簡易檢索 / 詳目顯示

研究生: Antonius Fredi Kurniawan Adiputra
Antonius Fredi Kurniawan Adiputra
論文名稱: 製備非酵素型生物感測器並應用於過氧化氫及葡萄糖之感測
Preparation of Non-enzymatic Hydrogen Peroxide and Glucose Sensors
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 李振綱
Cheng-Kang Lee
楊佩芬
Pei-Fen Yang
Suryadi Ismadji
Suryadi Ismadji
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 81
中文關鍵詞: 過氧化氫葡萄糖電鍍計時安培法電化學感測器
外文關鍵詞: Hydrogen peroxide, Glucose, Copper, Platinum, Electrodeposition, Amperometric, Electrochemical biosensor
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糖尿病是一種常見的致命疾病,當血糖過高時,其併發症會導致死亡及殘疾,而這些併發症往往是不可逆的,故糖尿病的預防是一大課題。為了解決這個問題,即時感測血糖技術可提供連續、穩定的監測平台,藉此提醒糖尿病患者血糖控制,以避免併發症的發生。其中,因葡萄糖電化學生物感測器之諸多優點,針對糖尿病醫學檢測技術不但具備潛力,更可發展為即時感測血糖監測平台,而利用電化學感測葡萄糖的方法主要可分為兩種:第一種方法是透過電極直接對葡萄糖進行電化學氧化反應,第二種方法是則是先利用葡萄糖氧化酶將葡萄糖轉換成過氧化氫,並利用電化學法對其進行電化學還原反應。
    本研究主要是利用四種材料作為電極,開發簡單、快速、準確的方法檢測過氧化氫及葡萄糖,選用材料分別為玻璃碳電極 (GCE)、白金線 (Pt wire)、銅線 (Cu wire)、以及利用電化學沉積法修飾銅於白金線 (Cu/Pt wire)。由於白金與銅針對過氧化氫和葡萄糖具有良好的電催化活性,而結合白金與銅製備的生物傳感器,並透過施加不同電壓沉積銅粒子,可藉由協同作用,進而增強其感測之靈敏性。實驗結果顯示,藉由FE-SEM觀察經修飾後白金線的表面型態,可發現銅粒子可均勻的附著於白金線表面上,當施加高電壓時 (-0.4V) 進行電化學沉積,可觀察銅修飾形狀為樹枝狀。
    於電化學循環伏安法分析結果,顯示於PBS pH 7.4溶液與0.1 M 氫氧化鈉溶液,發現利用經電化學沉積銅的材料電極可增強氧化及還原峰,因此可測試其對過氧化氫與葡萄糖之電化學特性。循環伏安法結果顯示,在PBS pH 7.4溶液中施加電壓-0.3 V及-0.4 V,對過氧化氫進行安培測試,可發現施加電壓-0.4 V時沉積銅之白金線,其靈敏度可從0.19 mA.mM-1.cm-2 上升至3.17 mA.mM-1.cm-2。另外,在0.1 M氫氧化鈉溶液中施加電壓0.6 V時感測葡萄糖,於施加電壓-0.4 V沉積銅之白金線,其感測靈敏度可從0.004 mA.mM-1.cm-2 上升至1.37 mA.mM-1.cm-2,靈敏度上升之結果與過氧化氫具有相同的趨勢。


    Diabetes mellitus was known as one of the important diseases which is difficult to deal with. Monitoring the blood glucose level for diabetes mellitus patients would be the solution to treat and prevent the patients from the complications that may occur. Glucose electrochemical biosensor is one of devices that were applied to monitor blood glucose level. Glucose detection using electrochemical analyses usually involved two methods. The first method is based on the direct electrooxidation ability of glucose by electrode and the other is based on the electroreduction ability of hydrogen peroxide that was produced from the oxidation of glucose by enzymes, e.g. glucose oxidase. In this study, the bare glassy carbon electrode, platinum wire, copper wire, and copper electrodeposited on platinum wire were developed to prepare simple, fast, and accurate platform for the detection of hydrogen peroxide and glucose.
    Because platinum and copper both show good electrocatalytic character toward hydrogen peroxide and glucose, the combination of platinum and copper as a biosensor is supposed to provide the synergetic effects to enhance the sensitivity for the sensing. In this study, copper particles were coated on platinum wire (Pt wire) using electrodeposition technique under different applied voltages. The surface morphology of the copper decorated Pt wire was observed by FE-SEM, which revealed that the copper particles were uniformly attached on the surface of Pt wire. Moreover, at the higher applied potential (-0.4 V), dendrites structure of copper was observed. The electrochemical characteristics against hydrogen peroxide and glucose were investigated using cyclic voltammetry in PBS with pH 7.4 and 0.1 M NaOH solution for different working electrodes, respectively. The results of cyclic voltammograms showed that both the reduction and the oxidation peaks increased by the incorporation of copper as a result of electrodeposition. The amperometric tests against hydrogen peroxide were conducted at around -0.3 V and -0.4 V in PBS with pH 7.4 and the results showed that the sensitivity increased significantly from 0.19 to 3.17 mA.mM-1.cm-2 for the bare Pt wire and the copper electrodeposited Pt wire at -0.4 V when the copper precursor solution was consisted of 50 mM CuSO4 in 0.5 M H2SO4 ((-0.4V)S-Cu/Pt wire). Furthermore, the amperometric test against glucose was performed in 0.1 M NaOH solution at 0.6 V. The sensitivity increased significantly, from 0.004 to 1.37 mA.mM-1.cm-2, by the incorporation of copper on Pt wire at -0.4 V.
    The highest sensitivity of (-0.4V)S-Cu/Pt wire was attributed to the increasing specific surface area after deposition of copper particles on the surface of Pt wire, followed by generation of higher electrocatalytic active sites on the surface. In addition, the sensitivity of (-0.4V)S-Cu/Pt wire was compared at the same applied voltage (0.6 V) and electrolyte solution (0.1 M NaOH) with other modified electrodes. The proposed sensor based on (-0.4V)S-Cu/Pt showed superior electrochemical performance with high sensitivity and simple and low-cost fabrication process. Moreover, Cu particles successfully overcome the disadvantages of Pt wire associated with lack of sensitivity and surface poisoning.

    Abstract i Acknowledgement iv Contents v List of figures vi List of tables ix Abbreviations x Chapter 1. Introduction 1 Chapter 2. Literature review 3 2-1. Importance of hydrogen peroxide and glucose detection 3 2-1-1. Hydrogen peroxide 3 2-1-2. Glucose 4 2-1-3. Diabetes mellitus 4 2-2. Common methods for glucose detection 6 2-3. Electrochemical biosensor 10 2-4. Metal-based electrochemical glucose and hydrogen peroxide sensor 12 2-4-1. Platinum-based electrochemical biosensor 12 2-4-2. Copper-based electrochemical biosensor 14 2-5. Electrochemical deposition of copper 16 Chapter 3. Experimental 19 3-1. Chemicals 19 3-1-1. Electrodeposition of Cu on Pt wire 19 3-1-2. Electrochemical measurements 19 3-2. Equipment and instruments 19 3-3. Experimental procedures 20 3-3-1. Preparation of Cu/Pt wire 20 3-3-2. Electrochemical Analyses 21 3-4. Material Characterizations 26 3-5. Experimental flow chart 26 Chapter 4. Results and Discussion 27 4-1. Electrodeposition of copper on platinum wire 27 4-2. sSurface morphology of modified platinum wire by FE-SEM 28 4-3. Electrochemical characterization of modified platinum wire 30 4-4. Hydrogen peroxide detection 31 4-4-1. Electrocatalytic ability of hydrogen peroxide at the modified platinum wire 31 4-4-2. Amperometric response of modified Pt wire toward hydrogen peroxide 36 4-5. Glucose detection 43 4-5-1. Electrocatalytic oxidation of glucose at the Cu-modified Pt wires 43 4-5-2. Amperometric response of modified Pt wire toward glucose 46 4-5-3. Comparison of the electrode performance for glucose sensing 50 Chapter 5. Conclusions 52 References 53 Appendix 65

    1. Pirkanniemi, K. and M. Sillanpää, Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere, 2002. 48(10): p. 1047-1060.
    2. Vilhunen, S.H. and M.E.T. Sillanpää, Ultraviolet light emitting diodes and hydrogen peroxide in the photodegradation of aqueous phenol. Journal of Hazardous Materials, 2009. 161(2): p. 1530-1534.
    3. Pirkanniemi, K., S. Metsärinne, and M. Sillanpää, Degradation of EDTA and novel complexing agents in pulp and paper mill process and waste waters by Fenton's reagent. Journal of Hazardous Materials, 2007. 147(1): p. 556-561.
    4. Wang, J., Amperometric biosensors for clinical and therapeutic drug monitoring: a review. Journal of Pharmaceutical and Biomedical Analysis, 1999. 19(1): p. 47-53.
    5. Pejcic, B., R.D. Marco, and G. Parkinson, The role of biosensors in the detection of emerging infectious diseases. Analyst, 2006. 131(10): p. 1079-1090.
    6. Zhang, R. and W. Chen, Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosensors and Bioelectronics, 2017. 89(Part 1): p. 249-268.
    7. Hage, R. and A. Lienke, Applications of Transition-Metal Catalysts to Textile and Wood-Pulp Bleaching. Angewandte Chemie International Edition, 2006. 45(2): p. 206-222.
    8. Cai, G., C. Li, and H. Tian, Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor. Acta Astronautica, 2016. 128(Supplement C): p. 286-294.
    9. Fang, K.-C., C.-P. Hsu, Y.-W. Kang, J.-Y. Fang, C.-C. Huang, C.-H. Hsu, Y.-F. Huang, C.-C. Chen, S.-S. Li, J. Andrew Yeh, D.-J. Yao, and Y.-L. Wang, Realization of an ultra-sensitive hydrogen peroxide sensor with conductance change of horseradish peroxidase-immobilized polyaniline and investigation of the sensing mechanism. Biosensors and Bioelectronics, 2014. 55(Supplement C): p. 294-300.
    10. Zamfir, L.-G., L. Rotariu, V.E. Marinescu, X.T. Simelane, P.G.L. Baker, E.I. Iwuoha, and C. Bala, Non-enzymatic polyamic acid sensors for hydrogen peroxide detection. Sensors and Actuators B: Chemical, 2016. 226(Supplement C): p. 525-533.
    11. Wen, Z., S. Ci, and J. Li, Pt Nanoparticles Inserting in Carbon Nanotube Arrays: Nanocomposites for Glucose Biosensors. The Journal of Physical Chemistry C, 2009. 113(31): p. 13482-13487.
    12. Li, H., H. Zhao, H. He, L. Shi, X. Cai, and M. Lan, Pt-Pd bimetallic nanocoral modified carbon fiber microelectrode as a sensitive hydrogen peroxide sensor for cellular detection. Sensors and Actuators B: Chemical, 2018. 260: p. 174-182.
    13. Lu, Q., X. Dong, L.-J. Li, and X. Hu, Direct electrochemistry-based hydrogen peroxide biosensor formed from single-layer graphene nanoplatelet–enzyme composite film. Talanta, 2010. 82(4): p. 1344-1348.
    14. Rahman, M.M., A.J.S. Ahammad, J.-H. Jin, S.J. Ahn, and J.-J. Lee, A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides. Sensors, 2010. 10(5): p. 4855.
    15. Organization, W.H., Global report on diabetes. 2016: World Health Organization.
    16. Organization, W.H., Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. 1999.
    17. Yang, J., W.-D. Zhang, and S. Gunasekaran, An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosensors and Bioelectronics, 2010. 26(1): p. 279-284.
    18. Zhao, J., L. Wei, C. Peng, Y. Su, Z. Yang, L. Zhang, H. Wei, and Y. Zhang, A non-enzymatic glucose sensor based on the composite of cubic Cu nanoparticles and arc-synthesized multi-walled carbon nanotubes. Biosensors and Bioelectronics, 2013. 47(Supplement C): p. 86-91.
    19. Luo, J., S. Jiang, H. Zhang, J. Jiang, and X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Analytica Chimica Acta, 2012. 709(Supplement C): p. 47-53.
    20. Ju, L., G. Wu, B. Lu, X. Li, H. Wu, and A. Liu, Non-enzymatic Amperometric Glucose Sensor Based on Copper Nanowires Decorated Reduced Graphene Oxide. Electroanalysis, 2016. 28(10): p. 2543-2551.
    21. Badhulika, S., R.K. Paul, Rajesh, T. Terse, and A. Mulchandani, Nonenzymatic Glucose Sensor Based on Platinum Nanoflowers Decorated Multiwalled Carbon Nanotubes-Graphene Hybrid Electrode. Electroanalysis, 2014. 26(1): p. 103-108.
    22. Zhuang, Z., X. Su, H. Yuan, Q. Sun, D. Xiao, and M.M.F. Choi, An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst, 2008. 133(1): p. 126-132.
    23. Li, Y., Y.-Y. Song, C. Yang, and X.-H. Xia, Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochemistry Communications, 2007. 9(5): p. 981-988.
    24. Bakthavatsalam, R., S. Ghosh, R.K. Biswas, A. Saxena, A. Raja, M.O. Thotiyl, S. Wadhai, A.G. Banpurkar, and J. Kundu, Solution chemistry-based nano-structuring of copper dendrites for efficient use in catalysis and superhydrophobic surfaces. RSC Advances, 2016. 6(10): p. 8416-8430.
    25. Muhr, V., M. Buchner, T. Hirsch, D.J. Jovanović, S.D. Dolić, M.D. Dramićanin, and O.S. Wolfbeis, Europium-doped GdVO4 nanocrystals as a luminescent probe for hydrogen peroxide and for enzymatic sensing of glucose. Sensors and Actuators B: Chemical, 2017. 241(Supplement C): p. 349-356.
    26. Peña, R.C., V.O. Silva, F.H. Quina, and M. Bertotti, Hydrogen peroxide monitoring in Fenton reaction by using a ruthenium oxide hexacyanoferrate/multiwalled carbon nanotubes modified electrode. Journal of Electroanalytical Chemistry, 2012. 686(Supplement C): p. 1-6.
    27. Patella, B., R. Inguanta, S. Piazza, and C. Sunseri, A nanostructured sensor of hydrogen peroxide. Sensors and Actuators B: Chemical, 2017. 245(Supplement C): p. 44-54.
    28. Thirumalraj, B., D.-H. Zhao, S.-M. Chen, and S. Palanisamy, Non-enzymatic amperometric detection of hydrogen peroxide in human blood serum samples using a modified silver nanowire electrode. Journal of Colloid and Interface Science, 2016. 470(Supplement C): p. 117-122.
    29. Han, M., S. Liu, J. Bao, and Z. Dai, Pd nanoparticle assemblies—As the substitute of HRP, in their biosensing applications for H2O2 and glucose. Biosensors and Bioelectronics, 2012. 31(1): p. 151-156.
    30. Galant, A.L., R.C. Kaufman, and J.D. Wilson, Glucose: Detection and analysis. Food Chemistry, 2015. 188(Supplement C): p. 149-160.
    31. McDonald, C., Organic Chemistry, 2nd Edition (Brown, William H.; Foote, Christopher S.). Journal of Chemical Education, 1998. 75(12): p. 1555.
    32. Wang, H.-C. and A.-R. Lee, Recent developments in blood glucose sensors. Journal of Food and Drug Analysis, 2015. 23(2): p. 191-200.
    33. Chen, H.-C., Y.-M. Tu, C.-C. Hou, Y.-C. Lin, C.-H. Chen, and K.-H. Yang, Direct electron transfer of glucose oxidase and dual hydrogen peroxide and glucose detection based on water-dispersible carbon nanotubes derivative. Analytica Chimica Acta, 2015. 867(Supplement C): p. 83-91.
    34. Turner, A.P.F., B. Chen, and S.A. Piletsky, In Vitro Diagnostics in Diabetes: Meeting the Challenge. Clinical Chemistry, 1999. 45(9): p. 1596.
    35. Nichols, S.P., A. Koh, W.L. Storm, J.H. Shin, and M.H. Schoenfisch, Biocompatible materials for continuous glucose monitoring devices. Chemical reviews, 2013. 113(4): p. 2528-2549.
    36. Shaw, K.M. and M.H. Cummings, Diabetes chronic complications. 2012: John Wiley & Sons.
    37. Tian, K., M. Prestgard, and A. Tiwari, A review of recent advances in nonenzymatic glucose sensors. Materials Science and Engineering: C, 2014. 41: p. 100-118.
    38. School, H.M. Type 2 Diabetes Mellitus. 2012 [cited 2017; Available from: https://www.health.harvard.edu/diseases-and-conditions/type-2-diabetes-mellitus-.
    39. Yuen, V.G. and J.H. McNeill, Comparison of the glucose oxidase method for glucose determination by manual assay and automated analyzer. Journal of Pharmacological and Toxicological Methods, 2000. 44(3): p. 543-546.
    40. Hall, M.B. and N.S. Keuler, Factors Affecting Accuracy and Time Requirements of a Glucose OxidasePeroxidase Assay for Determination of Glucose. Journal of AOAC International, 2008. 92(1): p. 50-60.
    41. Wei, J., L. Qiang, J. Ren, X. Ren, F. Tang, and X. Meng, Fluorescence turn-off detection of hydrogen peroxide and glucose directly using carbon nanodots as probes. Analytical Methods, 2014. 6(6): p. 1922-1927.
    42. Carballo, S., F.A. Zingarello, S.E. Maestre, J.L. Todolí, and M.S. Prats, Optimisation of analytical methods for the characterisation of oranges, clementines and citrus hybrids cultivated in Spain on the basis of their composition in ascorbic acid, citric acid and major sugars. International Journal of Food Science & Technology, 2014. 49(1): p. 146-152.
    43. Eyéghé-Bickong, H.A., E.O. Alexandersson, L.M. Gouws, P.R. Young, and M.A. Vivier, Optimisation of an HPLC method for the simultaneous quantification of the major sugars and organic acids in grapevine berries. Journal of Chromatography B, 2012. 885-886(Supplement C): p. 43-49.
    44. Gangola, M.P., S. Jaiswal, Y.P. Khedikar, and R.N. Chibbar, A reliable and rapid method for soluble sugars and RFO analysis in chickpea using HPAEC–PAD and its comparison with HPLC–RI. Food Chemistry, 2014. 154(Supplement C): p. 127-133.
    45. Ma, J., X. Hou, B. Zhang, Y. Wang, and L. He, The analysis of carbohydrates in milk powder by a new “heart-cutting” two-dimensional liquid chromatography method. Journal of Pharmaceutical and Biomedical Analysis, 2014. 91(Supplement C): p. 24-31.
    46. Shaw, P.E. and C.W. Wilson, Separation of fructose, glucose and sucrose in fruit by high performance liquid chromatography using UV detection at 190 nm. Journal of the Science of Food and Agriculture, 1983. 34(1): p. 109-112.
    47. Dai, J., Y. Wu, S.-w. Chen, S. Zhu, H.-p. Yin, M. Wang, and J. Tang, Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydrate Polymers, 2010. 82(3): p. 629-635.
    48. Tsujimura, S., S. Kojima, K. Kano, T. Ikeda, M. Sato, H. Sanada, and H. Omura, Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor. Bioscience, biotechnology, and biochemistry, 2006. 70(3): p. 654-659.
    49. Streďanský, M., R. Monošík, V. Mastihuba, and E. Šturdík, Monitoring of PQQ-dependent glucose dehydrogenase substrate specificity for its potential use in biocatalysis and bioanalysis. Applied biochemistry and biotechnology, 2013. 171(4): p. 1032-1041.
    50. Yang, N., H. Song, X. Wan, X. Fan, Y. Su, and Y. Lv, A metal (Co)–organic framework-based chemiluminescence system for selective detection of L-cysteine. Analyst, 2015. 140(8): p. 2656-2663.
    51. Ernst, S., J. Heitbaum, and C. Hamann, The electrooxidation of glucose in phosphate buffer solutions: Part I. Reactivity and kinetics below 350 mV/RHE. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1979. 100(1-2): p. 173-183.
    52. Vassilyev, Y.B., O. Khazova, and N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum. Journal of electroanalytical chemistry and interfacial electrochemistry, 1985. 196(1): p. 105-125.
    53. Shim, J.H. and K. Jang, Applications of Porous Pt‐Filled Micropore Electrode: Direct Amperometric Glucose Detection and Potentiometric pH Sensing. Electroanalysis, 2011. 23(9): p. 2063-2069.
    54. Joo, S., S. Park, T.D. Chung, and H.C. Kim, Integration of a nanoporous platinum thin film into a microfluidic system for non-enzymatic electrochemical glucose sensing. Analytical sciences, 2007. 23(3): p. 277-281.
    55. Guo, M., H. Hong, X. Tang, H. Fang, and X. Xu, Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochimica acta, 2012. 63: p. 1-8.
    56. Huang, J.F., 3‐D Nanoporous Pt Electrode Prepared by a 2‐D UPD Monolayer Process. Electroanalysis, 2008. 20(20): p. 2229-2234.
    57. Chou, C.H., J.C. Chen, C.C. Tai, I.W. Sun, and J.M. Zen, A Nonenzymatic Glucose Sensor Using Nanoporous Platinum Electrodes Prepared by Electrochemical Alloying/Dealloying in a Water‐Insensitive Zinc Chloride‐1‐Ethyl‐3‐Methylimidazolium Chloride Ionic Liquid. Electroanalysis, 2008. 20(7): p. 771-775.
    58. Lee, Y.-J., D.-J. Park, J.-Y. Park, and Y. Kim, Fabrication and optimization of a nanoporous platinum electrode and a non-enzymatic glucose micro-sensor on silicon. Sensors, 2008. 8(10): p. 6154-6164.
    59. Lee, Y.J., D.J. Park, and J.Y. Park, Fully packaged nonenzymatic glucose microsensors with nanoporous platinum electrodes for anti-fouling. IEEE sensors Journal, 2008. 8(11): p. 1922-1927.
    60. Cao, Z., Y. Zou, C. Xiang, L.X. Sun, and F. Xu, Amperometric glucose biosensor based on ultrafine platinum nanoparticles. Analytical letters, 2007. 40(11): p. 2116-2127.
    61. Luo, P., F. Zhang, and R.P. Baldwin, Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems. Analytica chimica acta, 1991. 244: p. 169-178.
    62. Fanguy, J.C. and C.S. Henry, Pulsed amperometric detection of carbohydrates on an electrophoretic microchip. Analyst, 2002. 127(8): p. 1021-1023.
    63. You, J.-M., D. Kim, and S. Jeon, Electrocatalytic reduction of H 2 O 2 by Pt nanoparticles covalently bonded to thiolated carbon nanostructures. Electrochimica acta, 2012. 65: p. 288-293.
    64. Bian, X., X. Lu, E. Jin, L. Kong, W. Zhang, and C. Wang, Fabrication of Pt/polypyrrole hybrid hollow microspheres and their application in electrochemical biosensing towards hydrogen peroxide. Talanta, 2010. 81(3): p. 813-818.
    65. Zhang, J. and L. Gao, Synthesis of highly dispersed platinum nanoparticles on multiwalled carbon nanotubes and their electrocatalytic activity toward hydrogen peroxide. Journal of Alloys and Compounds, 2010. 505(2): p. 604-608.
    66. Karam, P. and L.I. Halaoui, Sensing of H2O2 at low surface density assemblies of Pt nanoparticles in polyelectrolyte. Analytical chemistry, 2008. 80(14): p. 5441-5448.
    67. You, T., O. Niwa, M. Tomita, and S. Hirono, Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Analytical chemistry, 2003. 75(9): p. 2080-2085.
    68. Xu, F., Y. Sun, Y. Zhang, Y. Shi, Z. Wen, and Z. Li, Graphene–Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochemistry Communications, 2011. 13(10): p. 1131-1134.
    69. Guo, S., D. Wen, Y. Zhai, S. Dong, and E. Wang, Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: one-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS nano, 2010. 4(7): p. 3959-3968.
    70. Liu, Y., D. Wang, L. Xu, H. Hou, and T. You, A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosensors and Bioelectronics, 2011. 26(11): p. 4585-4590.
    71. Qiang, L., S. Vaddiraju, J.F. Rusling, and F. Papadimitrakopoulos, Highly sensitive and reusable Pt-black microfluidic electrodes for long-term electrochemical sensing. Biosensors and Bioelectronics, 2010. 26(2): p. 682-688.
    72. Chakraborty, S. and C.R. Raj, Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H 2 O 2. Biosensors and Bioelectronics, 2009. 24(11): p. 3264-3268.
    73. Male, K.B., S. Hrapovic, Y. Liu, D. Wang, and J.H. Luong, Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Analytica Chimica Acta, 2004. 516(1): p. 35-41.
    74. Jiang, L.-C. and W.-D. Zhang, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosensors and Bioelectronics, 2010. 25(6): p. 1402-1407.
    75. El Khatib, K. and R.A. Hameed, Development of Cu 2 O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination. Biosensors and Bioelectronics, 2011. 26(8): p. 3542-3548.
    76. Li, C., Y. Su, S. Zhang, X. Lv, H. Xia, and Y. Wang, An improved sensitivity nonenzymatic glucose biosensor based on a Cu x O modified electrode. Biosensors and bioelectronics, 2010. 26(2): p. 903-907.
    77. Lee, H., S.W. Yoon, E.J. Kim, and J. Park, In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Letters, 2007. 7(3): p. 778-784.
    78. Kano, K., M. Torimura, Y. Esaka, M. Goto, and T. Ueda, Electrocatalytic oxidation of carbohydrates at copper (II)-modified electrodes and its application to flow-through detection. Journal of Electroanalytical Chemistry, 1994. 372(1-2): p. 137-143.
    79. Xie, Y. and C.O. Huber, Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste. Analytical chemistry, 1991. 63(17): p. 1714-1719.
    80. Miller, B., Split‐ring disk study of the anodic processes at a copper electrode in alkaline solution. Journal of the Electrochemical Society, 1969. 116(12): p. 1675-1680.
    81. Babu, T.S., T. Ramachandran, and B. Nair, Single step modification of copper electrode for the highly sensitive and selective non-enzymatic determination of glucose. Microchimica Acta, 2010. 169(1-2): p. 49-55.
    82. Huang, T.-K., K.-W. Lin, S.-P. Tung, T.-M. Cheng, I.-C. Chang, Y.-Z. Hsieh, C.-Y. Lee, and H.-T. Chiu, Glucose sensing by electrochemically grown copper nanobelt electrode. Journal of Electroanalytical Chemistry, 2009. 636(1): p. 123-127.
    83. Watanabe, T., T.A. Ivandini, Y. Makide, A. Fujishima, and Y. Einaga, Selective detection method derived from a controlled diffusion process at metal-modified diamond electrodes. Analytical chemistry, 2006. 78(22): p. 7857-7860.
    84. Zhao, J., F. Wang, J. Yu, and S. Hu, Electro-oxidation of glucose at self-assembled monolayers incorporated by copper particles. Talanta, 2006. 70(2): p. 449-454.
    85. Tong, S., W. Wang, X. Li, Y. Xu, and W. Song, Electrochemical preparation of copper-based/titanate intercalation electrode material. The Journal of Physical Chemistry C, 2009. 113(16): p. 6832-6838.
    86. Sattayasamitsathit, S., P. Thavarungkul, C. Thammakhet, W. Limbut, A. Numnuam, C. Buranachai, and P. Kanatharana, Fabrication of nanoporous copper film for electrochemical detection of glucose. Electroanalysis, 2009. 21(21): p. 2371-2377.
    87. Chen, Z.-L. and D. Hibbert, Simultaneous amperometric and potentiometric detection of sugars, polyols and carboxylic acids in flow systems using copper wire electrodes. Journal of Chromatography A, 1997. 766(1): p. 27-33.
    88. You, T., O. Niwa, Z. Chen, K. Hayashi, M. Tomita, and S. Hirono, An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Analytical chemistry, 2003. 75(19): p. 5191-5196.
    89. Stitz, A. and W. Buchberger, Studies on electrochemical reactions at metal‐oxide electrodes for combination with high‐performance liquid chromatography. Electroanalysis, 1994. 6(3): p. 251-258.
    90. Zhao, Y., J. Zhao, D. Ma, Y. Li, X. Hao, L. Li, C. Yu, L. Zhang, Y. Lu, and Z. Wang, Synthesis, growth mechanism of different Cu nanostructures and their application for non-enzymatic glucose sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 409: p. 105-111.
    91. Qiu, R., H.G. Cha, H.B. Noh, Y.B. Shim, X.L. Zhang, R. Qiao, D. Zhang, Y.I. Kim, U. Pal, and Y.S. Kang, Preparation of dendritic copper nanostructures and their characterization for electroreduction. The Journal of Physical Chemistry C, 2009. 113(36): p. 15891-15896.
    92. Selvaraju, T. and R. Ramaraj, Electrocatalytic reduction of hydrogen peroxide at nanostructured copper modified electrode. Journal of applied electrochemistry, 2009. 39(3): p. 321-327.
    93. Kumar, S.A., P.-H. Lo, and S.-M. Chen, Electrochemical analysis of H2O2 and nitrite using copper nanoparticles/poly (o-phenylenediamine) film modified glassy carbon electrode. Journal of The Electrochemical Society, 2009. 156(7): p. E118-E123.
    94. Pandey, P.C., A.K. Pandey, and D.S. Chauhan, Nanocomposite of Prussian blue based sensor for l-cysteine: Synergetic effect of nanostructured gold and palladium on electrocatalysis. Electrochimica acta, 2012. 74: p. 23-31.
    95. Rahman, H.A., A. Moustafa, and S.A. Magid, High rate copper electrodeposition in the presence of inorganic salts. International Journal of Electrochemical Science, 2012. 7: p. 6959-6975.
    96. Kondo, K., R.N. Akolkar, D.P. Barkey, and M. Yokoi, Copper electrodeposition for nanofabrication of electronics devices. 2014: Springer.
    97. Brett, C., M.O. Brett, A.M.C.M. Brett, and A.M.O. Brett, Electrochemistry: principles, methods, and applications. 1993.
    98. Demir, M.M., I. Yilgor, E. Yilgor, and B. Erman, Electrospinning of polyurethane fibers. Polymer, 2002. 43(11): p. 3303-3309.
    99. Zhou, X., A. Harmer, N. Heinig, and K. Leung, Parametric study on electrochemical deposition of copper nanoparticles on an ultrathin polypyrrole film deposited on a gold film electrode. Langmuir, 2004. 20(12): p. 5109-5113.
    100. Grieshaber, D., R. MacKenzie, J. Voeroes, and E. Reimhult, Electrochemical biosensors-sensor principles and architectures. Sensors, 2008. 8(3): p. 1400-1458.
    101. Kemell, M., M. Ritala, and M. Leskelä, Thin film deposition methods for CuInSe 2 solar cells. Critical Reviews in Solid State and Materials Sciences, 2005. 30(1): p. 1-31.
    102. Mabbott, G.A., An introduction to cyclic voltammetry. J. Chem. Educ, 1983. 60(9): p. 697.
    103. Roussel, T.J., D.J. Jackson, R.P. Baldwin, and R.S. Keynton, Amperometric techniques. Encyclopedia of Microfluidics and Nanofluidics, 2015: p. 55-64.
    104. Crousier, J. and I. Bimaghra, Electrodeposition of copper from sulphate and chloride solutions. Electrochimica Acta, 1989. 34(8): p. 1205-1211.
    105. Majidi, M.R., K. Asadpour-Zeynali, and B. Hafezi, Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode. Electrochimica Acta, 2009. 54(3): p. 1119-1126.
    106. Wang, L., S. Tricard, P. Yue, J. Zhao, J. Fang, and W. Shen, Polypyrrole and graphene quantum dots@ Prussian blue hybrid film on graphite felt electrodes: Application for amperometric determination of L-cysteine. Biosensors and Bioelectronics, 2016. 77: p. 1112-1118.
    107. Xu, S., H. Li, L. Wang, Q. Yue, S. Sixiu, and J. Liu, One-pot synthesis of Ag@ Cu yolk–shell nanostructures and their application as non-enzymatic glucose biosensors. CrystEngComm, 2014. 16(38): p. 9075-9082.
    108. Wilkins, E. and P. Atanasov, Glucose monitoring: state of the art and future possibilities. Medical Engineering & Physics, 1996. 18(4): p. 273-288.
    109. Ensafi, A.A., M.M. Abarghoui, and B. Rezaei, Electrochemical determination of hydrogen peroxide using copper/porous silicon based non-enzymatic sensor. Sensors and Actuators B: Chemical, 2014. 196(Supplement C): p. 398-405.
    110. Zhang, Y., L. Su, D. Manuzzi, H.V.E. de los Monteros, W. Jia, D. Huo, C. Hou, and Y. Lei, Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosensors and Bioelectronics, 2012. 31(1): p. 426-432.
    111. Fan, Z., B. Liu, X. Liu, Z. Li, H. Wang, S. Yang, and J. Wang, A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochimica Acta, 2013. 109: p. 602-608.
    112. Ju, L., G. Wu, B. Lu, X. Li, H. Wu, and A. Liu, Non‐enzymatic Amperometric Glucose Sensor Based on Copper Nanowires Decorated Reduced Graphene Oxide. Electroanalysis, 2016.
    113. Jiang, D., Q. Liu, K. Wang, J. Qian, X. Dong, Z. Yang, X. Du, and B. Qiu, Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosensors and Bioelectronics, 2014. 54: p. 273-278.
    114. Hsu, Y.-W., T.-K. Hsu, C.-L. Sun, Y.-T. Nien, N.-W. Pu, and M.-D. Ger, Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochimica Acta, 2012. 82: p. 152-157.
    115. Luo, L., L. Zhu, and Z. Wang, Nonenzymatic amperometric determination of glucose by CuO nanocubes–graphene nanocomposite modified electrode. Bioelectrochemistry, 2012. 88: p. 156-163.

    無法下載圖示 全文公開日期 2023/01/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE