簡易檢索 / 詳目顯示

研究生: 黃盈慈
Ying-Tzu Huang
論文名稱: 添加鎳碳複合材料對氫化鎂儲氫性質的影響
Effects of Carbon-Supported Nickel Catalyst on Hydrogen Storage Properties of Magnesium Hydride
指導教授: 丘群
Chun Chiu
口試委員: 陳士勛
Shih-Hsun Chen
曾信雄
Shinn-Shyong Tzeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 90
中文關鍵詞: MgH2碳鎳複合材料電鍍鎳法儲氫性質
外文關鍵詞: Magnesium hydride, Carbon-Supported Nickel Catalyst, Hydrogen Storage Properties, Electroplating
相關次數: 點閱:278下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MgH2具有優越的儲氫量(7.6 wt.%),但礙於其過於穩定的吸放氫熱力學性質及過慢的吸放氫動力學性質,使MgH2的吸放氫反應溫度偏高且反應速率過慢,因此應用上受限,而改善其缺點的方法很多,其中一種方法即為添加催化物,本研究將探討添加碳鎳複合材料(Ni/fiber)對於MgH2之放氫反應影響。碳鎳複合材料以成本便宜,操作簡易的電鍍鎳法(electroplating)將鎳顆粒披覆在聚丙烯腈(polyacrylonitrile,簡稱PAN)系碳纖維上製成,並用機械球磨法將Ni/fiber及MgH2混合成儲氫材料(MgH2+Ni/fiber)。結果顯示,以1.5V-10 min電鍍條件所製成之Ni/fiber鎳顆粒披覆效果最佳,以此Ni/fiber添加進MgH2可有效提升MgH2的放氫反應速率,其放氫所需之活化能(86.8 kJ/mol)相較於MgH2(111.3 kJ/mol)亦有明顯下降,在放氫溫度300oC及真空下,MgH2+Ni/fiber在10 min內的放氫量可達2.04 wt.%。


    Magnesium hydride (MgH2) has a high hydrogen storage capacity (7.6 wt.%).However, its application is limited by high reaction temperature and slow reaction rate, which are results of stable sorption thermodynamics and slow kinetics.The kinetics can be improved by adding different catalysts or additives. In this study, we investigated the effect of carbon-supported nickel catalyst (Ni/fiber) on hydrogen desorption of MgH2.The carbon-supported nickel catalyst was prepared by electroplating of Ni particles on PAN-based carbon fiber. SEM result showed that the best coating parameter is 1.5V-10min.The Ni/fiber was then mixed with MgH2 by mechanical milling to form the Mg-based hydrogen storage material(MgH2+Ni/fiber).The results showed that Ni/fiber can improve the kinetics of MgH2 ,and that the activation energy of MgH2+Ni/fiber(85.3 kJ/mol) is lower than that of MgH2(111.3 kJ/mol).MgH2+Ni/fiber can desorb 2.04 wt.%H2 within 10 min at 300 oC.

    目錄 中文摘要 I Abstract II 第一章 緒論 1 第二章 文獻回顧 4 2.1儲氫裝置 4 2.1.1 高壓氣態儲氫 5 2.1.2 低溫液態儲氫 6 2.1.3 固態儲氫 7 2.2 儲氫合金吸放氫原理介紹 8 2.3.1 熱力學性質 9 2.3.2 動力學性質 11 2.3 儲氫合金介紹 14 2.4儲氫材料之改質方法 15 2.4.1機械球磨法改質 15 2.4.2 添加物改質 18 2.5機械球磨法 30 第三章 實驗方法 33 3.1 碳纖維電鍍鎳製程 33 3.2 儲氫材料製備 35 3.3 吸放氫循環測量 39 3.4 比表面積測定 43 3.5 相及材料結構分析 44 3.5.1 場效發射掃描式電子顯微鏡 44 3.5.1 X光繞射儀 45 第四章 結果與討論 47 4.1 披覆鎳顆粒之碳纖維表面形貌 47 4.2 材料球磨後之晶粒尺寸及粉末形貌 50 4.3鎳、碳纖維及奈米碳管的添加對於MGH2放氫效果之影響 53 4.3.1 溫度對放氫速率之影響 54 4.3.2 金屬鎳添加對於MgH2放氫效果之影響 56 4.3.3 碳纖維及奈米碳管添加對於MgH2放氫效果之影響 58 4.3.4 Ni/fiber添加對於MgH2放氫效果之影響 62 第五章結論 67 參考文獻 69 附錄 73

    [1] Schlapbach, L and Züttel, A. (2001). Hydrogen-storage materials for mobile applications.Nature, 414( 6861), 353-358.
    [2] Ogden, J. M . (2002). Hydrogen: The fuel of the future?. Physics Today, 55(4), 69-75.
    [3] Jain, I. P., Lal, C., and Jain, A. (2010). Hydrogen storage in Mg: A most promising material. International Journal of Hydrogen Energy, 35(10), 5133-5144.
    [4] Park, M., Shim, J.-H., Lee, Y.-S., Im, Y. H., and Cho, Y. W. (2013). Mitigation of degradation in the dehydrogenation behavior of air-exposed MgH2 catalyzed with NbF5. Journal of Alloys and Compounds, 575, 393-398.
    [5] Dornheim, M., Doppiu, S., Barkhordarian, G., Boesenberg, U., Klassen, T., Gutfleisch, O., and Bormann, R. (2007). Hydrogen storage in magnesium-based hydrides and hydride composites. Scripta Materialia, 56(10), 841-846.
    [6] Chourashiya, M., Yang, D.-C., Park, C.-N., and Park, C.-J. (2012). Effects of the preparative parameters of hydriding combustion synthesis on the properties of Mg–Ni–C as hydrogen storage material. International Journal of Hydrogen Energy, 37(5), 4238-4245.
    [7] Chen, B.H., Kuo, C.H., Ku, J.R., Yan, P.S., Huang, C.J., Jeng, M.S., and Tsau, F.H. (2013). Highly improved with hydrogen storage capacity and fast kinetics in Mg-based nanocomposites by CNTs. Journal of Alloys and Compounds, 568, 78-83.
    [8] Züttel, A. (2004). Hydrogen storage method. The Science of Nature, 91(4), 157-72.
    [9] The Swiss Hydrogen Association,H2 Storage
    http://www.hydropole.ch/indwx.php?go=hydrogen_storage
    (09.06.2017)
    [10] Riis, T., Hagen, E.F., Vie, P.J.S. and Uleberg, Ø. (2006), Hydrogen Production and Storage--RandD Priorities and Gaps, Hydrogen Implementing Agreement, OECD/IEA, p.6.
    [11] Krishna, R., Titus, E., Salimian, M., Okhay, O., Rajendran, S., Rajkumar, A., Sousa ,J. M. G., Ferreira, A. L. C., Campos, J. and Gracio, J. (2012). Hydrogen Storage for Energy Application., Chemical Engineering. 10, in: J. Liu (Ed.), Hydrogen Storage, Intech Open, 243-266.
    [12] Yamaguchi, M. and Akiba, E. (1994), Electronic and Magnetic Properties of Metals and Ceramics Part II (K.H.J. Buschow, Ed.),3, 333
    [13] Zuttel, A. (2003), Materials for hydrogen storage , materials today,6(9),24-33.
    [14] Martin, M., Borkhart , C. G. C., Fromm,E. (1996). Absorption and desorption kinetics of hydrogen storage alloys, Journal of Alloys and Compounds, 238, 193-201.
    [15] Xiong, R., Sang, G., Zhang, G., Yan, X., Li, P., Yao, Y. ,Tang, T. (2017). Evolution of the active species and catalytic mechanism of Ti doped NaAlH4 for hydrogen storage, International Journal of Hydrogen Energy, 42(9), 6088-6095.
    [16] Li, C., Peng, P., Zhou, D. W., and Wan, L. (2011). Research progress in LiBH4 for hydrogen storage: A review, International Journal of Hydrogen Energy, 36(22), 14512-14526.
    [17] Sandrock, G. (1999). A panoramic overview of hydrogen storage alloys from a gas reaction point of view, Journal of Alloys and Compounds, 877-888.
    [18] Zaluska, A., Zaluski, L., Strőm-Olsen, J.O. (2001), Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage, Applied Physics A Materials Science & Processing, 72 (2), 157-165.
    [19] Asselli, A. A. C., Santos, S. F., and Huot, J. (2016). Hydrogen storage in filed magnesium, Journal of Alloys and Compounds, 687, 586-594.
    [20] Jia, Y., Sun, C., Shen, S., Zou, J., Mao, S. S., and Yao, X. (2015). Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage, Renewable and Sustainable Energy Reviews, 44, 289-303.
    [21] Zhou, C., Fang, Z. Z., and Sun, P. (2015). An experimental survey of additives for improving dehydrogenation properties of magnesium hydride, Journal of Power Sources, 278, 38-42.
    [22] Niaz, N. A., Ahmad, I., Khan, W. S., and S.TajammulHussain. (2012). Synthesis of Nanostructured Mg–Ni Alloy and Its Hydrogen Storage Properties, J. Mater. Sci. Technol, 28, 401–406.
    [23] Cermak, J., and David, B. (2011). Catalytic effect of Ni, Mg2Ni and Mg2NiH4 upon hydrogen desorption from MgH2, International Journal of Hydrogen Energy, 36(21), 13614-13620.
    [24] Callini, E., Pasquini, L., Jensen, T. R., and Bonetti, E. (2013). Hydrogen storage properties of Mg–Ni nanoparticles, International Journal of Hydrogen Energy, 38(27), 12207-12212.
    [25] Urretavizcaya, G., Fuster, V., and Castro, F. J. (2011). High pressure DSC study of hydrogen sorption in MgH2/graphite mixtures: Effects of sintering and oxidation, International Journal of Hydrogen Energy, 36(9), 5411-5417.
    [26] Lototskyy, M., Sibanyoni, J. M., Denys, R. V., Williams, M., Pollet, B. G., and Yartys, V. A. (2013). Magnesium–carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen, Carbon, 57, 146-160.
    [27] Chen, B.H., Kuo, C.H., Ku, J.R., Yan, P.S., Huang, C.J., Jeng, M.-S., and Tsau, F.-H. (2013). Highly improved with hydrogen storage capacity and fast kinetics in Mg-based nanocomposites by CNTs, Journal of Alloys and Compounds, 568, 78-83.
    [28] Lillo-Ródenas, M. A., Guo, Z. X., Aguey-Zinsou, K. F., Cazorla-Amorós, D., and Linares-Solano, A. (2008). Effects of different carbon materials on MgH2 decomposition, Carbon, 46(1), 126-137.
    [29] Wang, L., and Yang, R. T. (2008). New sorbents for hydrogen storage by hydrogen spillover – a review, Energy & Environmental Science, 1(2), 268.
    [30] Kim, B.J., Lee, Y.S., and Park, S.J. (2008). A study on the hydrogen storage capacity of Ni-plated porous carbon nanofibers, International Journal of Hydrogen Energy, 33(15), 4112-4115.
    [31] Park, S., Kim, B., Lee, Y., and Cho, M. (2008). Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers, International Journal of Hydrogen Energy, 33(6), 1706-1710.
    [32] Lin, S. S. Y., Yang, J., and Kung, H. H. (2012). Transition metal-decorated activated carbon catalysts for dehydrogenation of NaAlH4, International Journal of Hydrogen Energy, 37(3), 2737-2741.
    [33] Yuan, J., Zhu, Y., Li, Y., Zhang, L., and Li, L. (2014). Effect of multi-wall carbon nanotubes supported palladium addition on hydrogen storage properties of magnesium hydride, International Journal of Hydrogen Energy, 39(19), 10184-10194.
    [34] Ruse, E., Pevzner, S., Pri Bar, I., Nadiv, R., Skripnyuk, V. M., Rabkin, E., and Regev, O. (2016). Hydrogen storage and spillover kinetics in carbon nanotube-Mg composites, International Journal of Hydrogen Energy, 41(4), 2814-2819.
    [35] Chourashiya, M., Yang, D.C., Park, C.N., and Park, C.J. (2012). Effects of the preparative parameters of hydriding combustion synthesis on the properties of Mg–Ni–C as hydrogen storage material, International Journal of Hydrogen Energy, 37(5), 4238-4245.
    [36] Lillo-Ro´denas, M. A., Aguey-Zinsou, K. F., Cazorla-Amoro´s, D., Linares-Solano, A., and Guo, a. Z. X. (2008). Effects of Carbon-Supported Nickel Catalysts on MgH2 Decomposition, The Journal of Physical Chemistry C, 112, 5984-5992.
    [37] Suryanarayana, C.. (2011). Mechanical alloying and milling, Progress in Materials Science, 46, 1-184.

    QR CODE