissolution of oxygen. The sensing linear range was 1 to 5 mM and the sensitivity was 0.52 μA/mM. The sensitivity was further promoted by adding mediator into the system that the linear range was 2 to 12 mM and sensitivity was 1.93 μA/mM.
    The diffusion barriers were evaluated by the MoNx thin films which were deposited on silicon by reactive sputtering. The failure mechanism for the diffusion barriers on Cu/Si multilayered system was investigated. The results showed that the deposition rate, N/Mo atomic ratio, crystalline structure, resistivity and surface morphology of MoNx thin film depended on the N2/Ar flow ratio. The deposition rate of MoNx thin film decreased as the N2/Ar flow ratio increased. With increasing N2/Ar flow ratio of MoNx thin film, the phase transformation was identified as cubic Mo to γ-Mo2N. The N/Mo atomic ratio and resistivity increased with increased the N2/Ar flow ratio. When the N2/Ar flow ratio was 0, a minimum resistivity of 16.9 μΩ-cm in film was also obtained.
    Then deposition the Cu(60 nm)/MoNx(25 nm)/Si multilayers was grown by in-situ to analyze the properties of Cu diffusion barrier. We utilized SEM, XPS, XRD, TEM and FPP to observe diffusion and reaction phenomenon of diffusion barrier in Cu/Si multilayered system after thermal treatments and obtained the diffusion coefficient and diffusion activation energy of the barrier with different N2/Ar flow ratio. Finally, the experimental results indicated that the failure temperature of Cu(60 nm)/MoNx(25 nm)/Si multilayered structure raised as the nitrogen concentration of diffusion barrier increased. Moreover, the barrier with N2/Ar flow ratio at 0.5 ( MoN0.75 ) possessed the best barrier performance. It was found that the MoN0.75 film prevented the Cu-Si interaction up to 625 ℃. Moreover, the Cu/MoN0.75/Si was fairly stable up to annealing at 650~700 ℃ for 30 minutes.

    摘要 I Abstract II 致謝 IV 目錄 V 圖索引 VIII 表索引 XII 第一章 緒論 1 1.1 前言 1 1.2 糖尿病概述 1 1.2.1 糖尿病的定義及分類 1 1.2.2 糖尿病的臨床診斷標準 2 1.2.3 糖尿病檢測方法 3 1.3積體電路的基本介紹與概況 4 1.4金屬導線材料的選擇 8 1.5擴散阻障層的選擇 12 1.6 研究動機與目的 15 第二章 實驗理論及文獻回顧 19 2.1 酵素生物感測器 19 2.1.1 生物感測器的架構及分類 19 2.1.2 電流型葡萄糖生物感測器的發展 20 2.1.3 酵素 25 2.1.3.1 酵素特性 25 2.1.3.2 酵素單位 25 2.1.3.3 酵素的分類 25 2.1.3.4 酵素固定 26 2.2 奈米碳管 28 2.2.1 奈米碳管的介紹 28 2.2.2 奈米碳管的製備 29 2.2.3 奈米碳管的應用 29 2.3 電化學式生物感測器製作技術介紹 30 2.4 電化學分析方法 34 2.4.1 循環伏安法 34 2.4.2計時安培法 35 2.4.3 電化學阻抗分析法 36 2.5 酵素動力學機制探討 39 2.6薄膜基本特性 42 2.7 擴散現象之文獻回顧 44 2.7.1 晶格擴散 45 2.7.2 差排管道(dislocation pipe)擴散 47 2.7.3 晶界擴散 47 2.8 氮化鉬的特性 48 2.8.1 Interstitial nitrides 48 2.8.2 Molybdenum nitride 49 2.8.3 Molybdenum nitride的製備 51 2.8.4 Molybdenum nitride文獻回顧 51 第三章 實驗設備及方式 53 3.1 薄膜製程設備 53 3.2 網印設備 54 3.3 分析儀器 55 3.4 電極製作 57 3.5 溶液配製 59 3.6 使用藥品 60 3.7 感測器實驗大綱 61 3.7.1 Free enzyme 62 3.7.2 Biomembrane 63 3.7.2.1 酵素電極製作 64 3.7.2.2葡萄糖感測及酵素動力學實驗 65 3.7.3 Biomembrane on modified Au electrode 66 3.7.3.1 MWCNT前處理 67 3.7.3.2 Pt-Ir-MWCNT合成 67 3.7.3.3 Modified electrode 69 3.7.3.4 Biomembrane on modified Au electrode 70 3.8 阻障層實驗材料及藥品 71 3.9 阻障層實驗流程 71 3.9.1 MoNx薄膜的材料分析 71 3.9.2 Cu(60 nm)/MoNx(25 nm)/Si 多層膜系統之擴散阻障層分析 72 3.9.3 以Cu(60 nm)/MoNx(25 nm)/Si 量測銅在MoNx薄膜的擴散係數 72 3.10 阻障層研究架構 73 第四章 感測器結果與討論 74 4.1 金電極材料分析 74 4.2 電化學分析 78 4.2.1 掃描速率效應分析 78 4.2.2 酵素以游離在溶液當中的方式之葡萄糖感測器分析 80 4.2.3 以生物薄膜方式固定酵素之葡萄糖感測器分析 83 4.2.3.1 電化學分析 83 4.2.3.2 酵素動力學分析 87 4.2.4利用鉑銥金屬觸媒及奈米碳管修飾電極且以Biomembrane方式固定酵素之葡萄糖感測器分析 90 4.2.4.1 Pt-Ir-MWCNT之材料分析 90 4.2.4.2 First generation 95 4.2.4.3 Second generation 100 第五章 擴散阻障層結果與討論 103 5.1 MoNx薄膜之材料分析 103 5.1.1 MoNx薄膜之SEM分析 103 5.1.2 MoNx薄膜之XPS分析 107 5.1.3 MoNx薄膜之XRD分析 111 5.1.4 MoNx薄膜之FPP分析 116 5.1.5 MoNx薄膜之TEM分析 118 5.1.6 MoNx薄膜之AFM分析 123 5.2 Cu(60 nm)/MoNx(25 nm)/Si多層膜系統之擴散阻障分析 127 5.2.1 Cu(60 nm)/MoNx(25 nm)/Si多層膜系統之SEM分析 128 5.2.2 Cu(60 nm)/MoNx(25 nm)/Si多層膜系統之XPS縱深分佈分析 136 5.2.3 Cu(60 nm)/MoNx(25 nm)/Si多層膜系統之XRD分析 138 5.2.4 Cu(60 nm)/MoNx(25 nm)/Si多層膜系統之FPP分析 146 5.3 銅擴散係數的量測 149 第六章 結論 156 參考文獻 158

    (1) Alberti, K. G.; Zimmet, P. Z. Diabet Med 1998, 15, 539.
    (2) Life in the 21st century: A vision for all – Report of the Director - General, 1998.
    (3) Suckale, J.; Solimena, M. Front Biosci 2008, 13, 7156.
    (4) Laval, J. M.; Mazeran, P. E.; Thomas, D. Analyst 2000, 125, 29.
    (5) Habermuller, K.; Mosbach, M.; Schuhmann, W. Fresenius J Anal Chem 2000, 366, 560.
    (6) Guetens, G.; Van Cauwenberghe, K.; De Boeck, G.; Maes, R.; Tjaden, U. R. v. d.; Greef, J.; Highley, M. v.; Oosterom, A. T. d.; Bruijn, E. A. Journal of Chromatography B: Biomedical Sciences and Applications 2000, 739, 139.
    (7) Bakker, E.; Telting-Diaz, M. Anal Chem 2002, 74, 2781.
    (8) Nomura, M. Nippon Rinsho 2002, 60 Suppl 10, 565.
    (9) Valcarcel, M.; Simonet, B. M.; Cardenas, S.; Suarez, B. Anal Bioanal Chem 2005, 382, 1783.
    (10) Wilson, G. S.; Gifford, R. Biosensors and Bioelectronics 2005, 20, 2388.
    (11) 李明逵 In 矽元件與積體電路製程 2004.
    (12) 莊達人 In VLSI製造技術 2005, p 1.
    (13) 陳力俊 In 微電子材料與製程 2000, p 279.
    (14) al, S.-P. H. e.; International Symposium on VLSI TSA: 1995, p 164.
    (15) ITRS; International Technology Roadmap for Semiconductors.
    (16) Pan, F.-M.
    (17) 張勁燕 In 電子材料 2004, p 176.
    (18) McBrayer, J. D.; Swanson, R. M.; Sigmon, T. W. Journal of The Electrochemical Society 1986, 133, 1242.
    (19) Hong, S. Q. C., Craig M.Russell, Stephen W.Mayer, James W. Journal of Applied Physics 1991, 70, 3655.
    (20) Hong, S. Q.; Comrie, C. M.; Russell, S. W.; Mayer, J. W. Journal of Applied Physics 1991, 70, 3655.
    (21) Shacham-Diamand, Y.; Li, J.; Olowlafe, J. O.; Russel, S.; Tamou, Y.; Mayer, J. W. In University/Government/Industry Microelectronics Symposium, 1991. Proceedings., Ninth Biennial 1991, p 210.
    (22) Wong, H. Y.; Mohd Shukor, N. F.; Amin, N. Microelectronics Journal, 38, 777.
    (23) Nicolet, M. A. Thin Solid Films 1978, 52, 415.
    (24) Tu, K. N.; Rosenberg, R. Thin Solid Films 1972, 13, 163.
    (25) Reid, J. S.; Kolawa, E.; Ruiz, R. P.; Nicolet, M. A. Thin Solid Films 1993, 236, 319.
    (26) Kolawa, E. P., P. J.Reid, J. S.Chen, J. S.Ruiz, R. P.Nicolet, Marc A. Electron device letters 1991, 12, 321.
    (27) Nelson, W. In International Society of Hybrid Microelectronics Osaka, Japan 1969.
    (28) Oku, T., EijiUekubo, MasakiTakahiro, KatsumiYamaguchi, SadaeMurakami, MasanoriMurakami Applied Surface Science 1996, 99, 265.
    (29) Sun, S. C.; Tsai, M. H.; Tsai, C. E.; Chiu, H. T. In VLSI Technology, 1995. Digest of Technical Papers. 1995 Symposium on 1995, p 29.
    (30) Alén, P.; Ritala, M.; Arstila, K.; Keinonen, J.; Leskelä, M. Thin Solid Films 2005, 491, 235.
    (31) Han, Z., Xiaoping Tian, Jiawan Li, GeyangMingyuan, Gu Mingyuan Surface and Coatings Technology 2004, 179, 188.
    (32) Sandu, C. S.; Benkahoul, M.; Parlinska-Wojtan, M.; Sanjinés, R.; Lévy, F. Surface and Coatings Technology 2006, 200, 6544.
    (33) Benkahoul, M.; Martinez, E.; Karimi, A.; Sanjinés, R.; Lévy, F. Surface and Coatings Technology 2004, 180-181, 178.
    (34) Torche, M.; Schmerber, G.; Guemmaz, M.; Mosser, A.; Parlebas, J. C. Thin Solid Films 2003, 436, 208.
    (35) Zhitomirsky, V. N.; Grimberg, I.; Rapoport, L.; Travitzky, N. A.; Boxman, R. L.; Goldsmith, S.; Raihel, A.; Lapsker, I.; Weiss, B. Z. Thin Solid Films 1998, 326, 134.
    (36) Cansever, N.; DanIsman, M.; KazmanlI, K. Surface and Coatings Technology 2008, 202, 5919.
    (37) Han, Z.; Hu, X.; Tian, J.; Li, G.; Mingyuan, G. Surface and Coatings Technology 2004, 179, 188.
    (38) Lee, W.-H.; Lin, J.-C.; Lee, C. Materials Chemistry and Physics 2001, 68, 266.
    (39) Chen, G. S.; Chen, S. T. Journal of Applied Physics 2000, 87, 8473.
    (40) Chang, C.-C.; Jeng, J. S.; Chen, J. S. Thin Solid Films 2002, 413, 46.
    (41) Kuo, Y.-L.; Huang, J.-J.; Lin, S.-T.; Lee, C.; Lee, W.-H. Materials Chemistry and Physics 2003, 80, 690.
    (42) Chang, C.-C.; Chen, J. S.; Hsu, W.-S. Journal of The Electrochemical Society 2004, 151, G746.
    (43) Suh, B.-S.; Lee, Y.-J.; Hwang, J.-S.; Park, C.-O. Thin Solid Films 1999, 348, 299.
    (44) Rawal, S.; Norton, D. P.; Kim, K.; Chan; Anderson, T. J. M.-W., L. Applied Physics Letters 2006, 89, 231914.
    (45) Takeyama, M. B.; Noya, A.; Sakanishi, K. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2000, 18, 1333.
    (46) Ruan, J.-L.; Lii, D.-F.; Chen, J. S.; Huang, J.-L. Ceramics International 2009, 35, 1999.
    (47) Yoshimoto, K.-i.; Kaiya, F.; Sasaki, K.; Yanagisawa, H. Jpn. J. Appl. Phys. 2006, 45.
    (48) Hübner, R.; Hecker, M.; Mattern, N.; Hoffmann, V.; Wetzig, K.; Heuer, H.; Wenzel, C.; Engelmann, H. J.; Gehre, D.; Zschech, E. Thin Solid Films 2006, 500, 259.
    (49) Liu, Y.; Song, S.; Mao, D.; Ling, H.; Li, M. Microelectronic Engineering 2004, 75, 309.
    (50) Song, S.; Liu, Y.; Li, M.; Mao, D.; Chang, C.; Ling, H. Microelectron. Eng. 2006, 83, 423.
    (51) Lin, S.-T.; Lee, C. Applied Surface Science 2006, 253, 1215.
    (52) Applied Surface Science 2003, 216, 181.
    (53) Kuo, Y.-L.; Lee, C.; Lin, J.-C.; Yen, Y.-W.; Lee, W.-H. Thin Solid Films 2005, 484, 265.
    (54) Takeyama, M. B.; Itoi, T.; Aoyagi, E.; Noya, A. Applied Surface Science 2003, 216, 181.
    (55) Hu, C. K.; Harper, J. M. E. Materials Chemistry and Physics 1998, 52, 5.
    (56) Abe, K.; Harada, Y.; Onoda, H. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1999, 17, 1464.
    (57) Gutmann, R. J.; Chow, T. P.; Kaloyeros, A. E.; Lanford, W. A.; Muraka, S. P. Thin Solid Films 1995, 262, 177.
    (58) American Society for, M.; United States. National Bureau of, S. Bulletin of alloy phase diagrams. 1980.
    (59) Gokhale, A.; Abbaschian, G. Journal of Phase Equilibria 1991, 12, 493.
    (60) Villars, P.; Prince, A. Handbook of Ternary Alloy Phase Diagrams Asm Intl 1995.
    (61) Prasad, P. N.; Wiley-Interscience: New Jersey, 2003.
    (62) Tran, M. C. Biosensors; Chapman & Hall: London; New York, 1993.
    (63) Diamond, D. Principles of chemical and biological sensors; Wiley: New York, 1998.
    (64) Turner, A. P. F.; Karube, I.; Wilson, G. S. Biosensors : fundamentals and applications; Oxford University Press: Oxford [Oxfordshire]; New York, 1987.
    (65) Clark, L. C.; Lyons, C. Annals of the New York Academy of Sciences 1962, 102, 29.
    (66) Mendosa, D. 1999.
    (67) Guilbault, G. G.; Lubrano, G. J. Anal Chim Acta 1973, 64, 439.
    (68) Wang, J. Sensors Update 2002, 10, 107.
    (69) Zhang, W.; Li, G. Anal Sci 2004, 20, 603.
    (70) Xu, J.-J.; Yu, Z.-H.; Chen, H.-Y. Analytica Chimica Acta 2002, 463, 239.
    (71) Yuqing, M.; Jianrong, C.; Yong, H. Analytical Biochemistry 2005, 339, 41.
    (72) Deng, C.; Li, M.; Xie, Q.; Liu, M.; Tan, Y.; Xu, X.; Yao, S. Analytica Chimica Acta 2006, 557, 85.
    (73) Yuan, C.-J.; Hsu, C.-L.; Wang, S.-C.; Chang, K.-S. Electroanalysis 2005, 17, 2239.
    (74) Yang, M.; Yang, Y.; Yang, Y.; Shen, G.; Yu, R. Analytica Chimica Acta 2005, 530, 205.
    (75) Sung, W. J.; Na, K.; Bae, Y. H. Sensors and Actuators B: Chemical 2004, 99, 393.
    (76) Dong, S.; Wang, B.; Liu, B. Biosensors and Bioelectronics 1992, 7, 215.
    (77) Ghica, M. E.; Brett, C. M. A. Analytical Letters 2005, 38, 907
    (78) Wang, J. F., L.Lopez, D.Tobias, H. Anal. Lett. 1993, 26, 1819.
    (79) Pan, D.; Chen, J.; Yao, S.; Nie, L.; Xia, J.; Tao, W. Sensors and Actuators B: Chemical 2005, 104, 68.
    (80) Rivas, G. A.; Maestroni, B. Analytical Letters 1997, 30, 489
    (81) Wang, J.; Liu, J.; Chen, L.; Lu, F. Analytical Chemistry 1994, 66, 3600.
    (82) Ming, L.; Xi, X.; Liu, J. Biotechnol Lett 2006, 28, 1341.
    (83) Derwinska, K.; Miecznikowski, K.; Koncki, R.; Kulesza, P. J.; Glab, S.; Malik, M. A. Electroanalysis (N. Y.) 2003, 15, 1843.
    (84) Li, T.; Yao, Z.; Ding, L. Sensors and Actuators B: Chemical 2004, 101, 155.
    (85) Zhao, W.; Xu, J. J.; Shi, C. G.; Chen, H. Y. Langmuir 2005, 21, 9630.
    (86) Ferreira, M.; Fiorito, P. A.; Oliveira, O. N.; Córdoba de Torresi, S. I. Biosensors and Bioelectronics 2004, 19, 1611.
    (87) Chaubey, A.; Malhotra, B. D. Biosens Bioelectron 2002, 17, 441.
    (88) Koshland, D. E. Proc Natl Acad Sci U S A 1958, 44, 98.
    (89) Helms, D. R. Biology in the laboratory; W.H. Freeman: New York, 2005.
    (90) European Journal of Biochemistry 1979, 97, 319.
    (91) International Union of Biochemistry and Molecular Biology
    (92) 劉英俊 酵素工程.
    (93) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
    (94) Iijima, S. Nature 1991, 354, 56.
    (95) Guanghua, G. Nanotechnology 1998, 9, 184.
    (96) Cumings, J.; Zettl, A. Science 2000, 289, 602.
    (97) Thostenson, E. T.; Li, C.; Chou, T.-W. Composites Science and Technology 2005, 65, 491.
    (98) Smalley, R. E.
    (99) Ebbesen, T. W.; Ajayan, P. M. Nature 1992, 358, 220.
    (100) Yacaman, M.; Miki; Yoshida, M.; Rendon, L.; Santiesteban, J. G. Applied Physics Letters 1993, 62, 202.
    (101) Rinzler, A. G.; Hafner, J. H.; Nikolaev, P.; Nordlander, P.; Colbert, D. T.; Smalley, R. E.; Lou, L.; Kim, S. G.; Tománek, D. Science 1995, 269, 1550.
    (102) Akinwande, D.; Yasuda, S.; Paul, B.; Fujita, S.; Close, G.; Wong, H. S. P. Nanotechnology, IEEE Transactions on 2008, 7, 636.
    (103) Chen, T.; Wang, S.; Yang, Z.; Feng, Q.; Sun, X.; Li, L.; Wang, Z. S.; Peng, H. Angew Chem Int Ed Engl 2011, 50, 1815.
    (104) Naraghi, M.; Filleter, T.; Moravsky, A.; Locascio, M.; Loutfy, R. O.; Espinosa, H. D. ACS Nano 2010, 4, 6463.
    (105) Kang, G.; Choi, J.; Kwak, Y.; Kim, S. In Technical Proceedings of the 2004 NSTI Nanotechnology Conference and Trade Show; Nanotech: 2004, p 176.
    (106) Laschi, S.; Mascini, M. Medical Engineering & Physics 2006, 28, 934.
    (107) Sze, S. M.; 2 ed. 2002, p 404.
    (108) Lee, S.-R.; Lee, Y.-T.; Sawada, K.; Takao, H.; Ishida, M. Biosensors and Bioelectronics 2008, 24, 410.
    (109) Fanjul-Bolado, P.; Hernández-Santos, D.; Lamas-Ardisana, P. J.; Martín-Pernía, A.; Costa-García, A. Electrochimica Acta 2008, 53, 3635.
    (110) Fanjul-Bolado, P.; Lamas-Ardisana, P.; JoséHernández-Santos, D.; Costa-García, A. Analytica Chimica Acta 2009, 638, 133.
    (111) Fanjul-Bolado, P.; Queipo, P.; Lamas-Ardisana, P. J.; Costa-García, A. Talanta 2007, 74, 427.
    (112) Eggins, B. R. Chemical Sensors and Biosensors; WILEY, 2005.
    (113) Skoog, D. A. Principles of Instrumental Analysis; 5 ed. New York, 1998.
    (114) Allen J. Bard, L. R. F. Electrochemical Methods: Fundamentals and Applications; 2 ed.; WILEY: New York, 2000.
    (115) Tersch, C.; Lisdat, F. Electrochimica Acta, In Press, Accepted Manuscript.
    (116) Lisdat, F.; Schäfer, D. Analytical and Bioanalytical Chemistry 2008, 391, 1555.
    (117) Park, S.-M.; Yoo, J.-S. Analytical Chemistry 2003, 75, 455 A.
    (118) Allen J. Bard, L. R. F. Electrochemical Methods: Fundamentals and Applications; 2 ed., December 2000.
    (119) McDonal, J. R. Impedance Spectroscopy: Emphasizing Solid Materials and Systems Wiley, 1987.
    (120) Bourdillon, C.; Demaille, C.; Moiroux, J.; Saveant, J. M. Journal of the American Chemical Society 1993, 115, 1.
    (121) Cass, A. E. G. D., G.Francis, G. D.Hill, H. A. O.Aston, W. J.Higgins, I. J.Plotkin, E. V.Scott, L. D. L.Turner, A. P. F. Anal. Chem. 1984, 56, 667.
    (122) Green, M. J.; Hill, H. A. O. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1986, 82, 1237.
    (123) Liaudet, E.; Battaglini, F.; Calvo, E. J. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1990, 293, 55.
    (124) Cass, A. E.; Davis, G.; Francis, G. D.; Hill, H. A.; Aston, W. J.; Higgins, I. J.; Plotkin, E. V.; Scott, L. D.; Turner, A. P. Anal Chem 1984, 56, 667.
    (125) Anicet, N.; Bourdillon, C.; Demaille, C.; Moiroux, J.; Savéant, J.-M. Journal of Electroanalytical Chemistry 1996, 410, 199.
    (126) 魏炯權 In 電子材料工程, p 7.
    (127) Fisher, J. C. Journal of Applied Physics 1951, 22, 74.
    (128) Hoffman, R. E.; Turnbull, D. Journal of Applied Physics 1951, 22, 634.
    (129) Harrison, L. G. Transactions of the Faraday Society 1961, 57, 1191.
    (130) Chatterjee, A.; Fabian, D. J. Acta Metallurgica 1969, 17, 1141.
    (131) Love, G. R. Acta Metallurgica 1964, 12, 731.
    (132) Imahori, J.; Oku, T.; Murakami, M. Thin Solid Films 1997, 301, 142.
    (133) Wu, J. D.; Wu, C. Z.; Song, Z. M.; Wu, L. H.; Li, F. M. Applied Surface Science 1995, 90, 81.
    (134) Wu, J. D.; Wu, C. Z.; Song, Z. M.; Li, F. M. Thin Solid Films 1997, 311, 62.
    (135) Pierson, H. O.; William Andrew Publishing/Noyes: 1996.
    (136) Toth, L. E. Transition metal carbides and nitrides; Academic Press: New York, 1971.
    (137) Newmann, M. V. a. J. P. Binary Alloy Phase Diagram; 2 ed., 1990.
    (138) Joint Committee on Powder Diffraction Standards. Associateship at the National Bureau of, S.; Morris, M. C. Powder diffraction data : from the Joint Committee on Powder Diffraction Standards Associateship at the National Bureau of Standards : data book; The Committee: Swarthmore, Pa., 1976.
    (139) Oyama, S. T. The chemistry of transition metal carbides and nitrides; Blackie Academic & Professional: London, 1996.
    (140) Anitha, V. P. M., S.Chandrashekharam, D.Bhatnagar, Mukesh Surface and Coatings Technology 1996, 79, 50.
    (141) Ihara, H. H., M.Senzaki, K.Kimura, Y.Kezuka, H. Physical Review B 1985, 32, 1816.
    (142) Fuller, W. W. W., S. A.Gubser, D. U.Skelton, E. F.Francavilla, T. L. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1983, 1, 517.
    (143) Reddy, C. V. G.; Manorama, S. V.; Rao, V. J. Journal of Materials Science Letters 1999, 18, 673.
    (144) Roberson, S. L.; Finello, D.; Davis, R. F. Materials Science and Engineering: A 1998, 248, 198.
    (145) Wise, R. S.; Markel, E. J. Journal of Catalysis 1994, 145, 344.
    (146) Lee, J.-Y.; Park, J.-W. Japanese Journal of Applied Physics 1996, 35, 4280.
    (147) Chuang, J.-C.; Tu, S.-L.; Chen, M.-C. Thin Solid Films 1999, 346, 299.
    (148) Shih, K. K.; Dove, D. B. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1990, 8, 1359.
    (149) Lin, K.-L.; Ho, Y.-J. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1995, 13, 2872.
    (150) Sikola, T.; Spousta, J.; Ceska, R.; Zlámal, J.; Dittrichová, L.; Nebojsa, A.; Navrátil, K.; Rafaja, D.; Zemek, J.; Perina, V. Surface and Coatings Technology 1998, 108-109, 284.
    (151) Andrievski, R. Journal of Materials Science 1997, 32, 4463.
    (152) Kozlowski, J.; Markowski, J.; Prajzner, A.; Zdanowski, J. Surface and Coatings Technology 1998, 98, 1440.
    (153) Fix, R.; Gordon, R. G.; Hoffman, D. M. Thin Solid Films 1996, 288, 116.
    (154) Roberson, S. L.; Finello, D.; Davis, R. F. Thin Solid Films 1998, 324, 30.
    (155) Maoujoud, M.; Jardinier-Offergeld, M.; Bouillon, F. Applied Surface Science 1993, 64, 81.
    (156) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley, 2001.
    (157) Lineweaver, H.; Burk, D. Journal of the American Chemical Society 1934, 56, 658.
    (158) Michaelis, L.; Menten, M. L. Biochem. Z 1913, 49, 352.
    (159) Iwuoha, E. I.; Smyth, M. R.; Lyons, M. E. G. Journal of Electroanalytical Chemistry 1995, 390, 35.
    (160) Ilium, L. Pharmaceutical Research 1998, 15, 1326.
    (161) Gong, Y. S.; Lin, J.-C.; Lee, C. Applied Surface Science 1996, 92, 335.
    (162) Kuo, Y.-L.; Lee, C.; Lin, J.-C.; Peng, C.-H.; Chen, L.-C.; Hsieh, C.-H.; Shue, S.-L.; Liang, M.-S.; Daniels, B. J.; Huang, C.-L.; Lai, C.-H. Journal of The Electrochemical Society 2004, 151, C176.
    (163) Shinoki, F.; Itoh, A. Journal of Applied Physics 1975, 46, 3381.
    (164) Wang, Y.; Lin, R. Y. Materials Science and Engineering B 2004, 112, 42.
    (165) 林俊成 1999.
    (166) Nguyen, V. H.; Kranenburg, H. V.; Woerlee, P. H. In Proceedings of the Third International Workshop on Materials Science Hanoi, 1999.
    (167) Chen, J.-S.; Wang, J. L. Electrochemical Society 2000, 147, 1940.
    (168) Mishra, R. S.; Jones, H.; Greenwood, G. W. Journal of Materials Science Letters 1988, 7, 728.
    (169) Croset, M.; Velasco, G. Journal of Vacuum Science and Technology 1972, 9, 165.
    (170) Junhui, L.; Dasgupta, A. Reliability, IEEE Transactions on 1994, 43, 2.
    (171) Moriyama, M.; Kawazoe, T.; Tanaka, M.; Murakami, M. Thin Solid Films 2002, 416, 136.
    (172) Xue, C.-H.; Zhou, R.-J.; Shi, M.-M.; Wu, G.; Zhang, X.-B.; Wang, M.; Chen, H.-Z. Journal of Electroanalytical Chemistry 2010, 642, 92.
    (173) Tsai, Y.-C.; Li, S.-C.; Chen, J.-M. Langmuir 2005, 21, 3653.
    (174) Liang, R.-P.; Fan, L.-X.; Wang, R.; Qiu, J.-D. Electroanalysis 2009, 21, 1685

    QR CODE