簡易檢索 / 詳目顯示

研究生: 楊愛民
Ai-Min Yang
論文名稱: 添加鐵、鈷粉末及晶粒尺度對氫化鎂高溫吸放氫之作用
Effects of adding Fe and Co powders as well as grain size on high-temperature absorption and desorption of magnesium hydride
指導教授: 丘群
Chun Chiu
口試委員: 郭俞麟
Yu-Lin Kuo
王朝正
Chaur-Jeng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 113
中文關鍵詞: 氫化鎂奈米過渡金屬添加物聚光式太陽能蓄熱系統高溫反應速率與循環穩定性
外文關鍵詞: Magnesium hydride, Nanostructured transition-metal additives, Concentrating solar thermal heat storage system, High-temperature sorption kinetics and cycle sta
相關次數: 點閱:339下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在聚光式太陽能高溫儲熱系統所使用的金屬氫化物材料中,氫化鎂(MgH2)是極具開發潛力的材料,其儲熱密度可達2257kJ/kg。本研究探討高溫下奈米過渡金屬Fe及Co對MgH2反應速率及循環穩定性的影響。研究發現在420oC,奈米添加物Fe、Co可有效提升MgH2之吸氫及放氫反應速率,但添加奈米Co之MgH2在循環反應後會有Mg2Co與Mg2CoH5的生成,造成循環穩定度不佳。在440℃僅添加奈米Co及Fe之MgH2產生吸放氫反應,添加奈米Fe之MgH2在循環反應後會有後Mg2FeH6的生成。非Ni之添加物(如奈米Fe),或共晶溫度較高之添加物(如奈米Co),雖可避免因Mg-Ni類型之共晶反應造成之鎂燒結,但仍可能因Mg與添加物之間生成之金屬間化合物以及Mg與添加物和氫化反應後生成之氫化物,導致循環反應速率與循環穩定度不佳。


    Magnesium hydride (MgH2) is a promising high-temperature heat storage material for a concentrating solar thermal heat storage system. In the present work, the effects of nano-addtives, Fe and Co, on the high temperature sorption kinetics and cycle stability of MgH2 were studied. At 420 oC, the absorption/desorption kinetics of Mg/MgH2 can be significantly improved by adding 5 wt. % of nano-Fe or nano-Co as a catalyst;however, Mg2Coand Mg2CoH5 form during cycling of MgH2 with 5 wt. % of nano-Co, which results in unstable cycle performance. At 440 oC, MgH2 with 5 wt. % of nano-Co and nano-Fe react with hydrogen. It is also found that Mg and Fe react with hydrogen and form Mg2FeH6. Although the Mg-Ni type eutectic sintering can be avoided by using transition metal additive other than Ni, the formation of Mg-based intermetallic phases and the formation of ternary hydrides might happen for MgH2 doped with 5 wt. % of nano-Co or Fe, leading to a low reaction kinetics and unstable cycle performance.

    中文摘要 Abstract 1.1 前言 1.2 研究動機 第二章 文獻回顧 2.1 聚熱式太陽能發電系統與應用 2.1.1 聚熱式太陽能介紹及種類 2.1.2 儲熱方式分類 2.1.3 近年來金屬氫化物作為高溫儲熱材料的進展 2.2 儲氫裝置 2.2.1 高壓氣態儲氫(High pressure storage) 2.2.2 低溫液態儲氫(Liquid hydrogen storage) 2.2.3 固態儲氫(Solid state storage) 2.3 儲氫合金簡介 2.4 儲氫元素及合金 2.4.1 儲氫元素種類 2.4.2 儲氫合金 2.4.2.1 AB型儲氫合金 2.4.2.2 AB2型儲氫合金 2.4.2.3 A2B型儲氫合金 2.4.2.4 AB5型儲氫合金 2.5 儲氫合金吸放氫原理介紹 2.5.1 動力學性質 2.5.2 熱力學性質 2.5.3 PCI曲線及儲氫材料相關特性 2.6 儲氫材料之改質方法 2.7 機械球磨法 2.7.1 機械球磨法製備奈米金屬氫化物 2.7.2 機械球磨法之參數的影響 第三章 實驗方法 3.1 實驗流程 3.2 實驗材料與製備 3.3 X-Ray 繞射儀與分析 3.4 掃描式電子顯微鏡與分析 3.5 Sievert-type 吸放氫量測系統與分析 3.6 差式掃描分析儀(DTA)及熱分析 3.7 比表面積測定儀(BET) 3.8 Kissinger活化能計算 第四章 結果與討論 4.1 粉末形貌與比表面積分析(SEM、BET) 4.1.1 材料樣品之表面形貌及表面分析 4.2 相鑑定與晶體結構分析(XRD) 4.3 吸/放氫循環之動力學及其穩定性測定 4.4 DTA熱分析 第五章 結論 參考文獻 附錄

    [1] 黃釋緯,2005年,"國際新能源情勢下的台灣能源供應策略新思維" 經濟部能源局,能源政策白皮書。
    [2] U. S. Department of Energy, International Energy Outlook, U.S. Energy Information Administration, Washington, DC, 2010.
    [3] G. Kolb, "Concentrating Solar Power: The 'Other' Solar A Systems Perspective", Sandia National Laboratories, Nov., 2004.
    [4] D. N. Harries, M. Paskevicius, D.A. Sheppard, T. E. Price and C.E. Buckley. Proceedings of the IEEE. 100 (2012) 539-549.
    [5] A. Reiser, B. Bogdanovic, and K. Schlichte. International Journal of Hydrogen Energy 25 (2000) 425-430.
    [6] B. Bogdanovic, H. Hofmann, A. Neuy, A. Reiser, K. Schlichte, B. Spliethoff, and S. Wessel. Journal of Alloys and Compounds. 292 (1999) 57-71.
    [7] International Energy Agency, "Technology Roadmap Concentrating Solar Power", OECD/IEA, 2010.
    [8] M. Kawamura, S. Ono, and S. Higano. Ennergy Convers. Mgmt. 22 (1982) 95-102.
    [9] D.A. Sheppard, M. Paskevicius, and C.E. Buckley. Chemistry of Materials. 23 (2011) 4298-4300.
    [10] P.B. Amama, E. Jonathan, and J.E. Spowart. The 8th ASME-JSME Thermal Engineering Joint Conference, Honolulu, USA, 2011.
    [11] B. Bogdanovic, A. Reiser, and K. Schlicte. Journal of Alloys and Compounds. 345 (2002) 77-89.
    [12] T. Czujko, R.A. Varin, C. Chiu and Z. Wronski. Journal of Alloys and Compounds 414 (2006) 230.
    [13] Z. Tan, C. Chiu, E.J. Heilweil and L.A. Bendersky. International Journal of Hydrogen Energy 36 (2011) 9702-9713.
    [14] Z. S. Wronski, G.J.C Carpenter, T. Czujko and R.A. Varin. International Journal of Hydrogen Energy 36 (2011) 1159-1162.
    [15] N. Bazzanella and R. Checchetto and A. Miotello. Journal of nanomaterials. 2011 (2011) 1-11.
    [16] F. Chang, Z. Tao, J. Liang, and J. Chen. Chem Commun (Camb) 48 (2012) 7334-7343.
    [17] B. Bogdanovic, H. Hofmann, A. Neuy, A. Reiser, K. Schlichte, B. Spliethoff, and S. Wessel. J Alloys Compd. 292(1999)57–71.
    [18] Binary phase diagram, editor-in-chief, Thaddeus B. Massalski ; editors, Joanne L. Murray, Lawrence H. Bennett, Hugh Baker. Metals Park, Ohio : American Society for Metals, 1986.
    [19] The Swiss Hydrogen Association,H2 Storage "http://www.hydropole.ch/indwx.php?go=hydrogen_storage
    [20] Quantum Technologies Inc, USA, Quantum's CNG Tanks, http://www.qtww.com/CNG-tank
    [21] The Encyclopedia of Earth, "Hydrogen Storage", http://www.eoearth.org/article/Hydrogen_storage
    [22] H-M. Cheng, Q-H Yang, C. Liu. Carbon 39(2001) 1447.
    [23] T. Graham, “On the Relation of Hydrogen to Palladium”, J. Franklin Inst.87 (1869)256-266.
    [24] J.H.N. Vucht, F.A. Kuijpers, and H.C.A.M. Bruning, “Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”, Philips Res.Repts.25 (1970)133.
    [25] J.J. Reilly, and R.H. Wiswall, “The reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4”, Inorganic Chemistry, 7(1968)2254.
    [26] Kuochih Hong, “The development of hydrogen storage electrode alloys for nickel hydride batteries”, Journal of power sources 96(2001)85-89.
    [27] A. J. Maeland, Hydrides for Energy Storage (A.F. Andresen and A. J. Maeland, Eds.), Pergamon Press, New York, (1978) pp.19.
    [28] J.J. Reilly and R.H. Wiswall, Inorg. Chem., 13 (1974) 218.
    [29] F. Stein, M. Palm, G. Sauthoff . Intermetallics, 12 (2004)713.
    [30] A. Zuttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, and Ch. Emmenegger, “LiBH4 a new hydrogen storage Material”, Journal of Power Sources118(2003)1-7.
    [31] M. Martin, C. Gommel, C. Borkhart, E. Fromm, "Absorption and desorption kinetic of hydrogen storage alloys", J. Alloys Comp.239(1996)193-201.
    [32] R.Wiswall,1978,"Hydrogen storage in metals", Hydrogen in Metal II,Vol.29(Eds.G.Alefeld,J.Völkl),Springer-Verlag in Berlin, Heidelberg, New York
    [33] M. Yamaguchi and E. Akiba, Electronic and Magnetic Properties of Metals and Ceramics Part II (K.H.J. Buschow, Ed.), Vol.3B, VCH, New York, (1994) pp.333
    [34] A. Zuttel, 2003, “Materials for hydrogen storage:keynoteaddress”,2004H2NET Seminar, University of Birmingham in England,16th Dec.
    [35] G. Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, Journal of Alloys and Compounds 293-295(1999)877–888.
    [36] A. Zaluska, L. Zaluski, J.O. Strőm-Olsen. Appl. Phys. A72 (2001) 157-165.
    [37] A. Zaluska, L. Zaluski, J.O. Strőm-Olsen. Appl. Phys. A72 (2001) 157-165.
    [38] Z.S. Wronski, G.J.C. Carpenter, T. Czujko, R.A. Varin. Int. J. Hydrogen Energy 36 (2011) 1159-1166.
    [39] H.Yu, S. Bennici and A. Auroux. Int. J. Hydrogen Energy. 39 (2014) 11633-11641.
    [40] N. Bazzanella, R. Checchetto, and A. Meiotello. Journal of Nanomaterials. (2011) 1-11.
    [41] G. Liang, J. Huot, S. Boily, A.V. Neste and R. Schulz. Journal of Alloys and Compounds 292 (1999) 247-252.
    [42] C. Suryanarayana. Prog Mater Sci, 46 (2001) 1-184.
    [43] R.A. Varin, T. Czujko, and Z. S. Wronski. Nanomaterials for Solid State Hydrogen Storage. Springer 2009.
    [44] R.A. Varin and T. Czujko. Materials and Manufacturing Processes 17 (2002) 129-156.
    [45] Z. Wronski. Chemistry Seminar, Universidade de Coimbra, Portugal, 2007.
    [46] 羅聖全,2004,"研發奈密科技的基本工具之一電子顯微鏡介紹-SEM",小奈米大世界,工業技術研究院微結構與特性分析實驗室。
    [47] I. G. Fernandez´, G.O. Meyer and F.C. Gennari. Journal of Alloys and Compounds446-447 (2007) 106-109.
    [48] J. Huot, H. Hayakawa, and E. Akiba. Journal of Alloys and Compounds 24 (1997) 164-167.
    [49] R. A. Varin, T. Czujko, and Z. S. Wronski. Nanomaterials for Solid State Hydrogen Storage. Springer, New York, NY, 2009.
    [50] H. Yu, S. Bennici, and A. Auroux. International Journal of Hydrogen Energy 39 (2014) 11633-11641.
    [51] ASM Alloy Phase Diagrams Database, P. Villars, editor-in-chief; H. Okamoto and K. Cenzual, section editors; http://www1.asminternational.org/AsmEnterprise/APD, ASM International, Materials Park, OH, 2006.
    [52] B. Bogdanovic, H. Hofmann, A. Neuy, A. Reiser, K. Schlichte, B. Spliethoff, and S. Wessel. Journal of Alloys and Compounds. 292 (1999) 57-71.
    [53] R. A. Varin, T. Czujko, and Z. S. Wronski. Nanomaterials for Solid State Hydrogen Storage. Springer, New York, NY, 2009.
    [54] 翁曼芳,2011,"機械合金製備Mg-Ti及Mg-Al合金之氫化特性研究"國立高雄應用科技大學研究所,碩士學位論文。
    [55] 江承恩,1997,"Mg2(Cu1-xNix)儲氫合金結構與吸放氫特性之研究"國立中央大學研究所,碩士學位論文。
    [56] 林琮雄,2012,"機械合金法合成(Mg2Ni)x(FeTi)100-x混和粉末與其儲氫特性研究"逢甲大學研究所,碩士論文。
    [57] 朱光馨,2014,"聚熱式太陽能發電系統與應用"新新季刊,P.21-34

    QR CODE