簡易檢索 / 詳目顯示

研究生: 周暾煜
Tun-Yu Chou
論文名稱: 等徑轉角擠壓 (ECAP) 製程及添加物對AZ鎂合金儲氫性能之影響
Effect of equal channel angular pressing (ECAP) and additives on hydrogen storage properties of AZ alloy
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 鄭偉鈞
Wei-Chun Cheng
雷添壽
Tien-Shou Lei
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 204
中文關鍵詞: 鎳 (Ni)AZ31鎂基複合材料 (AZ31 MMCs)活性碳 (AC)AZ鎂合金重力鑄造等徑轉角擠壓 (ECAP)儲氫
外文關鍵詞: AZ31 metal matrix composites (MMCs), nickel (Ni), activated carbon (AC), AZ alloy, gravity casting, equal channel angular pressing (ECAP), hydrogen storage
相關次數: 點閱:279下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用鑄造方式製備AZ31、AZ61鎂合金,經等徑轉角擠壓 (Equal Channel Angular Pressing, ECAP) 製程後,以銼刀取屑進行吸放氫之量測,探討擠壓道次數、加工路徑等工作參數對AZ鎂合金粉末儲氫性能之影響。除了探討ECAP製程參數對儲氫性能之影響,本研究亦探討添加物對AZ鎂合金儲氫性能之影響,選用活性碳 (Activated Carbon, AC) 及鎳粉 (Nickel, Ni) 作為催化劑,不同過往以高能球磨製程添加催化劑之方式,本研究使用重力鑄造方式進行機械攪拌製備鎂基複合儲氫材料,而後以銼刀取屑進行吸放氫之量測。本研究之吸放氫量測皆係以Sievert-type測氫儀進行量測。
      研究結果顯示,AZ鎂合金經由ECAP製程產生劇烈之動態再結晶,達至晶粒細化。本研究以AZ31經由BC加工路徑擠壓8道次具有最佳之晶粒細化效果,並提升吸放氫速率,其儲氫量達至7.0 wt.%。而相較於未添加任何添加物之AZ合金,AZ31-5C及AZ31-5C-0.5Ni大幅提升吸放氫速率,儲氫量分別達至6.9 wt.% 及6.3 wt.%。


      In this study, the cast AZ31 and AZ61 magnesium alloys were processed by equal channel angular pressing (ECAP) and were comminuted into chips by filing with a rasp to measure the properties of hydrogen storage. Effects of processing pass and route of ECAP on AZ series magnesium alloys hydrogen storage properties were investigated. In addition to studying the effects of ECAP on hydrogen storage properties, we also investigated the effects of additives on hydrogen storage properties by adding activated carbon (AC) and nickel powder (Nip). Different from high energy ball milling technique, the catalysts were added and mixed by gravity cast with mechanical stirring to prepare Mg-based composite materials for hydrogen storage. The materials were further comminuted into chips by filing with a rasp to measure the hydrogen storage properties of AZ metal matrix composites (MMCs). The absorption and desorption of hydrogen were measured by Sievert-type hydrogen measurement system in this research.
      These results indicated that after the ECAP processing, the AZ alloys lead to severe dynamic recrystallization and achieved grain refinement. AZ31 processed by ECAP route BC with 8 passes provided the best result of the grain refinement, and elevated the absorption and desorption rate of hydrogen, exhibited high gravimetric hydrogen storage capacity of 7 wt.%. Furthermore, compared to the AZ alloys without any additives, AZ31-5C and AZ31-5C-0.5Ni significantly increased the absorption and desorption rate of hydrogen and the hydrogen storage capacity were 6.9 wt.% and 6.3 wt.%, respectively.

    摘要 I ABSTRACT II 致謝 III 目錄 V 圖目錄 X 表目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 本實驗室之鎂基複合材料鑄造製程之簡介 3 1.2.2 鎂鋁合金均質化處理對塑性加工影響之相關文獻 6 1.2.3 等徑轉角擠壓製程應用之相關文獻 9 1.2.4 劇烈塑性變形對材料擴散性質影響之相關文獻 16 1.2.5 鎂基合金於儲氫領域之相關文獻 17 1.3 文獻回顧歸納 30 1.4 研究動機與目的 32 第二章 研究理論基礎 34 2.1 鎂合金之簡介 34 2.1.1 鎂之基本性質 35 2.1.2 鎂合金之特性 36 2.1.3 合金元素對鎂合金之影響 39 2.1.4 鎂合金之鑄造 42 2.1.5 鎂合金之變形機制 45 2.2 ECAP製程簡介 49 2.2.1 ECAP塑性變形原理 50 2.2.2 ECAP加工路徑 53 2.2.3 ECAP晶粒細化原理 56 2.3 氫之介紹 58 2.3.1 氫之基本性質 58 2.3.2 氫之安全性與觀念認知 60 2.3.3 氫與其他燃料之比較 61 2.4 氫之儲存技術 63 2.4.1 高壓儲氫 65 2.4.2 低溫液化儲氫 67 2.4.3 物理吸附儲氫 68 2.4.4 金屬氫化物儲氫 69 2.5 材料之擴散反應 71 2.6 儲氫合金 73 2.6.1 儲氫合金動力學性質 76 2.6.2 儲氫合金熱力學性質 78 2.6.3 鎂基儲氫合金儲氫性能之改善 80 2.7 活性碳 82 2.8 Sievert-type儲氫之量測原理 84 第三章 實驗方法與步驟 87 3.1 實驗材料 89 3.2 實驗設備 91 3.2.1 鑄造用熔煉爐 91 3.2.2 熱處理高溫爐 94 3.2.3 等徑轉角擠壓試驗機 94 3.2.4 濕式自動研磨機及拋光機 96 3.2.5 光學顯微鏡 97 3.2.6 微型維克氏硬度試驗機 97 3.2.7 掃描式電子顯微鏡 98 3.2.8 X光繞射分析儀 99 3.2.9 Sievert-type儲氫量測設備 100 3.3 鎂基合金材料熔煉及ECAP試棒製備步驟 101 3.4 ECAP製程步驟及試片規劃 102 3.5 合金切屑粉末製備 104 3.6 鎂基儲氫合金儲氫性質檢測 105 3.6.1 活化 105 3.6.2 動力學曲線 106 第四章 結果與討論 107 4.1 AZ鎂合金經ECAP製程前後之微觀分析 107 4.1.1 鑄態之微觀分析及均質化處理對鑄件之影響 107 4.1.2 ECAP製程前測試 113 4.1.3 ECAP製程後之宏觀及微觀分析 117 4.1.4 平均之晶粒尺寸分析 131 4.1.5 小結論 135 4.2 AZ鎂合金之儲氫性質分析 136 4.2.1 AZ鎂合金切屑粉末之表面形貌分析 136 4.2.2 AZ鎂合金切屑粉末進行活化及吸放氫之量測 139 4.2.3 ECAP擠壓道次對儲氫性質之影響 149 4.2.4 ECAP加工路徑對儲氫性質之影響 152 4.2.5 AZ鎂基合金之鋁含量對儲氫性質之影響 153 4.2.6 小結論 155 4.3 AZ鎂基複合儲氫材料之儲氫性質分析 157 4.3.1 AZ鎂基複合儲氫材料鑄態之微觀分析 157 4.3.2 AZ鎂基複合儲氫切屑粉末之表面形貌分析 163 4.3.3 AZ鎂基複合儲氫切屑粉末之儲氫性質量測 166 4.3.4 添加物對AZ鎂基複合儲氫材料之影響 168 4.3.5 小結論 173 第五章 結論 174 第六章 未來研究方向 176 參考文獻 177

    [1] 蘇順發,儲氫材料,科學發展學報,第483期,12-17,2013年3月。
    [2] 翟峰、趙志遠、趙曉、王多,儲氫材料概述,北京大學化學與分子工程學院。
    [3] 曲新生、陳發林,氫能技術,五南圖書出版股份有限公司,2006年4月。
    [4] 毛宗強,氫能-21世紀的綠色能源,新文京開發出版股份有限公司,2008年3月。
    [5] V. M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, “The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt% Zn–0.71 wt% Zr (ZK60) alloy”, Acta Materialia, Vol. 52, 405-414, 2004.
    [6] V. M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, “Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing”, International Journal of Hydrogen Energy, Vol. 34, 6320-6324, 2009.
    [7] M. Krystian, M. J. Zehetbauer, H. Kropik, B. Mingler, “Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by Equal Channel Angular Pressing”, Journal of Alloys and Compounds, 509S, S449-S455, 2011.
    [8] 陳志亦,鎂基複合材料AZ91D/SiCp製備之研究,國立中正大學機械工程學系碩士論文,2005年7月。
    [9] 洪品森,鎂基複合材料的製備及其熱處理後機械性質之研究,國立中正大學機械工程學系碩士論文,2009年7月。
    [10] 黃建忠,強化相粒徑對AZ61/SiCp鎂基複合材料鑄錠及擠型材之機械性質影響的研究,國立臺灣科技大學機械工程學系碩士論文,2013年7月。
    [11] 吳懿璋,強化相粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質之研究,國立臺灣科技大學機械工程學系碩士論文,2014年7月。
    [12] B. H. Zhang, Z. M. Zhang, “Influence of homogenizing on mechanical properties of as-cast AZ31 magnesium alloy”, Transactions of Nonferrous Metals Society of China, Vol. 20, s439-s443, 2010.
    [13] L. Zheng, H. Nie, W. Liang, H. Wang, Y. Wang, “Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys”, Journal of Magnesium and Alloys, Vol. 4, Issue 2, 115-122, 2016.
    [14] V. M. Segal, “Materials processing by simple shear”, Materials Science and Engineering A, Vol. 197, 157-164, 1995.
    [15] C. W. Su, L. Lu, M. O. Lai, “A model for the grain refinement mechanism in equal channel angular pressing of Mg alloy from microstructural studies”, Materials Science and Engineering A, Vol. 434, 227-236, 2006.
    [16] F. Kang, J. T. Wang, Y. Peng, “Deformation and fracture during equal channel angular pressing of AZ31 magnesium alloy”, Materials Science and Engineering A, Vol. 487, 68-73, 2008.
    [17] R. B. Figueiredo, T.G. Langdon, “Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP”, Journal of Materials Science, Vol. 45, 4827-4836, 2010.
    [18] 許智為,等徑轉角擠製對AZ61添加不同強化相鎂基複合材料之機械性質研究,國立臺灣科技大學機械工程系碩士學位論文,2014年7月。
    [19] L. Pantělejev, R. Štěpánek, O. Man, “Thermal stability of bimodal microstructure in magnesium alloy AZ91 processed by ECAP”, Materials Characterization, Vol. 107, 167-173, 2010.
    [20] L. Tang, Y. Zhao, R. K. Islamgaliev, C. Y. A. Tsao, R. Z. Valiev, E. J. Lavernia, Y. T. Zhu, “Enhanced strength and ductility of AZ80 Mg alloys by spray forming and ECAP”, Materials Science and Engineering A, Vol. 670, 280-291, 2016.
    [21] B. R. Sunil, T. S. S. Kumar, U. Chakkingal, V. Nandakumar, M. Doble, V. D. Prasad, M. Raghunath, “In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing”, Materials Science and Engineering C, Vol.59, 356-367, 2016.
    [22] R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation”, Progress in Materials Science, Vol. 45, Issue2, 103-189, 2000.
    [23] S. Divinski, G. Wilde, E. Rabkin, Y. Estrin, “Ultra-fast atomic transport in severely deformed materials-a pathway to applications”, Advanced Engineering Materials, Vol. 12, 779-785, 2010.
    [24] J. S. Benjamin, T. E. Volin, “The mechanism of mechanical alloying”, Metallurgical Transactios, Vol. 5, 1924-1934, 1974.
    [25] J. Huot, G. Liang, S. Boily, A. V. Neste, R. Schulz, “Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride”, Journal of Alloys and Compounds, Vol. 293-295, 495-500, 1991.
    [26] B. Bogdanović, K. Bohmhammel, B. Christ, A. Reiser, K. Schlichte, R. Vehlen, U. Wolf, “Thermodynamic investigation of the magnesium–hydrogen system”, Journal of Alloys and Compounds, Vol. 282, Issues1-2, 84-92, 1999.
    [27] C. Milanese, A. Girella, S. Garroni, G. Bruni, V. Berbenni, P. Matteazzi, A. Marini, “Effect of C (graphite) doping on the H2 sorption performance of the Mg–Ni storage system”, International Journal of Hydrogen Energy, Vol. 35, 1285-1295, 2010.
    [28] Y. Jia, Y. Guo, J. Zou, X. Yao, “Hydrogenation / dehydrogenation in MgH2-activated carbon composites prepared by ball milling”, International Journal of Hydrogen Energy, Vol. 37, 7579-7585, 2012.
    [29] 林鴻明,奈米材料技術與應用,大同大學材料工程學系 奈米材料技術與應用之課堂講義。
    [30] H. Shao, Y. Wang, H. Xu, X. Li, “Hydrogen storage properties of magnesium ultrafine particles prepared by hydrogen plasma-metal reaction”, Materials Science and Engineering B, Vol. 110, 221-226, 2004.
    [31] T. Liu, C. Qin, T. Zhang, Y. Cao, M. Zhua and X. Li, “Synthesis of Mg@Mg17Al12 ultrafine particles with superior hydrogen storage properties by hydrogen plasma–metal reaction”, Journal of Materials Chemistry, Vol. 22, 19831-19838, 2012.
    [32] V. M. Skripnyuk, E. Buchman, E. Rabkin, Y. Estrin, M. Popov, S. Jorgensen, “The effect of equal channel angular pressing on hydrogen storage properties of a eutectic Mg-Ni alloy”, Journal of Alloys and Compounds, Vol. 436, 99-106, 2007.
    [33] A. A. C. Asselli, D. R. Leiva, J. Huot, M. Kawasaki, T. G. Langdon, W. J. Botta, “Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy”, International Journal of Hydrogen Energy, Vol. 40, Issue 47, 16971-16976, 2015.
    [34] 范光堯,機械成形技術於鎂合金材料之應用概況,工業材料雜誌,第162期,2000年。
    [35] 陳振華、嚴紅革、陳吉華、金亞杰、王慧敏、陳鼎,鎂合金,化學工業出版社,材料科學與工程出版中心,2004年。
    [36] 許并社、李明照,鎂冶煉與鎂合金熔煉工藝,化學工業出版社,材料科學與工程出版中心,2005年。
    [37] R. Z. Valiev, T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Progress in Materials Science, Vol. 51, 881-981, 2006.
    [38] J. Humphreys, M. Hatherly, “Recrystallization and Related Annealing Phenomena”, Pergamon, 1994.
    [39] 丘群,Hydrogen technology and application,國立臺灣科技大學 氫能技術與應用之課堂講義。
    [40] D. A. Porter, K. E. Easterling, “Phase Transformations in Metals and Alloys”, Springer US, 1992.
    [41] A."Z" """ ̈"ttel," “Hydrogen storage methods”, Naturwissenschaften, Vol. 91, 157-172, 2004.
    [42] A. "Z" "u" ̈"ttel" , “Materials for hydrogen storage”, Materialstoday, Vol. 6, 24-33, 2003.
    [43] A. "Z" "u" ̈"ttel" , “Hydrogen storage materials:keynote address”, 2004 H2NET Seminar, University of Birmingham, 2004.
    [44] R. A. Varin, T. Czujko, Z. S. Wronski, “Nanomaterials for Solid State Hydrogen Storage”, Springer, 2009.
    [45] 黃友聖,AZ61/SiCp鎂基複合材料擠型製程及其擠型管之機械性質研究,國立中正大學機械工程系碩士學位論文,2011年6月。
    [46] 黃政揚,WS2無機奈米管對鎂合金複合材料之機械性質與微觀組織影響之研究,國立臺灣科技大學機械工程系碩士學位論文,2015年6月。
    [47] S. J. Huang, P. C. Lin, J. N Aoh, “Mechanical behavior enhancement of AM60/Al2O3p magnesium metal-matrix nanocomposites by ECAE”, Materials and Manufacturing Processes, Vol.30, 1272-1277, 2015.
    [48] J. L. Murray, L. H. Bennett, H. Kacprzak, “Binary Alloy Phase Diagrams”, American Society for Metals, Metals Park, Ohio, 1986.
    [49] ASM, “Magnesium Alloys”, Metals Handbook, 69th, 425-434, 1985.
    [50] 陳柏同,高比表面積活性炭之合成及儲氫之應用,國立中央大學化學工程與材料工程學系碩士論文,2010年6月。
    [51] A. Pund, “Hydrogen in nano-sized metals”, Advanced Engineering Materials, Vol. 6, 11-21, 2004.
    [52] H. Wu, “Strategies for the improvement of the hydrogen storage properties of metal hydride materials”, ChemPhysChem, Vol. 9, 2157-2162, 2008.
    [53] X. Li, Y. Lin, “Influence of Al doping on stability of Mg1-xTix and their hydrides”, Acta Physica Sinica, Vol. 62, 138801, 1-8, 2013.
    [54] J. C. Crivello, T. Nobuki, S. Kato, M. Abe, T. Kuji, “Hydrogen absorption properties of the "β" -Mg17Al12 phase and its Al-richer domain”, Journal of Alloys and Compounds, Vol. 446-447, 157-161, 2007.
    [55] W. Peng, Z. Lan, W. Wei, Liqin Xu, Jin Guo, “Investigation on preparation and hydrogen storage performance of Mg17Al12 alloy”, International Journal of Hydrogen Energy, Vol. 41, 1759-1765, 2016.
    [56] R. Prabhu, “Effect of synthetic graphite and activated charcoal addition on the mechanical, microstructure and wear properties of AZ 81 Mg alloys”, Journal of Materials Research and Technology, Vol. 5, Issue 3, 259-267, 2016.
    [57] C. Suryanarayana, “Recent developments in mechanical alloying”, Department of mechanical, materials and aerospace engineering, University of Central Florida.
    [58] A. Andreasen, “Hydrogenation properties of Mg–Al alloys”, International Journal of Hydrogen Energy, Vol.33, Issue 24, 7489-7497, 2008.
    [59] N. Skryabina, N. Medvedeva, A. Gabov, D. Fruchart, S. Nachev, P. de Rango, “Impact of Severe Plastic Deformation on the stability of MgH2”, Journal of Alloys and Compounds, Vol. 645, S14-S17, 2015.
    [60] 高振洋,旋鍛製程與退火處裡對AZ系列鎂合金之機械性質影響,國立臺北科技大學材料科學與工程學系碩士論文,2011年6月。
    [61] S. M. F. Varzaneh, A. Z. Hanzaki, H. Beladi, “Dynamic recrystallization in AZ31 magnesium alloy”, Materials Science and Engineering A, Vol. 456, 52-57, 2007
    [62] Y. Jia, C. Sun, S. Shen, J. Zou, S. S. Mao, X. Yao, “Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage”, Renewable and Sustainable Energy Reviews, Vol. 44, 289-303, 2015.

    QR CODE