簡易檢索 / 詳目顯示

研究生: Matoke Peter Mose
Matoke Peter Mose
論文名稱: 工業廢料級AZ61鎂合金的儲氫性能:製造和表徵
Hydrogen storage properties of industrial waste grade AZ61 Magnesium alloy: Fabrication and Characterization
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 黃崧任
Song-Jeng Huang
丘群
Chun Chiu
王丞浩
Chen-Hao Wang
曾有志
Yu-Chih Tzeng
林景崎
Jing-Chie Lin
汪俊延
Jun-Yen Uan
李天錫
Tien-Hsi Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 118
外文關鍵詞: Magnesium, Hydrogen storage, High-energy ball milling, Catalyst
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • ABSTRACT I 概要 III ACKNOWLEDGEMENT IV TABLE OF CONTENTS V LIST OF FIGURES VII LIST OF TABLES IX 1 Introduction 1 1.1 Background 1 1.2 Green Energy Production Worldwide: Trends and Forecast 3 1.3 Current Status and Future Trends in Solid-State Hydrogen Storage 8 1.4 Evolution of hydrogen storage 10 1.5 Market outlook for solid-state hydrogen 12 1.6 Research targets 15 1.7 Outline and Scope of the research 16 1.7.1 The scope of this research 16 1.7.2 Thesis outline 16 2 Literature Review 18 2.1 Introduction 18 2.2 Overview of Mg-based solid-state hydrogen storage 20 2.3 Tailoring Mg-based hydrogen storage performance 23 2.3.1 Compositional design 24 2.3.2 Nanoconfinement 26 2.3.3 Amorphization 26 2.3.4 Additive with catalytic effect 26 2.3.5 Advanced synthesis methods 27 2.4 Conclusion 30 3 Methodology 31 3.1 Material selection 31 3.2 Design of Experiment (DOE) with Taguchi method-Ball milling optimization 33 3.3 Composite synthesis 34 3.4 Casting and ECAP process 35 3.5 Characterization 38 3.5.1 Microstructure characterization. 38 3.5.2 Powder morphology 38 3.5.3 Phase composition and crystal structure 39 3.5.4 Particle size analysis 40 3.5.5 Chemical state of elements 40 3.5.6 Hydrogen storage properties. 40 3.5.7 Differential Scanning Calorimetry (DSC) and thermogravimetric analysis (TGA) 41 4 Results 43 4.1 Particle size analysis 43 4.2 Powder morphology 47 4.3 Energy dispersive spectroscopy (EDS) analysis 49 4.4 Phase and crystal structure analysis 52 4.5 Chemical bonding analysis 59 4.6 Specific surface area analysis 62 4.7 Hydrogen storage properties 65 4.7.1 Absorption-desorption kinetics 65 4.7.2 Reaction Kinetics 69 4.7.3 Desorption activation energy 72 4.7.4 Cycle stability 74 4.8 Effect of ECAP on Hydrogen properties 74 4.8.1 Microstructure analysis 74 4.8.2 Hydrogen absorption 79 4.8.3 Thermogravimetric analysis 80 5 Discussion of results 82 5.1 Particle size analysis 82 5.2 Specific surface area 82 5.3 Powder morphology and the effect of HEBM 82 5.4 Hydrogen properties 83 5.5 Reaction mechanism 84 5.6 Reaction kinetics 86 5.6.1 Reaction kinetics of AZ61 alloy 86 5.6.2 Reaction kinetics after use of catalyst 87 5.7 Kinetics of hydrogen desorption 88 5.8 Effect of Co, Ni and Ni-Co additives on hydrogen storage properties 89 5.9 Effect of ECAP+HEBM on hydrogen storage 91 6 Technology Comparisons with related literatures 93 7 Conclusion and future work 94 7.1 Conclusions 94 7.2 Future work 96 List of Publications 96 References 98 APPENDIX 109 LIST OF FIGURES Figure 1. Feedstocks, routes and primary sources of hydrogen production [23] 7 Figure 2. The evolution of hydrogen storage 11 Figure 3. Methods available for storing hydrogen [43] 19 Figure 4. hydrogen-metal interactions during absorption-desorption process [47]. 21 Figure 5. Diagram illustrating the impact of Mg particle size on the absorption kinetics of Mg-based materials for hydrogen storage [40]. 23 Figure 6. Techniques used to enhance hydrogen storage properties. 23 Figure 7. Schematics of the casting equipment 36 Figure 8. Processing ECAP billet to ball milling 38 Figure 9: Brucker D2 Phaser instrument 39 Figure 10. X-ray Photoelectron Spectroscopy (XPS): ULVAC-PHI. Inc. / PHI 5000 VersaProbe Ⅲ 40 Figure 11. Sievert-type hydrogen measurement system. 41 Figure 12. Mettler Toledo-DSC calorimeter 42 Figure 13. Experimental Flowchart 42 Figure 14. Particle size statistics 43 Figure 15. Sample 3; Particle size and crystallite size analyses. 44 Figure 16. Powder Morphology for various samples: (a) as-received, (b) Sample 1, (c) Sample 2, and (d) Sample 3. 47 Figure 17. Powder Morphology for various samples: (a) Sample 5, (b) Sample 6, (c) Sample 7, and (d) Sample 8. 48 Figure 18. SEM images of as-received powders of: (a) AZ61 alloy, (b) Ni powder, and (c) Co powder (d) AZ61+2wt.%Ni, (e) AZ61+2wt.%Co, and (f) AZ61+2wt.%Co-Ni 49 Figure 19. Figure 18. EDS for Co-Ni mixture (point spectrum) 49 Figure 20. EDS for Co-Ni mixture (sum spectrum) 50 Figure 21. EDS Scan for Pure AZ61 powder 50 Figure 22. EDS Scan of AZ61+2wt.% Co 50 Figure 23. EDS elemental mapping of Mg, Al, Zn and Co in AZ61+2wt.%Co sample 51 Figure 24. EDS Scan for AZ61+2wt.%Ni 51 Figure 25. EDS elemental mapping of Mg, Al, Zn and Ni in AZ61+2wt.%Ni sample 51 Figure 26. EDS Scan for AZ61+2wt.%Co-Ni 52 Figure 27. EDS elemental mapping of Mg, Al, Zn, Co, and Ni in AZ61+2wt.%C0-Ni sample 52 Figure 28. XRD patterns peak broadening for as-received and samples no. 1-9. 53 Figure 29. XRD patterns for samples 1-9. 55 Figure 30. XRD patterns for sample 2 before and after hydrogenation 56 Figure 31. XRD pattern for sample 3 before and after hydrogenation 57 Figure 32. XRD patterns for sample 6 before and after hydrogenation 57 Figure 33. XRD patterns for (a) Ball-milled Ni-Co mixture, (b) Ni and (c) AZ61 alloy, (d) Co powder 58 Figure 34. XRD patterns (a) before and (b) after absorption 59 Figure 35. XPS analysis of Co 2p and Ni 2p before milling (a, c) and after milling (b, d) 60 Figure 36. C 1s high resolution spectra 60 Figure 37. XPS analysis of Mg 2p and O 1s before milling (a, b) and after milling (c, d) 61 Figure 38. Adsorption-desorption curves and BET-plot for Sample 1 63 Figure 39. Adsorption-desorption curves and BET-plot for sample 2 63 Figure 40. Adsorption-desorption curves and BET-plot for sample 3 64 Figure 41. Adsorption-desorption curves and BET-plot for sample 4 64 Figure 42. Adsorption-desorption curves and BET-plot for sample 6 65 Figure 43. Average absorption kinetic curves for samples 2, 3, 6 & 8 66 Figure 44. Desorption kinetic curves for samples 2, 3, 6 & 8. 67 Figure 45. Absorption-desorption kinetic curves for AZ61+2wt%Ni sample. 68 Figure 46. Absorption-desorption kinetic curves for AZ61+2wt%Co sample 68 Figure 47. Absorption-desorption kinetic curves for AZ61+2wt%. Co-Ni sample 69 Figure 48. Combined Ab/desorption kinetic curves for different catalysts 69 Figure 49. Avrami plots for sample 2, 3, 6 and 8 70 Figure 50. JMAK linear plots (a) Sample 2, (b) sample 3, (c) sample 6, and (d) sample 8 71 Figure 51. JMAK plots for sample with (a) Co, (b) Ni, (c) Ni-Co mixture and (d) Combined Avrami plots. 71 Figure 52. a) DSC scan and (b) Kissinger Plot for pure AZ61 alloy after absorption (Sample 6) 72 Figure 53. (a) DSC Scan and (b) Kissinger plot for AZ61+2wt.% Co 73 Figure 54. DSC curve before (black) and after (blue) absorption for Sample 6: heating rate-5 C°/min 73 Figure 55. Cycle Stability plots 74 Figure 56. Optical image of AZ61 as-cast condition (Magnification, 20X) 75 Figure 57. Optical image of AZ61 as-cast condition (Magnification, 50X) 75 Figure 58. Optical image of ECAP sample-2passes (Magnification, 20X) 76 Figure 59. Optical image of ECAP sample-2passes (Magnification, 50X) 76 Figure 60. Optical image of ECAP sample-3passes (Magnification, 20X) 77 Figure 61. Optical image of ECAP sample-3passes (Magnification, 50X) 77 Figure 62. Grain Size Distribution – As-cast condition 78 Figure 63. Grain Size Distribution - Homogenized condition 79 Figure 64. Grain Size Distribution-ECAP 2 passes 79 Figure 65. Comparison of the H2 absorption after HEBM, ECAP+HEBM and As-cast 80 Figure 66. DSC and TGA graphs for AZ61+2wt.%Ni HEBM 80 Figure 67. DSC/TGA curves for AZ61+2wt.%Ni-HEBM+ECAP (4pass) 81 LIST OF TABLES Table 1. Chemical composition of AZ61 magnesium 32 Table 2. Experimental Parameters 34 Table 3. Crystallite Size (Å) at different conditions 46 Table 4. ANOVA Table of results 46 Table 5. Crystallite Size Variation, micro-strain and crystallinity 53 Table 6. Comparison of observed and theoretical values of 2θ (°) for AZ61-Mg (as received) and Pure Mg respectively. 54 Table 7. Crystal structure data for the identified phases after milling 55 Table 8. Specific surface area 62 Table 9. Comparison table for the ab/desorption kinetics 66 Table 10. Comparison of hydrogen storage performance of Mg-Al alloys 93

    [1] A. Züttel, “Materials for hydrogen storage,” Materials Today, vol. 6, no. 9, pp. 24–33, Sep. 2003, doi: 10.1016/S1369-7021(03)00922-2.
    [2] L. Schlapbach and A. Züttel, “Hydrogen-storage materials for mobile applications,” Nature, vol. 414, no. 6861, pp. 353–358, 2001, doi: 10.1038/35104634.
    [3] M. D. Allendorf et al., “Challenges to developing materials for the transport and storage of hydrogen,” Nat Chem, vol. 14, no. 11, pp. 1214–1223, 2022, doi: 10.1038/s41557-022-01056-2.
    [4] M. Simanullang and L. Prost, “Nanomaterials for on-board solid-state hydrogen storage applications,” Int J Hydrogen Energy, vol. 47, no. 69, pp. 29808–29846, Aug. 2022, doi: 10.1016/J.IJHYDENE.2022.06.301.
    [5] J. Eckert and W. Lohstroh, “Hydrogen Storage Materials,” in Neutron Applications in Materials for Energy, G. J. Kearley and V. K. Peterson, Eds., Cham: Springer International Publishing, 2015, pp. 205–239. doi: 10.1007/978-3-319-06656-1_8.
    [6] G. Principi, F. Agresti, A. Maddalena, and S. Lo Russo, “The problem of solid state hydrogen storage,” Energy, vol. 34, no. 12, pp. 2087–2091, 2009, doi: 10.1016/j.energy.2008.08.027.
    [7] R. A. Varin, L. Zbroniec, M. Polanski, and J. Bystrzycki, “A review of recent advances on the effects of microstructural refinement and nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides,” Energies (Basel), vol. 4, no. 1, pp. 1–25, 2011, doi: 10.3390/en4010001.
    [8] G. Sdanghi, R. L. S. Canevesi, A. Celzard, M. Thommes, and V. Fierro, “Characterization of Carbon Materials for Hydrogen Storage and Compression,” C — Journal of Carbon Research, vol. 6, no. 3, p. 46, Jul. 2020, doi: 10.3390/c6030046.
    [9] S. P. Shet, S. Shanmuga Priya, K. Sudhakar, and M. Tahir, “A review on current trends in potential use of metal-organic framework for hydrogen storage,” International Journal of Hydrogen Energy, vol. 46, no. 21. Elsevier Ltd, pp. 11782–11803, Mar. 23, 2021. doi: 10.1016/j.ijhydene.2021.01.020.
    [10] C. S. Wang and J. Brinkerhoff, “Low-cost lumped parameter modelling of hydrogen storage in solid-state materials,” Energy Convers Manag, vol. 251, p. 115005, Jan. 2022, doi: 10.1016/J.ENCONMAN.2021.115005.
    [11] Timur Gül, Dave Turk, Herib Blanco, Pierpaolo Cazzola, and John Dulac, “The Future of Hydrogen,” Jun. 2019. Accessed: Jun. 28, 2023. [Online]. Available: https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf
    [12] H. B. Aditiya and M. Aziz, “Prospect of hydrogen energy in Asia-Pacific: A perspective review on techno-socio-economy nexus,” Int J Hydrogen Energy, vol. 46, no. 71, pp. 35027–35056, Oct. 2021, doi: 10.1016/J.IJHYDENE.2021.08.070.
    [13] B. Laratte and T. Perminova, “New Technology to Improve the Efficiency of Photovoltaic Cells for Producing Energy,” Procedia Manuf, vol. 7, pp. 358–363, Jan. 2017, doi: 10.1016/J.PROMFG.2016.12.002.
    [14] D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini, “The role of renewable energy in the global energy transformation,” Energy Strategy Reviews, vol. 24, pp. 38–50, Apr. 2019, doi: 10.1016/j.esr.2019.01.006.
    [15] Inclusive Green Growth, no. 6 B. The World Bank, 2012. doi: 10.1596/978-0-8213-9551-6.
    [16] S. S. Ali and B. J. Choi, “State-of-the-Art Artificial Intelligence Techniques for Distributed Smart Grids: A Review,” Electronics (Basel), vol. 9, no. 6, p. 1030, Jun. 2020, doi: 10.3390/electronics9061030.
    [17] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials: present and future,” Materials Today, vol. 18, no. 5, pp. 252–264, Jun. 2015, doi: 10.1016/J.MATTOD.2014.10.040.
    [18] I. Antonopoulos et al., “Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review,” Renewable and Sustainable Energy Reviews, vol. 130, p. 109899, Sep. 2020, doi: 10.1016/J.RSER.2020.109899.
    [19] S. A. Tayel, A. E. Abu El-Maaty, E. M. Mostafa, and Y. F. Elsaadawi, “Enhance the performance of photovoltaic solar panels by a self-cleaning and hydrophobic nanocoating,” Sci Rep, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-25667-4.
    [20] A. H. Muheisen, M. A. R. Yass, and I. K. Irthiea, “Enhancement of horizontal wind turbine blade performance using multiple airfoils sections and fences,” Journal of King Saud University - Engineering Sciences, vol. 35, no. 1, pp. 69–81, Jan. 2023, doi: 10.1016/J.JKSUES.2021.02.014.
    [21] J. Andersson and S. Grönkvist, “Large-scale storage of hydrogen,” Int J Hydrogen Energy, vol. 44, no. 23, pp. 11901–11919, May 2019, doi: 10.1016/j.ijhydene.2019.03.063.
    [22] W. Liu, H. Zuo, J. Wang, Q. Xue, B. Ren, and F. Yang, “The production and application of hydrogen in steel industry,” Int J Hydrogen Energy, vol. 46, no. 17, pp. 10548–10569, Mar. 2021, doi: 10.1016/J.IJHYDENE.2020.12.123.
    [23] M. Ji and J. Wang, “Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators,” Int J Hydrogen Energy, vol. 46, no. 78, pp. 38612–38635, Nov. 2021, doi: 10.1016/j.ijhydene.2021.09.142.
    [24] P. Muthukumar, M. P. Maiya, and S. S. Murthy, “Experiments on a metal hydride-based hydrogen storage device,” Int J Hydrogen Energy, vol. 30, no. 15, pp. 1569–1581, 2005, doi: 10.1016/j.ijhydene.2004.12.007.
    [25] Q. Li et al., “Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials,” Journal of Magnesium and Alloys, vol. 9, no. 6, pp. 1922–1941, Nov. 2021, doi: 10.1016/J.JMA.2021.10.002.
    [26] Y. Liu, Y. Yang, M. Gao, and H. Pan, “Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications,” Chemical Record, vol. 16, no. 1, pp. 189–204, Feb. 2016, doi: 10.1002/tcr.201500224.
    [27] R. Y. Sathe, T. J. Dhilip Kumar, and R. Ahuja, “Furtherance of the material-based hydrogen storage based on theory and experiments,” Int J Hydrogen Energy, vol. 48, no. 34, pp. 12767–12795, Apr. 2023, doi: 10.1016/J.IJHYDENE.2022.11.306.
    [28] M. S. Salman et al., “The power of multifunctional metal hydrides: A key enabler beyond hydrogen storage,” J Alloys Compd, vol. 920, p. 165936, Nov. 2022, doi: 10.1016/J.JALLCOM.2022.165936.
    [29] J. Yap and B. McLellan, “A Historical Analysis of Hydrogen Economy Research, Development, and Expectations, 1972 to 2020,” Environments, vol. 10, no. 1, p. 11, Jan. 2023, doi: 10.3390/environments10010011.
    [30] A. López-Suárez, “Effect of Absorption and Desorption of Hydrogen in Ti and Ti Alloys,” in New Advances in Hydrogenation Processes - Fundamentals and Applications, M. T. Ravanchi, Ed., Rijeka: InTech, 2017, p. Ch. 10. doi: 10.5772/64921.
    [31] Y. Xia, Z. Yang, and Y. Zhu, “Porous carbon-based materials for hydrogen storage: advancement and challenges,” J Mater Chem A Mater, vol. 1, no. 33, p. 9365, 2013, doi: 10.1039/c3ta10583k.
    [32] T. Huang et al., “MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2,” Chemical Engineering Journal, vol. 421, p. 127851, Oct. 2021, doi: 10.1016/J.CEJ.2020.127851.
    [33] G. Borboudakis, T. Stergiannakos, M. Frysali, E. Klontzas, I. Tsamardinos, and G. E. Froudakis, “Chemically intuited, large-scale screening of MOFs by machine learning techniques,” NPJ Comput Mater, vol. 3, no. 1, p. 40, Oct. 2017, doi: 10.1038/s41524-017-0045-8.
    [34] Kretchmer Harry, “Renewables are increasingly cheaper than coal.,” World Economic Forum, Jun. 2020. https://www.weforum.org/agenda/2020/06/cost-renewable-energy-cheaper-coal/ (accessed Jul. 09, 2023).
    [35] J. L. Holechek, H. M. E. Geli, M. N. Sawalhah, and R. Valdez, “A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?,” Sustainability, vol. 14, no. 8, p. 4792, Apr. 2022, doi: 10.3390/su14084792.
    [36] N. Grant, A. Hawkes, T. Napp, and A. Gambhir, “Cost reductions in renewables can substantially erode the value of carbon capture and storage in mitigation pathways,” One Earth, vol. 4, no. 11, pp. 1588–1601, Nov. 2021, doi: 10.1016/j.oneear.2021.10.024.
    [37] M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel, “Hydrogen energy systems: A critical review of technologies, applications, trends and challenges,” Renewable and Sustainable Energy Reviews, vol. 146, p. 111180, Aug. 2021, doi: 10.1016/j.rser.2021.111180.
    [38] S.-J. Huang, M. P. Mose, and S. Kannaiyan, “Artificial intelligence application in solid state mg-based hydrogen energy storage,” Journal of Composites Science, vol. 5, no. 6, 2021, doi: 10.3390/jcs5060145.
    [39] C. S. Wang and J. Brinkerhoff, “Is there a general time scale for hydrogen storage with metal hydrides or activated carbon?,” Int J Hydrogen Energy, vol. 46, no. 21, pp. 12031–12034, Mar. 2021, doi: 10.1016/J.IJHYDENE.2021.01.067.
    [40] C. N. C. Hitam, M. A. A. Aziz, A. H. Ruhaimi, and M. R. Taib, “Magnesium-based alloys for solid-state hydrogen storage applications: A review,” Int J Hydrogen Energy, vol. 46, no. 60, pp. 31067–31083, Sep. 2021, doi: 10.1016/J.IJHYDENE.2021.03.153.
    [41] P. Breeze, “Hydrogen Energy Storage,” in Power System Energy Storage Technologies, Elsevier, 2018, pp. 69–77. doi: 10.1016/b978-0-12-812902-9.00008-0.
    [42] M. Yang, R. Hunger, S. Berrettoni, B. Sprecher, and B. Wang, “A review of hydrogen storage and transport technologies,” Clean Energy, vol. 7, no. 1, pp. 190–216, Feb. 2023, doi: 10.1093/ce/zkad021.
    [43] Energy.gov, “Hydrogen storage,” U.S Department of Energy. https://www.energy.gov/eere/fuelcells/hydrogen-storage (accessed Jun. 25, 2023).
    [44] M. D. Allendorf et al., “Challenges to developing materials for the transport and storage of hydrogen,” Nat Chem, vol. 14, no. 11, pp. 1214–1223, 2022, doi: 10.1038/s41557-022-01056-2.
    [45] J. Huot, “Metal Hydrides,” in Handbook of Hydrogen Storage, in Wiley Online Books. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010, pp. 81–116. doi: 10.1002/9783527629800.ch4.
    [46] Q. Lai et al., “How to Design Hydrogen Storage Materials? Fundamentals, Synthesis, and Storage Tanks,” Adv Sustain Syst, vol. 3, no. 9, p. 1900043, Sep. 2019, doi: 10.1002/adsu.201900043.
    [47] Q. Lai et al., “Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art,” ChemSusChem, vol. 8, no. 17, pp. 2789–2825, 2015, doi: 10.1002/cssc.201500231.
    [48] L. Schlapbach and A. Züttel, “Hydrogen-storage materials for mobile applications,” Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, pp. 265–270, Jan. 2010, doi: 10.1142/9789814317665_0038.
    [49] P. Sasikanth, M. Sambasivam, and T. G. Manivasagam, “Synthesis and characterization of MgZr alloy for hydrogen storage,” Mater Today Proc, vol. 46, pp. 4368–4374, Jan. 2021, doi: 10.1016/J.MATPR.2020.09.664.
    [50] R. Vijay, R. Sundaresan, M. P. Maiya, and S. S. Murthy, “Comparative evaluation of Mg-Ni hydrogen absorbing materials prepared by mechanical alloying,” Int J Hydrogen Energy, vol. 30, no. 5, pp. 501–508, 2005, doi: 10.1016/j.ijhydene.2004.04.019.
    [51] S.-I. Ri, K.-J. Um, J.-H. Wi, J.-C. Kim, and N.-H. Kim, “Effects of single– and co– substitution of Ti and Fe on vacancy formation and dehydrogenation from MgH2 (110) surface: Ab initio study,” Int J Hydrogen Energy, vol. 44, no. 41, pp. 22761–22769, Aug. 2019, doi: 10.1016/j.ijhydene.2019.06.213.
    [52] M. Zhu, H. Wang, L. Z. Ouyang, and M. Q. Zeng, “Composite structure and hydrogen storage properties in Mg-base alloys,” Int J Hydrogen Energy, vol. 31, no. 2, pp. 251–257, 2006, doi: 10.1016/j.ijhydene.2005.04.030.
    [53] T. T. Le et al., “Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4,” Int J Hydrogen Energy, vol. 46, no. 46, pp. 23723–23736, Jul. 2021, doi: 10.1016/J.IJHYDENE.2021.04.150.
    [54] T. Zhai et al., “Influences of hydrogen-induced amorphization and annealing treatment on gaseous hydrogen storage properties of La1−xPrxMgNi3.6Co0.4 (x = 0–0.4) alloys,” J Alloys Compd, vol. 639, pp. 15–20, Aug. 2015, doi: 10.1016/J.JALLCOM.2015.03.092.
    [55] Y. Yang et al., “Recent advances in catalyst-modified Mg-based hydrogen storage materials,” J Mater Sci Technol, vol. 163, pp. 182–211, Nov. 2023, doi: 10.1016/J.JMST.2023.03.063.
    [56] T. Ma, S. Isobe, Y. Wang, N. Hashimoto, and S. Ohnuki, “Nb-Gateway for Hydrogen Desorption in Nb 2 O 5 Catalyzed MgH 2 Nanocomposite,” The Journal of Physical Chemistry C, vol. 117, no. 20, pp. 10302–10307, May 2013, doi: 10.1021/jp4021883.
    [57] W. Oelerich, T. Klassen, and R. Bormann, “Comparison of the catalytic effects of V, V2O5, VN, and VC on the hydrogen sorption of nanocrystalline Mg,” Journal of Alloys and Compounds, vol. 322, no. 1–2. Elsevier BV, Jun. 28, 2001. doi: 10.1016/S0925-8388(01)01173-2.
    [58] X. Yang, Q. Hou, L. Yu, and J. Zhang, “Improvement of the hydrogen storage characteristics of MgH2with a flake Ni nano-catalyst composite,” Dalton Transactions, vol. 50, no. 5, pp. 1797–1807, Feb. 2021, doi: 10.1039/d0dt03627g.
    [59] Q. Hou, J. Zhang, XinTao Guo, G. Xu, and X. Yang, “Synthesis of low-cost biomass charcoal-based Ni nanocatalyst and evaluation of their kinetic enhancement of MgH2,” Int J Hydrogen Energy, vol. 47, no. 34, pp. 15209–15223, Apr. 2022, doi: 10.1016/j.ijhydene.2022.03.040.
    [60] T. Huang et al., “Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods,” Mater Today Energy, vol. 19, Mar. 2021, doi: 10.1016/j.mtener.2020.100613.
    [61] Y. Zhang, F. Wu, S. Guemou, H. Yu, L. Zhang, and Y. Wang, “Constructing Mg2Co-Mg2CoH5 nano hydrogen pumps from LiCoO2 nanosheets for boosting the hydrogen storage property of MgH2,” Dalton Transactions, vol. 51, no. 42, pp. 16195–16205, Sep. 2022, doi: 10.1039/d2dt02090d.
    [62] A. Zaluska, L. Zaluski, and J. O. Ström-Olsen, “Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni,” J Alloys Compd, vol. 289, no. 1–2, pp. 197–206, 1999, doi: 10.1016/S0166-0462(99)00013-7.
    [63] D. Khan, J. Zou, X. Zeng, and W. Ding, “Hydrogen storage properties of nanocrystalline Mg2Ni prepared from compressed 2MgH2–Ni powder,” Int J Hydrogen Energy, vol. 43, no. 49, pp. 22391–22400, Dec. 2018, doi: 10.1016/j.ijhydene.2018.10.055.
    [64] A. Zaluska, L. Zaluski, and J. O. Ström-Olsen, “Nanocrystalline magnesium for hydrogen storage,” J Alloys Compd, vol. 288, no. 1–2, pp. 217–225, Jun. 1999, doi: 10.1016/S0925-8388(99)00073-0.
    [65] C. Liu, G. P. Vissokov, and B. W-L Jang, “Catalyst preparation using plasma technologies,” 2002.
    [66] S. D. House, J. J. Vajo, C. Ren, A. A. Rockett, and I. M. Robertson, “Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials,” Acta Mater, vol. 86, pp. 55–68, Mar. 2015, doi: 10.1016/J.ACTAMAT.2014.11.047.
    [67] Z. Yuan et al., “Effects of ball milling time on the microstructure and hydrogen storage performances of Ti21.7Y0.3Fe16Mn3Cr alloy,” Int J Hydrogen Energy, Sep. 2022, doi: 10.1016/j.ijhydene.2022.09.027.
    [68] P. Lv, M. N. Guzik, S. Sartori, and J. Huot, “Effect of ball milling and cryomilling on the microstructure and first hydrogenation properties of TiFe+4 wt.% Zr alloy,” Journal of Materials Research and Technology, vol. 8, no. 2, pp. 1828–1834, Apr. 2019, doi: 10.1016/j.jmrt.2018.12.013.
    [69] C. Lal and I. P. Jain, “Effect of ball milling on structural and hydrogen storage properties of Mg - x wt% FeTi (x=2 & 5) solid solutions,” Int J Hydrogen Energy, vol. 37, no. 4, pp. 3761–3766, Feb. 2012, doi: 10.1016/J.IJHYDENE.2011.06.042.
    [70] V. M. Skripnyuk, E. Rabkin, Y. Estrin, and R. Lapovok, “The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt% Zn–0.71 wt% Zr (ZK60) alloy,” Acta Mater, vol. 52, no. 2, pp. 405–414, Jan. 2004, doi: 10.1016/j.actamat.2003.09.025.
    [71] V. N. Kudiyarov, R. R. Elman, and N. E. Kurdyumov, “The effect of high-energy ball milling conditions on microstructure and hydrogen desorption properties of magnesium hydride and single-walled carbon nanotubes,” Metals (Basel), vol. 11, no. 9, Sep. 2021, doi: 10.3390/met11091409.
    [72] S. J. Huang, A. Muneeb, A. Abbas, and R. Sankar, “The effect of Mg content and milling time on the solid solubility and microstructure of Ti–Mg alloys processed by mechanical milling,” Journal of Materials Research and Technology, vol. 11, pp. 1424–1433, 2021, doi: 10.1016/j.jmrt.2021.01.097.
    [73] S. R. Hassan, S. K. Sharma, and B. Kumar, “A Review of Severe Plastic Deformation,” International Refereed Journal of Engineering and Science, vol. 6, no. 7, pp. 66–85, Jul. 2017, Accessed: Jun. 21, 2022. [Online]. Available: https://www.semanticscholar.org/paper/A-Review-of-Severe-Plastic-Deformation-Hassan-Sharma/ebc13ec608537802097e6d03d504fc87fccd22ea
    [74] Y. Cao, S. Ni, X. Liao, M. Song, and Y. Zhu, “Structural evolutions of metallic materials processed by severe plastic deformation,” Materials Science and Engineering: R: Reports, vol. 133, pp. 1–59, Nov. 2018, doi: 10.1016/J.MSER.2018.06.001.
    [75] J. Huot, N. Y. Skryabina, and D. Fruchart, “Application of Severe Plastic Deformation Techniques to Magnesium for Enhanced Hydrogen Sorption Properties,” Metals (Basel), vol. 2, no. 3, pp. 329–343, Aug. 2012, doi: 10.3390/met2030329.
    [76] V. M. Skripnyuk, E. Rabkin, Y. Estrin, and R. Lapovok, “Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing,” Int J Hydrogen Energy, vol. 34, no. 15, pp. 6320–6324, 2009, doi: 10.1016/j.ijhydene.2009.05.136.
    [77] E. Rabkin, V. Skripnyuk, and Y. Estrin, “Ultrafine-Grained Magnesium Alloys for Hydrogen Storage Obtained by Severe Plastic Deformation,” Front Mater, vol. 6, no. October, pp. 1–9, 2019, doi: 10.3389/fmats.2019.00240.
    [78] L. Popilevsky et al., “Hydrogenation-induced microstructure evolution in as cast and severely deformed Mg-10 wt.% Ni alloy,” Int J Hydrogen Energy, vol. 38, no. 27, pp. 12103–12114, 2013, doi: 10.1016/j.ijhydene.2013.03.034.
    [79] Á. Révész, M. Gajdics, L. K. Varga, G. Krállics, L. Péter, and T. Spassov, “Hydrogen storage of nanocrystalline Mg-Ni alloy processed by equal-channel angular pressing and cold rolling,” Int J Hydrogen Energy, vol. 39, no. 18, pp. 9911–9917, 2014, doi: 10.1016/j.ijhydene.2014.01.059.
    [80] Y. Miyahara, Z. Horita, and T. G. Langdon, “Exceptional superplasticity in an AZ61 magnesium alloy processed by extrusion and ECAP,” Materials Science and Engineering A, vol. 420, no. 1–2, pp. 240–244, 2006, doi: 10.1016/j.msea.2006.01.043.
    [81] Y.-M. Hwang, S.-J. Huang, and Y.-S. Huang, “Study of seamless tube extrusion of SiCp-reinforced AZ61 magnesium alloy composites,” The International Journal of Advanced Manufacturing Technology, vol. 68, no. 5–8, pp. 1361–1370, Sep. 2013, doi: 10.1007/s00170-013-4927-8.
    [82] M. S. Bhuiyan, Y. Mutoh, T. Murai, and S. Iwakami, “Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments,” Int J Fatigue, vol. 30, no. 10–11, pp. 1756–1765, 2008, doi: 10.1016/j.ijfatigue.2008.02.012.
    [83] Y. Xu, L. Hua, and Y. Sun, “Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy,” J Alloys Compd, vol. 580, pp. 262–269, Dec. 2013, doi: 10.1016/J.JALLCOM.2013.05.082.
    [84] J. Koike and R. Ohyama, “Geometrical criterion for the activation of prismatic slip in AZ61 Mg alloy sheets deformed at room temperature,” Acta Mater, vol. 53, no. 7, pp. 1963–1972, Apr. 2005, doi: 10.1016/J.ACTAMAT.2005.01.008.
    [85] S. J. Huang and A. N. Ali, “Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite,” Materials Science and Engineering A, vol. 711, no. August 2017, pp. 670–682, 2018, doi: 10.1016/j.msea.2017.11.020.
    [86] C. Zlotea, Y. Oumellal, J. J. S. Berrú, and K. F. Aguey-Zinsou, “On the feasibility of the bottom-up synthesis of Mg2CoH5 nanoparticles supported on a porous carbon and their hydrogen desorption behaviour,” Nano-Structures & Nano-Objects, vol. 16, pp. 144–150, Oct. 2018, doi: 10.1016/J.NANOSO.2018.05.010.
    [87] M. Youp Song, “Improvement in hydrogen storage characteristics of magnesium by mechanical alloying with nickel,” 1995.
    [88] P. Wang, Z. Tian, Z. Wang, C. Xia, T. Yang, and X. Ou, “Improved hydrogen storage properties of MgH2 using transition metal sulfides as catalyst,” Int J Hydrogen Energy, vol. 46, no. 53, pp. 27107–27118, Aug. 2021, doi: 10.1016/J.IJHYDENE.2021.05.172.
    [89] L. Wang, J. Jiang, A. Ma, Y. Li, and D. Song, “A critical review of mg-based hydrogen storage materials processed by equal channel angular pressing,” Metals (Basel), vol. 7, no. 9, pp. 1–12, 2017, doi: 10.3390/met7090324.
    [90] S. D. Vincent and J. Huot, “Effect of air contamination on ball milling and cold rolling of magnesium hydride,” J Alloys Compd, vol. 509, no. 19, pp. L175–L179, May 2011, doi: 10.1016/J.JALLCOM.2011.02.147.
    [91] J. Chen, Z. Ye, M. Zhi, and Z. Hong, “Synthesis of Co2Ni/reduced graphene oxide composite aerogels as efficient hydrogen evolution catalysts,” J Solgel Sci Technol, vol. 103, no. 2, pp. 515–525, Aug. 2022, doi: 10.1007/s10971-022-05840-x.
    [92] S. * Feliu, C. Maffiotte, J. C. Galván, A. Pardo, M. C. Merino, and R. Arrabal, “The Application of X-Ray Photoelectron Spectroscopy in Understanding Corrosion Mechanisms of Magnesium and Mg-Al Alloys,” 2011.
    [93] S. J. Huang, C. Chiu, T. Y. Chou, and E. Rabkin, “Effect of equal channel angular pressing (ECAP) on hydrogen storage properties of commercial magnesium alloy AZ61,” Int J Hydrogen Energy, vol. 43, no. 9, pp. 4371–4380, 2018, doi: 10.1016/j.ijhydene.2018.01.044.
    [94] M. Ismail, “The Hydrogen Storage Properties of Destabilized MgH2–AlH3 (2:1) System,” Mater Today Proc, vol. 3, pp. S80–S87, Jan. 2016, doi: 10.1016/J.MATPR.2016.01.011.
    [95] H. Liu et al., “Hydrogen Desorption Properties of the MgH 2 –AlH 3 Composites,” The Journal of Physical Chemistry C, vol. 118, no. 1, pp. 37–45, Jan. 2014, doi: 10.1021/jp407018w.
    [96] H. Yuan, Y. An, G. Xu, and C. Chen, “Hydriding behavior of magnesium-based hydrogen storage alloy modified by mechanical ball-milling,” Mater Chem Phys, vol. 83, no. 2–3, pp. 340–344, 2004, doi: 10.1016/j.matchemphys.2003.10.015.
    [97] D. Rattan Paul et al., “Structural properties of Mg - x wt% Co (x = 0, 5, 10 & 20) nanocomposites for hydrogen storage applications,” Mater Today Proc, vol. 42, pp. 1713–1717, Jan. 2021, doi: 10.1016/J.MATPR.2020.09.577.
    [98] N. Xu et al., “Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH2,” International Journal of Minerals, Metallurgy and Materials, vol. 30, no. 1, pp. 54–62, 2023, doi: 10.1007/s12613-022-2510-8.
    [99] H. Shao, H. Xu, Y. Wang, and X. Li, “Synthesis and hydrogen storage behavior of Mg–Co–H system at nanometer scale,” J Solid State Chem, vol. 177, no. 10, pp. 3626–3632, Oct. 2004, doi: 10.1016/J.JSSC.2004.05.003.
    [100] M. Norek et al., “Synthesis and decomposition mechanisms of ternary Mg2CoH5 studied using in situ synchrotron X-ray diffraction,” Int J Hydrogen Energy, vol. 36, no. 17, pp. 10760–10770, Aug. 2011, doi: 10.1016/J.IJHYDENE.2011.05.126.
    [101] M. G. Verón, A. M. Condó, and F. C. Gennari, “Effective synthesis of Mg2CoH5 by reactive mechanical milling and its hydrogen sorption behavior after cycling,” Int J Hydrogen Energy, vol. 38, no. 2, pp. 973–981, Jan. 2013, doi: 10.1016/j.ijhydene.2012.10.086.
    [102] I. G. Fernández, G. O. Meyer, and F. C. Gennari, “Reversible hydrogen storage in Mg2CoH5 prepared by a combined milling-sintering procedure,” J Alloys Compd, vol. 446–447, pp. 106–109, Oct. 2007, doi: 10.1016/J.JALLCOM.2006.12.007.
    [103] C. Pistidda et al., “Hydrogen storage systems from waste Mg alloys,” J Power Sources, vol. 270, pp. 554–563, 2014, doi: 10.1016/j.jpowsour.2014.07.129.
    [104] S. J. Huang, V. Rajagopal, V. Skripnyuk, E. Rabkin, and C. Fang, “A comparative study of hydrogen storage properties of AZ31 and AZ91 magnesium alloys processed by different methods,” J Alloys Compd, vol. 935, p. 167854, Feb. 2023, doi: 10.1016/J.JALLCOM.2022.167854.
    [105] T. Liu, C. Chen, F. Wang, and X. Li, “Enhanced hydrogen storage properties of magnesium by the synergic catalytic effect of TiH1.971 and TiH1.5 nanoparticles at room temperature,” J Power Sources, vol. 267, pp. 69–77, Dec. 2014, doi: 10.1016/J.JPOWSOUR.2014.05.066.
    [106] S. Shriniwasan, H. Y. Tien, M. Tanniru, and S. S. V. Tatiparti, “On the parameters of Johnson-Mehl-Avrami-Kolmogorov equation for the hydride growth mechanisms: A case of MgH2,” J Alloys Compd, vol. 742, pp. 1002–1005, Apr. 2018, doi: 10.1016/J.JALLCOM.2017.12.283.
    [107] S. J. Huang, M. P. Mose, and S. Kannaiyan, “Artificial intelligence application in solid state mg-based hydrogen energy storage,” Journal of Composites Science, vol. 5, no. 6. MDPI AG, Jun. 01, 2021. doi: 10.3390/jcs5060145.
    [108] H. Yu, Y. Sun, L. Hu, Z. Wan, and H. Zhou, “The effect of Ti addition on microstructure evolution of AZ61 Mg alloy during mechanical milling,” J Alloys Compd, vol. 704, pp. 537–544, May 2017, doi: 10.1016/j.jallcom.2017.02.029.
    [109] Z. Wu, J. Fang, N. Liu, J. Wu, and L. Kong, “The Improvement in Hydrogen Storage Performance of MgH2 Enabled by Multilayer Ti3C2,” Micromachines (Basel), vol. 12, no. 10, p. 1190, Sep. 2021, doi: 10.3390/mi12101190.
    [110] L. Zhang et al., “Improved hydrogen storage properties of MgH2 by the addition of TiCN and its catalytic mechanism,” SN Appl Sci, vol. 1, no. 1, p. 101, Jan. 2019, doi: 10.1007/s42452-018-0093-9.
    [111] C. Peng, Y. Li, and Q. Zhang, “Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: The role of in-situ hydrogenolysis of nickelocene in ball milling process,” J Alloys Compd, vol. 900, p. 163547, Apr. 2022, doi: 10.1016/J.JALLCOM.2021.163547.
    [112] D. Tan, C. Peng, and Q. Zhang, “Microstructural characteristics and hydrogen storage properties of the Mg–Ni–TiS2 nanocomposite prepared by a solution-based method,” Int J Hydrogen Energy, Jan. 2023, doi: 10.1016/J.IJHYDENE.2023.01.185.
    [113] S.-J. Huang and M. P. Mose, “High-energy ball milling-induced crystallographic structure changes of AZ61-Mg alloy for improved hydrogen storage,” J Energy Storage, vol. 68, p. 107773, Sep. 2023, doi: 10.1016/J.EST.2023.107773.
    [114] Z. Dai et al., “Recent progress of the effect of Co/Ni/Fe-based containing catalysts addition on hydrogen storage of Mg,” J Mater Sci, vol. 58, no. 1, pp. 46–62, 2023, doi: 10.1007/s10853-022-07971-6.
    [115] R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Prog Mater Sci, vol. 51, no. 7, pp. 881–981, Sep. 2006, doi: 10.1016/J.PMATSCI.2006.02.003.
    [116] A. M. Jorge et al., “Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling,” Int J Hydrogen Energy, vol. 39, no. 8, pp. 3810–3821, Mar. 2014, doi: 10.1016/J.IJHYDENE.2013.12.154.
    [117] A. M. Jorge et al., “An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing,” Int J Hydrogen Energy, vol. 38, no. 20, pp. 8306–8312, 2013, doi: 10.1016/j.ijhydene.2013.03.158.
    [118] S.-J. Huang, V. Rajagopal, and A. N. Ali, “Influence of the ECAP and HEBM processes and the addition of Ni catalyst on the hydrogen storage properties of AZ31-x Ni (x=0,2,4) alloy,” Int J Hydrogen Energy, vol. 44, no. 2, pp. 1047–1058, Jan. 2019, doi: 10.1016/j.ijhydene.2018.11.005.
    [119] Á. Révész, D. G. Fodor, G. Krállics, T. Spassov, and M. Gajdics, “Structural and hydrogen storage characterization of nanocrystalline magnesium synthesized by ECAP and catalyzed by different nanotube additives,” REVIEWS ON ADVANCED MATERIALS SCIENCE, vol. 60, no. 1, pp. 884–893, Nov. 2021, doi: 10.1515/rams-2021-0056.
    [120] S. M. Fatemi, A. A. K. Asl, and A. Abedi, “The effect of twinning on texture evolution during ECAP processing of AM30 magnesium alloy,” vol. 52, no. 2, pp. 142–148, 2019, doi: 10.22059/jufgnsm.2019.02.02.
    [121] J. A. del Valle, F. Carreño, and O. A. Ruano, “Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling,” Acta Mater, vol. 54, no. 16, pp. 4247–4259, Sep. 2006, doi: 10.1016/J.ACTAMAT.2006.05.018.
    [122] S.-J. Huang, V. Rajagopal, Y. L. Chen, and Y. H. Chiu, “Improving the hydrogenation properties of AZ31-Mg alloys with different carbonaceous additives by high energy ball milling (HEBM) and equal channel angular pressing (ECAP),” Int J Hydrogen Energy, vol. 45, no. 42, pp. 22291–22301, Aug. 2020, doi: 10.1016/j.ijhydene.2019.10.032.
    [123] Y. Li, Y. Zhang, H. Shang, Y. Qi, P. Li, and D. Zhao, “Investigation on structure and hydrogen storage performance of as-milled and cast Mg90Al10 alloys,” Int J Hydrogen Energy, vol. 43, no. 13, pp. 6642–6653, Mar. 2018, doi: 10.1016/J.IJHYDENE.2018.02.086.
    [124] C. Pistidda et al., “Hydrogen storage systems from waste Mg alloys,” J Power Sources, vol. 270, pp. 554–563, Dec. 2014, doi: 10.1016/J.JPOWSOUR.2014.07.129.
    [125] M. Passing et al., “Development and experimental validation of kinetic models for the hydrogenation/dehydrogenation of Mg/Al based metal waste for energy storage,” Journal of Magnesium and Alloys, vol. 10, no. 10, pp. 2761–2774, Oct. 2022, doi: 10.1016/J.JMA.2021.12.005.
    [126] A. Andreasen, “Hydrogenation properties of Mg–Al alloys,” Int J Hydrogen Energy, vol. 33, no. 24, pp. 7489–7497, Dec. 2008, doi: 10.1016/J.IJHYDENE.2008.09.095.
    [127] J. C. Crivello, T. Nobuki, S. Kato, M. Abe, and T. Kuji, “Hydrogen absorption properties of the γ-Mg17Al12 phase and its Al-richer domain,” J Alloys Compd, vol. 446–447, pp. 157–161, Oct. 2007, doi: 10.1016/J.JALLCOM.2006.12.055.
    [128] C. Chiu, S.-J. Huang, T.-Y. Chou, and E. Rabkin, “Improving hydrogen storage performance of AZ31 Mg alloy by equal channel angular pressing and additives,” J Alloys Compd, vol. 743, pp. 437–447, Apr. 2018, doi: 10.1016/j.jallcom.2018.01.412.
    [129] A. A. C. Asselli, D. R. Leiva, J. Huot, M. Kawasaki, T. G. Langdon, and W. J. Botta, “Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy,” Int J Hydrogen Energy, vol. 40, no. 47, pp. 16971–16976, Dec. 2015, doi: 10.1016/j.ijhydene.2015.05.149.
    [130] Y. Shang, C. Pistidda, G. Gizer, T. Klassen, and M. Dornheim, “Mg-based materials for hydrogen storage,” Journal of Magnesium and Alloys, vol. 9, no. 6, pp. 1837–1860, Nov. 2021, doi: 10.1016/J.JMA.2021.06.007.

    無法下載圖示 全文公開日期 2025/08/29 (校內網路)
    全文公開日期 2025/08/29 (校外網路)
    全文公開日期 2025/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE