簡易檢索 / 詳目顯示

研究生: afandi yusuf
afandi yusuf
論文名稱: 氮氧化鈦奈米薄片支撐白金觸媒應用於氧還原反應
Titanium Oxynitride Nanoflake Supported Platinum Catalysts for Oxygen Reduction Reaction (ORR)
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王丞浩
Chen-Hao Wang
黃信智
Hsin-Chih Huang
郭俞麟
Yu-Lin Kuo
王冠文
Kuan-Wen Wang
楊錫杭
Hsiharng Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 61
中文關鍵詞: 氮氧化鈦奈米薄片非碳支撐質子交換膜燃料電池氧還原反應
外文關鍵詞: Titanium oxynitride, nanoflake, non-carbon support
相關次數: 點閱:267下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池中的白金需要支撐材料來獲得最高的表面積。擁有較高表面積的白金粒子有更高的機會與氫氣燃料或氧氣反應物反應。支撐材料需提供好的位點與白金粒子反應,為了使白金粒子有好的反應位點,氮參雜是其中一個努力的方向。通常,白金的支撐材料是碳材,但是非碳材支撐材料各自擁有許多特性,使得其研究十分有趣與充滿挑戰。在這份研究中,我利用水熱與氨氣熱處理製備了氮氧化鈦奈米薄片,鈦的原料、氮化溫度和與白金的載量比是這份研究的變量。我做了一些測試來確認氮氧化鈦的特性, X射線衍射(XRD)是用來確認材料中形成的晶體結構,掃描電子顯微鏡(SEM)和 穿透式電子顯微鏡(TEM)是用來觀察晶體的結構與形態,電化學測試則可以得到材料的電化學性能。鈦的原料是硫酸氧鈦(TiOSO4)時,觸媒可以獲得最好電化學性能,同時在氮化溫度900o C與10%載量比時,觸媒分別都可以獲得相同條件下最好的性能。


    Platinum in fuel cell need a support material to get highest surface area. With high surface area the platinum particle has high chance to react with hydrogen fuel or oxygen reactant. Support materials need to provide a good site to interact with platinum particle, nitrogen doping on surface of support material is one of efforts to make a good site for platinum particle. In this study, titanium oxynitride nanoflake synthesize was carried out by hydrothermal and heat treatment in NH3 gas. Titanium source, nitriding temperature and loading ratio of platinum became a study variable. Titanyl sulfate (TiOSO4) is a source of titanium which have better a better electrocatalyst activity compare to TiO2 as a titanium precursor. While the variation at 900o C of the nitriding temperature and 10 wt% loading ratios have the highest activity.

    ABSTRACT i 摘要 iii ACKNOWLEDGEMENTS v TABLE OF CONTENT vii LIST OF FIGURES ix LIST OF TABLES xi CHAPTER 1 INTRODUCTION 1 1.1 Research Background 1 1.2 Problem Formulation 2 1.3 Research Scope 2 1.4 Research Objective 2 1.5 Research Advantages 3 CHAPTER 2 LITERATURE REVIEW 5 2.1 Fuel Cell 5 2.1.1 Basic Principle of Fuel Cell 5 2.1.2 Types of Fuel Cell Technology 7 2.2 Proton Exchange Membrane Fuel Cell (PEMFC) Component 8 2.3 Membrane 11 2.3.1 Electrode 12 2.3.2 Gas Diffusion Layer (GDL) 13 2.3.3 Bipolar Plate 14 2.4 Fuel Cell Operating Condition 15 2.4.1 Back Pressure 15 2.4.2 Working Temperature 16 2.4.3 Reactant Gases Flow Rate 16 2.4.4 Humidity of Reactant Gases 17 2.5 Oxygen Reduction Reaction (ORR) 18 2.6 Electrochemical Measurement 20 2.7 Titanium Nitride 24 CHAPTER 3 METHODOLOGY 31 3.1 Materials 31 3.2 Experimental Procedure 32 3.2.1 Flowchart of Experiment 32 3.2.2 Experiment Explanation 33 3.2.3 Material Characterization 33 3.3 Experimental Matrix 38 CHAPTER 4 RESULT AND DISCUSSION 39 4.1 Characterization of Titanium-support Material with Various Titanium Precursor 39 4.2 Metal Loading Ratio 47 CHAPTER 5 CONCLUSION 57 REFFERENCES 59

    ABADIAS, G. & GUERIN, P. 2008. In situ stress evolution during magnetron sputtering of transition metal nitride thin films. Applied Physics Letters, 93.
    ALHUSSAIN, H., MISE, T., MATSUO, Y., KIYONO, H., NISHIKIORI, K. & AKASHI, T. 2019. Influence of ammonia gas exposure on microstructure of nanocrystalline titanium nitride powder synthesized from titanium dioxide. Journal of the Ceramic Society of Japan, 127, 824-829.
    BALOGUN, M.-S., YU, M., LI, C., ZHAI, T., LIU, Y., LU, X. & TONG, Y. 2020. Correction: Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. Journal of Materials Chemistry A, 8, 16698-16698.
    BARBIR, F. 2005. PEM Fuel Cells: Theory and Practice, Massachusetts, Elsevier Inc.
    BENDAVID, A., MARTIN, P. J., WANG, X., WITTLING, M. & KINDER, T. J. 1995. Deposition and modification of titanium nitride by ion assisted arc deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13, 1658-1664.
    CHEN, M., ZHAO, C., SUN, F., FAN, J., LI, H. & WANG, H. 2020. Research progress of catalyst layer and interlayer interface structures in membrane electrode assembly (MEA) for proton exchange membrane fuel cell (PEMFC) system. eTransportation, 5.
    CHENG, Y. H., TAY, B. K., LAU, S. P., KUPFER, H. & RICHTER, F. 2002. Substrate bias dependence of Raman spectra for TiN films deposited by filtered cathodic vacuum arc. Journal of Applied Physics, 92, 1845-1849.
    CHI, Y.-M., MISHRA, M., CHIN, T.-K., LIU, W.-S. & PERNG, T.-P. 2018. Fabrication of Macroporous/Mesoporous Titanium Nitride Structure and Its Application as Catalyst Support for Proton Exchange Membrane Fuel Cell. ACS Applied Energy Materials, 2, 398-405.
    CHIN, T.-K., LIAO, M.-W. & PERNG, T.-P. 2019. Enabling higher electrochemical activity of Pt nanoparticles uniformly coated on cubic titanium oxynitride by vertical forced-flow atomic layer deposition. Journal of Power Sources, 434, 226716.
    CHISAKA, M., ISHIHARA, A., OTA, K.-I. & MURAMOTO, H. 2013. Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells. Electrochimica Acta, 113, 735-740.
    CHOWDHURY, R., VISPUTE, R. D., JAGANNADHAM, K. & NARAYAN, J. 1996. Characteristics of titanium nitride films grown by pulsed laser deposition. Journal of Materials Research, 11, 1458-1469.
    DANISH, R., AHMED, F. & KOO, B. H. 2014. Effect of Concentration on the Growth of Rutile TiO2 Nanocrystals. Journal of Nanoscience and Nanotechnology, 14, 8584-8589.
    EHSANI, M., GAO, Y., GAY, S. E. & EMADI, A. 2004. Modern electric, hybrid electric, and fuel call vehicles. fundamentals, theory, and design, New York, CRC press LLC.
    ENSINGER, W. & RAUSCHENBACH, B. 1993. Microstructural investigations on titanium nitride films formed by medium energy ion beam assisted deposition. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 80-81, 1409-1414.
    GEBAUER, C., FISCHER, P., WASSNER, M., DIEMANT, T., JUSYS, Z., HÜSING, N. & BEHM, R. J. 2016. Performance of titanium oxynitrides in the electrocatalytic oxygen evolution reaction. Nano Energy, 29, 136-148.
    HILTUNEN, L., LESKELÄ, M., MÄKELÄ, M., NIINISTÖ, L., NYKÄNEN, E. & SOININEN, P. 1988. Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method. Thin Solid Films, 166, 149-154.
    HONG, W. T., RISCH, M., STOERZINGER, K. A., GRIMAUD, A., SUNTIVICH, J. & SHAO-HORN, Y. 2015. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy & Environmental Science, 8, 1404-1427.
    HOOGERS, G. 2003. Fuel cell technology handbook, florida, CRC press LLC.
    KIANI, M., TIAN, X. Q. & ZHANG, W. 2021. Single atom based electrocatalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cell: Recent advances, challenges and future perspectives. Journal of Physics and Chemistry of Solids, 153.
    LARMINIE, J. & DICKS, A. 2003. Fuel cell Systems Explained, West Sussex, John Wiley & sons Ltd.
    LIU, F., YANG, X., DANG, D. & TIAN, X. 2019. Engineering of Hierarchical and Three‐Dimensional Architectures Constructed by Titanium Nitride Nanowire Assemblies for Efficient Electrocatalysis. ChemElectroChem, 6, 2208-2214.
    LIU, S., QI, W., ADIMI, S., GUO, H., WENG, B., ATTFIELD, J. P. & YANG, M. 2021. Titanium Nitride-Supported Platinum with Metal-Support Interaction for Boosting Photocatalytic H2 Evolution of Indium Sulfide. ACS Appl Mater Interfaces, 13, 7238-7247.
    LUTTRELL, T., HALPEGAMAGE, S., TAO, J., KRAMER, A., SUTTER, E. & BATZILL, M. 2014. Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Scientific Reports, 4, 4043.
    MAHIEU, S. & DEPLA, D. 2009. Reactive sputter deposition of TiN layers: modelling the growth by characterization of particle fluxes towards the substrate. Journal of Physics D: Applied Physics, 42.
    MAYRHOFER, P. H., KUNC, F., MUSIL, J. & MITTERER, C. 2002. A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings. Thin Solid Films, 415, 151-159.
    NAN, H., DANG, D. & TIAN, X. L. 2018. Structural engineering of robust titanium nitride as effective platinum support for the oxygen reduction reaction. Journal of Materials Chemistry A, 6, 6065-6073.
    O’HAYRE, R., CHA, S.-W., COLELLA, W. G. C. & PRINZ, F. B. 2016. Front Matter. Fuel Cell Fundamentals. John Wiley & Sons, Inc.
    PAULITSCH, J., SCHENKEL, M., ZUFRAß, T., MAYRHOFER, P. H. & MÜNZ, W. D. 2010. Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit. Thin Solid Films, 518, 5558-5564.
    REN, X., LV, Q., LIU, L., LIU, B., WANG, Y., LIU, A. & WU, G. 2020. Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy & Fuels, 4, 15-30.
    RITALA, M., LESKELÄ, M., RAUHALA, E. & JOKINEN, J. 1998. Atomic Layer Epitaxy Growth of TiN Thin Films from Til4 and  NH 3. Journal of The Electrochemical Society, 145, 2914-2920.
    S.VEPŘEK 1990. Surface processes and rate-determining steps in plasma-induced chemical vapour deposition: Titanium nitride, boron carbide and silicon. Surface and Coatings Technology, Volumes 43–44.
    SENARATHNA, K. G. C., RANDILIGAMA, H. M. S. P. & RAJAPAKSE, R. M. G. 2016. Preparation, characterization and oxygen reduction catalytic activities of nanocomposites of Co(ii)/montmorillonite containing polypyrrole, polyaniline or poly(ethylenedioxythiophene). RSC Advances, 6, 112853-112863.
    TAY, B. K., SHI, X., YANG, H. S., TAN, H. S., CHUA, D. & TEO, S. Y. 1999. The effect of deposition conditions on the properties of TiN thin films prepared by filtered cathodic vacuum-arc technique. Surface and Coatings Technology, 111, 229-223.
    WANG, H., TIWARI, A., KVIT, A., ZHANG, X. & NARAYAN, J. 2002. Epitaxial growth of TaN thin films on Si(100) and Si(111) using a TiN buffer layer. 80, 2323-2325.
    YUAN, X.-Z., SONG, C., WANG, H. & ZHANG, J. 2010. Electrochemical Impedance Spectroscopy in PEM Fuel Cells, London, Springer.
    ZHANG, J. 2008. PEM Fuel cell Electrocatalyst and Catalyst Layers, London, Springer-Verlag London Limited.
    ZHANG, J., HU, H., LIU, X. & LI, D. S. 2019. Development of the applications of titanium nitride in fuel cells. Materials Today Chemistry, 11, 42-59.
    ZHENG, Y., ZHANG, J., ZHAN, H., SUN, D., DANG, D. & TIAN, X. L. 2018. Porous and three dimensional titanium nitride supported platinum as an electrocatalyst for oxygen reduction reaction. Electrochemistry Communications, 91, 31-35.
    ZHOU, R., ZHENG, Y., JARONIEC, M. & QIAO, S.-Z. 2016. Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment. ACS Catalysis, 6, 4720-4728.
    ZHU, X., HAN, S., FENG, W., KONG, Q., DONG, Z., WANG, C., LEI, J. & YI, Q. 2018. The effect of heat treatment on the anatase–rutile phase transformation and photocatalytic activity of Sn-doped TiO2 nanomaterials. RSC Advances, 8, 14249-14257.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE