簡易檢索 / 詳目顯示

研究生: 張婷婷
Ting-ting Chang
論文名稱: PdCo/WCχ陰極觸媒合成及ORR活性探討
PdCo/WCχ cathode catalyst synthesis and activity ofoxygen reduction reaction
指導教授: 劉端祺
Tuan-Chi Liu
口試委員: 蕭敬業
Ching-Yeh Shiau
盧敏彥
Man-yin Lo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 121
中文關鍵詞: 抗甲醇毒化碳化鎢PdCo觸媒
外文關鍵詞: ORR, tungsten carbide, DMFC
相關次數: 點閱:333下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前應用於直接甲醇燃料電池最有效的觸媒為鉑觸媒,包括陽極與陰極,主要原因是鉑對陽極甲醇的催化氧化及陰極氧分子還原反應,顯示出較高的活性,且鉑在酸性介質中有較高的穩定性及耐腐蝕性。然而鉑金屬價格昂貴,且使用鉑金屬當陰極觸媒會有兩大問題,甲醇從陽極滲透到陰極造成混合電位及鉑金屬活性中心被毒化,所以對於陰極觸媒,尋求對氧分子還原反應有高活性且廉價的非鉑金屬觸媒是讓直接甲醇燃料電池能商業化的重點之一。
    本研究使用碳化鎢作為直接甲醇燃料電池之陰極觸媒的載體以及使用鈀與鈷兩金屬來形成二元合金觸媒代替鉑金屬當作直接甲醇燃料電池陰極觸媒,探討以不同煅燒溫度和製備方法所合成的碳化鎢、不同觸媒前驅物、觸媒合成方法及還原溫度對氧分子還原反應(ORR)活性及抗甲醇毒化之影響。利用旋轉圓盤電極和循環伏安法來判斷觸媒的活性。
    結果顯示,PdCo/WC在1M甲醇0.7V與0.8V環境下的抗甲醇毒化能力比PdCoW/C觸媒好,證實了使用碳化鎢當陰極觸媒載體所合成出來的觸媒比使用碳黑當載體所製備的陰極觸媒之活性還要高,且碳化鎢對觸媒的抗甲醇毒化能力有提升的效果。所有PdCo/WC系列觸媒在有甲醇0.7V與0.8V環境下皆具有抗甲醇毒化的能力,在0M甲醇濃度0.7V環境下的活性也比商用觸媒JM13100好。因此使用鈀鈷金屬所得的觸媒不僅具有抗甲醇毒化的能力,且使用鈀金屬取代鉑金屬,可將成本大幅降低。此外,使用偏鎢酸銨當鎢前驅物經過900℃煅燒溫度合成的碳化鎢載體,具有較高氧分子還原反應的活性。另外,使用化學沉澱法製備的鈀鈷觸媒活性皆優於使用含浸法製備的鈀鈷觸媒。


    Platinum is the most effective electrocatalysts for use in Direct Methanol Fuel Cell (DMFC),both anode and cathode, because of it’s high catalytic activity for methanol oxidation in anode and oxygen reduction reactions (ORR) in cathode. Platinum also has very high stability and good corrosion resistant under acidic operating medium. However, platinum is too expensive for use in DMFC and another problem in using platinum at the cathode is the methanol crossover problem. Methanol crossover to the cathode created both over-potential and active site poisoning problems when Pt is used. The search for more active and less expensive non-platinum based catalysts for oxygen reduction reaction (ORR) is one of the most important issues towards the commercialization of DMFC.
    This thesis explores using the tungsten carbide as carries of DMFC cathode catalyst, and the possibility of using palladium and cobalt form a binary catalyst, instead of platinum catalyst, as the basic component of the DMFC cathode catalyst. The effect of preparation method for tungsten carbide and cathode catalysts, different precursor, temperature of reduction and catalyst formulations towards ORR activity and methanol tolerance were explored in this thesis. Catalyst performance were studied using Rotating Disk Electrode (RDE) and Cyclic Voltammetry (CV).
    Results in this study revealed that all PdCo/WCχ catalysts in 1M methanol 0.7V and 0.8V have better ability of anti-poision than PdCoW/C catalysts in the presence of methanol. It’s been proven that the catalysts synthetized by tungsten carbide as cathode carries have higher activities than carbon black as cathode carries. Moreover, tungsten carbide has positive effect to catalysts on the abilities of anti-poision in methanol. All catalysts of PdCo/WC series has the abilities of anti-methanol poision in 0.7and 0.8V methanol. In the 0.7V environment of 0M methanol, the activity is also better than commercial catalysts JM13100. Therefore, the catalyst acquired by using Palladium and Cobalt not only has abilities of anti-methanol poision but also cost down by using Palladium to replace Platinum. Tungsten carbide prepared with (NH4)6W12O39•xH2O and 900℃ for temperature of calcination as the WC precursor have highest activity. Besides, catalysts prepared using precipitation as method have higher activity than impregnation.

    中文摘要 Ⅰ Abstract Ⅲ 致謝 Ⅴ 目錄 Ⅵ 圖目錄 XI 表目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 鹼性燃料電池 6 1.3 磷酸燃料電池 6 1.4 質子交換膜燃料電池 7 1.5 直接甲醇燃料電池 8 1.6 薄膜電極組 11 第二章 文獻回顧 13 2.1 陰極觸媒材料 13 2.2 Pd/C觸媒 17 2.3 Tungsten Carbide 21 2.4 PdCoW/C與PdCo/WC觸媒的合成與鑑定 24 第三章 實驗設備與方法 27 3.1 藥品 27 3.2 儀器設備 28 3.3 陰極觸媒的合成與鑑定 29 3.3.1 碳載體表面處理 29 3.3.2 碳化鎢載體合成方法 30 3.3.3 陰極觸媒PdCo/WC合成方法 33 3.4 碳化鎢與合金觸媒的表面分析 37 3.4.1 X光繞射分析 37 3.4.2 碳化鎢的表面積與孔洞分析 39 3.4.3 程式升溫脫附法 40 3.4.4 氣相分析儀分析 41 3.4.5 高解析度穿透式電子顯微鏡 42 3.4.6 熱重分析儀分析 43 3.4.7 陰極觸媒PdCo/WC活性測試 44 3.4.7.1 電極製作 44 3.4.7.2 旋轉圓盤電極disk上觸媒loading量的估計 45 3.4.7.3 電極特性的循環伏安法測量 45 3.4.7.4 陰極觸媒PdCo/WC活性測試 47 3.4.7.5 陰極觸媒PdCo/WC抗毒化程度測試 47 第四章 結果與討論 48 4.1 碳化鎢載體表面測定 48 4.1.1 碳化鎢載體(WC)BET表面積分析 48 4.1.2 碳化鎢載體(WC)表面官能基測定 49 4.1.3 碳化鎢載體(WC)導電度測試 51 4.2 碳化鎢載體(WC)的合成與鑑定 52 4.2.1 碳化鎢載體(WC)熱重分析 52 4.2.2 碳化鎢載體(WC) XRD分析 54 4.3 陰極觸媒PdCo/WC的合成與鑑定 60 4.3.1 陰極觸媒PdCo/WC熱重分析 61 4.3.1.1 載體煅燒溫度對陰極觸媒PdCo/WC熱重分析之影響 61 4.3.1.2 製備方法對陰極觸媒PdCo/WC熱重分析之影響 62 4.3.1.3 氫氣還原溫度對陰極觸媒PdCo/WC熱重分析之影響 63 4.3.1.4 不同前驅物對陰極觸媒PdCo/WC熱重分析之影響 64 4.3.1.5 觸媒500℃煅燒對陰極觸媒PdCo/WC熱重分析之影響 65 4.3.2 陰極觸媒PdCo/WC XRD分析 67 4.3.2.1 載體煅燒溫度及製備方法對陰極觸媒PdCo/WC XRD之影響 68 4.3.2.2 氫氣還原溫度對陰極觸媒PdCo/WC XRD之影響 69 4.3.2.3 不同前驅物對陰極觸媒PdCo/WC XRD之影響 72 4.3.2.4 觸媒500℃煅燒對陰極觸媒PdCo/WC XRD之影響 74 4.3.3 陰極觸媒PdCo/WC TEM分析 75 4.3.3.1載體煅燒溫度及製備方法對陰極觸媒PdCo/WC TEM之影響 76 4.3.3.2 氫氣還原溫度對陰極觸媒PdCo/WC TEM之影響 77 4.3.3.3 不同前驅物對陰極觸媒PdCo/WC TEM之影響 78 4.3.3.4 觸媒500℃煅燒對陰極觸媒PdCo/WC TEM之影響 79 4.3.4 陰極觸媒PdCo/WC抗甲醇毒化活性分析 81 4.3.4.1 陰極觸媒PdCoW/C與PdCo/WC活性之影響 83 4.3.4.2 載體煅燒溫度及製備方法對陰極觸媒PdCo/WC活性之影響 84 4.3.4.3 氫氣還原溫度對陰極觸媒PdCo/WC活性之影響 87 4.3.4.4 不同前驅物對陰極觸媒PdCo/WC活性之影響 91 4.3.4.5 觸媒500℃煅燒對陰極觸媒PdCo/WC活性之影響 93 第五章 結論 96 參考文獻 98 附錄 105

    【1】台灣經濟研究院 http://www.tier.org.tw
    【2】“Fuel Cell Technology and Market Potential 2006”,Energy Business Reports,2006.
    【3】S.Thomas,M.Zalbowitz,Fuel Cells:Green Power
    【4】Anting http://www.antig.com/
    【5】Arico,A.S.Srinivasan,and Antonucci,V.,Fuel Cell,1,133 (2001).
    【6】http://thefraserdomain.typepad.com/
    【7】Shukla,A.K.,Raman,R.K.,Choudhury,N.A.,R.Priolkar,K.,Sarode.,P.R
    ,Emura,S.,Kumashiro,R.,“Carbon-supported Pt-Fe alloys methanl
    -resistant oxygen-reduction catalyst for direct methanol fuel cells”
    ,Journal of Electroanalytical Chemistry,Vol.563,pp.181-190(2004).
    【8】http://www.udomi.de/
    【9】Siebke A.et al.,Fuel Cells.3(2001)37.
    【10】Watanabe,M.Uchida,M.Motoo S.,“Preparation of highly dispersed Pt plus Ru alloy clusters and the activity for the electroxidation of methanol”,Journal of Electroanalytical Chemistry,Vol.299,pp.(1987).
    【11】Gasteriger,H.A.,Markovic,N.,Ross,P.N.,Jr.and Elton J. Carins,
    “Temperature-dependent methanol electro-oxidation on well-
    characterized Pt-Ru allys”,Journal of then Electrochemical Society,
    Vol.141,pp.1975(1994).
    【12】Liu,L.,C.Pu,Viswanathan,R.,Fan,Q.,Liu,R.,and Smotkin,E.S.,
    “Carbon supported and unsupported PtRu anodes for liquid feed direct methanol fuel cells”,Electrochemical Acta.,Vol.43,pp.3657(1998).
    【13】Gojkovic,S.L.,Vidakovia,T.R.,and Durovic,D.R.,“Kinetic Study of Methanol Oxidation on Carbon-Supported PtRu Electrocatalyst”,
    Electrochemical Acta.,Vol.48,pp.3607-3614(2003).
    【14】Iwasita,T.,“Electrocatalysis of methanol oxidation”,Electrochimica Acta.,Vol.47,pp.3663-3674(2002).
    【15】Christensen,P.A.,Hamnett,A.,Troughton,G.L.,“The role of morphology in the methanol electro-oxidation reaction”,Journal of Electroanalytical Chemistry,Vol.362,pp.207(1993).
    【16】Shukla,K.Ravikumar,M.K.,Arico,A.S.,Candiano,G.,Antonucci,V.,
    Giordano,N.,Hamnett,A.,“Methanol electrooxidation on carbon-
    supported Pt-WO3-xelectrodes in sulphuric acid electrolyte”,
    Journal of Applied Electrochemistry,Vol.25,pp.528-532(1995).
    【17】Shukla,A.K.,Raman,R.K.,“Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells”,Annual Review of Materials Research,Vol.33,pp.155-168(2003).
    【18】Fenske,D.,Greshnykh,D.,Neuendorf,S.,Hoogestraat,D.,Borchert,H.,
    Al-Shamery,K.,“Ligand effects observed for the adsorption of CO on Co-Pt alloys”,Surface Science,Vol.602,pp.2101-2106(2008).
    【19】Antolini,E.,Salgado,J.R.C.,Giz,M.J.,Gonzalez,E.R.,“Effects of geometric and electronic factors on ORR activity of carbon supported Pt-Co electrocatalysts in PEM fuel cells”,International Journal of Hydrogen Energy,Vol.30,pp.1213-1220(2005).
    【20】Jalan,V.,Taylor,E.J.,“Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid”,Journal of the Electrochemical Society,Vol.130,pp.2299(1983).
    【21】Paffett,M.T.,Berry,G.J.,Gottesfeld,S.,“Oxygen Reduction at Pt0.65Cr0.35,Pt0.2Cr0.8 and Roughened Platinum”,Journal of The Electrochemical Society,Vol.135,pp.1431(1998).
    【22】Mukerjee,S.,Srinivasan,S.,Soriage,M.P.,McBreen,J.,“Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction”,Journal of The Electrochemical Society,
    Vol.142,pp.1409(1995).
    【23】Toda,T.,Igarashi,H.,Watanabe,M.,“Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys”,Journal of Electroanalytical Chemistry,
    Vol.460,pp.258-262(1999).
    【24】Toda,T.,Igarashi,H.,Watanabe M.,“Role of Electronic Property of
    Pt and Pt Alloys on Electrocatalytic Reduction of Oxygen”, Journal of The Electrochemical Society, Vol.145,pp.4185-4188(1998).
    【25】Savadogo,O.,Lee,K.,Oishi,K.,Mitsushima,S.,Kamiya,N.,Ta,K.I.,
    “New palladium alloys catalyst for the oxygen reduction reaction in an acid medium”,Electrochemistry Communications,Vol.6,pp.105-109
    (2004).
    【26】Lee,K.,Savadogo,O.,Ishihara,A.,Mitsushima,S.,Kamiya,N.,Ota,K.
    I.,“Methanol-Tolerant Oxygen Reduction Electrocatalysts Based on Pd-3D Transition Metal Alloys for Direct Methanol Fuel Cells”,Journal of the Chemical Society,Vol.153,pp.A20-A24(2006).
    【27】A.Capon,R.Parsons,“The Oxidation of Formic Acid on Noble Metal Electrodes,PartⅡ.Comparison of the Behavior of Pure Metals”,
    Journal of the Chemical Society,Vol.44,pp.239-254(1973).
    【28】Lamy,C.,“Electrocatalytic oxidation of organic compounds on noble metals in aqueous solution”,Electrochimica Acta,Vol.29,pp.1581-1588
    (1984).
    【29】Fernandez,J.L.,Raghuveer,V.,Manthiram,A.,Bard,A.J.,“Pd-Ti and Pd-Co-Au Electrocatalysts as a Replacement for Platinum for Oxygen Reduction Proton Exchange Membrane Fuel Cells”,Journal of the
    American Chemical Society,Vol.127,pp.13100-13101(2005).
    【30】Nie,M.,Shen,P.K.,Wei,Z.,“Nanocrystalline tungsten carbide supported Au-Pd electrocatalyst for oxygen reduction”,Journal of Power Sources,Vol.167,pp.69-73(2007).
    【31】Raghuveer,V.,Manthiram,A.,Bard,A.J.,“Pd-Co-Mo Electrocatalyst for the Oxygen Reduction Reaction in Proton Membrane Fuel Cells”,The Journal of Physical Chemistry,Vol.109, pp.22909-22912(2005).
    【32】Tarasevich,M.R.,Chalykh,A.E.,Bogdanovskaya,V.A.,Kuznetsova,
    L.N.,Kapustina,N.A.,Efremov,B.N.,Ehrenburg,M.R.,Reznikova,L.A.,“Kinetics and mechanism of oxygen reduction reaction at CoPd system synthesized on XC72”,Electrochimica Acta,Vol.51,pp.4455-4462
    (2006).
    【33】Mustain,W.E.,Kepler,K.,Prakash,J.,“Investigations of Carbon-
    Supported CoPd Catalysts as Oxygen Cathodes in PEM Fuel Cells”,Electrochemistry Communications,Vol.8,pp.406-410(2006).
    【34】Wang,W.M.,Zheng,D.,Du,C.,Zou,Z.Q.,Zhang,X.G.,Xia,B.J.,Yang,
    H.,Akins,D.L.,“Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction”,Journal of Power Sources,Vol.167,pp.243-249(2007).
    【35】Mathiyarasu,J.,Phani,K.L.N.,“Carbon-supported Palladium-
    Cobalt-Noble Metal(Au,Ag,Pt) Nanocatalysts as Methanol Tolerant Oxygen-Reduction Cathode Materials in DMFCs”,
    Journal of the ChemicalSociety,Vol.154,pp.B1100-B1105(2007).
    【36】Zhang,L.Lee,K.,Zhang,J.,“The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts”,Electrochiica.Acta,Vol.52,pp.3088-3094(2007).
    【37】Zhang,L.Lee.K.Zhang,J.,“Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pd-Co alloy electrocatalysts”,Electrochimica Acta,Vol.52,pp.7964-7971(2007).
    【38】Shao,M.H.,Sasaki,K.,Adzic,R.R.,“Pd-Fe nanoparticles as electrocatalysts for oxygen reduction”,Journal of the American Chemical Society,Vol.128,pp.3526-3527(2006).
    【39】Yasuda,K.,and Nishimura,Y.,“The deposition of ultrafine platinum particles on carbon black by surface ion exchange-increase in loading amount”,Materials Chem.and Phys.82(2003)921.
    【40】Rodriguez,F.,“The role of carbon materials in heterogeneous catalysis”,
    Carbon 36,159(1998).
    【41】H.Chhina,S.Campbell,O.Kesler,“High surface area synthesis,
    electrochemical activity,and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrance fuel cells”,
    Journal of Powder Sources,Vol.179,pp.50-59(2008).
    【42】Rasit Koc,Suneel K. Kodambaka,“Tungsten carbide(WC) synthesis from novel precursors”,Journal of the European Ceramic Society,
    Vol.20,pp.1859-1869(2000).
    【43】Eric J. Rees,“The role of synthesis conditions for Metal-Carbide electrocatalysts in Fuel Cells”,Department of Materials Science
    and Metallurgy, pp.52-53(2009).
    【44】Pei Kang Shen,Shibin Yin,Zihui Li,Chan Chen,“Preparation and performance of nanosized tungsten carbides for electrocatalysis”,
    Electrochimica Acta.,Vol.55,pp.7969-7974(2010).
    【45】E.J.Rees,K.Essaki,C.D.A.Brady,G.T.Burstein,“Hydrogen electrocatalysts from microwave-synthesised nanoparticulate carbides”,Journal of the Power Sources,Vol.188,pp.75-81(2009).
    【46】Zhang,L.,Lee,K.,and Zhang,J.,“The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts”,Electrochimica Acta,Vol.52,pp.3088-3094(2007).
    【47】Ming N.,Haolin T.,Sang P. J.,Pei K.S.,“Highly efficient AuPd-WC/C
    electrocatalyst for ethanol oxidation”,Electrochemistry Communications,Vol.9,pp.2375-2379(2007).
    【48】Eric J.Rees,“The role of synthesis conditions for metal-carbide electrocatalysts in fuel cells”,Department of Materials Science and Metallurgy,Wolfson College University of Cambridge,pp.67-6(2009).

    無法下載圖示 全文公開日期 2016/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE