簡易檢索 / 詳目顯示

研究生: 陳永霖
Yong-Lin Chen
論文名稱: 不同碳材添加物對經高能球磨 (HEBM) 或等徑轉角擠壓 (ECAP) 之AZ31鎂合金儲氫性能之影響
Effect of Different Carbon Additives on Hydrogen Storage Properties of AZ31 Magnesium Alloy by High Energy Ball Milling (HEBM) or Equal Channel Angular Pressing (ECAP)
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 王金燦
Chin-Tsan Wang
林景崎
Jing-Chie Lin
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 118
中文關鍵詞: 儲氫等徑轉角擠壓 (ECAP)高能球磨 (HEBM)AZ31鎂合金活性碳 (AC)碳黑 (CB)石墨烯 (G)AZ31鎂基複合材料 (AZ31 MMCs)
外文關鍵詞: hydrogen storage, equal channel angular pressing (ECAP), high energy ball milling (HEBM), AZ31 magnesium alloy, activated carbon (AC), carbon black (CB), grapheme (G), AZ31 metal matrix composites (AZ31 MMCs)
相關次數: 點閱:372下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討添加物對AZ31鎂合金儲氫性能之影響,選用活性碳 (Activated Carbon, AC)、碳黑 (Carbon Black, CB)、石墨烯 (Graphene, G) 不同重量百分比 (0wt.%、1wt.%、3wt.%) 作為催化劑,探討不同碳材添加物及其含量對儲氫性能之影響。此外,本研究亦探討不同製程對儲氫性能之影響,使用相同製程時間為比較基準,先利用鑄造製備不同碳材添加物之AZ31鎂基複合材料,再分別經高能球磨 (High Energy Ball Milling, HEBM) 或等徑轉角擠壓 (Equal channel angular pressing, ECAP) 兩種不同製程加工,最後進行吸放氫之量測。
    研究結果顯示,經HEBM製程後,添加碳材有效提升AZ31鎂合金之儲氫性能,儲氫性能之提升由大至小為添加石墨烯、碳黑、活性碳;而經ECAP製程後,僅添加活性碳或碳黑有效的提升AZ31鎂合金之儲氫性能,添加石墨烯反而造成儲氫性能下降,儲氫性能之提升由大至小為添加碳黑、活性碳。經HEBM或ECAP製程之比較中,未添加碳材之AZ31鎂合金經ECAP製程有較好之儲氫性能;而添加碳材之AZ31鎂基複合材料經HEBM製程有較好之儲氫性能。


    This study investigates the effect of additives on the hydrogen storage properties of AZ31 magnesium alloys. Activated carbon (AC), carbon black (CB), graphene (G) were used as catalysts in different weight percentages (0wt.%, 1wt.%, 3wt.%). Discuss the effect of different carbon additives and their content on the hydrogen storage performance. In addition, this study also explored the effect of different processes on hydrogen storage performance. Use the same process time as a benchmark for comparison. Firstly, the AZ31 magnesium matrix composites with different carbon additives were prepared by casting, and then processed by high energy ball milling (HEBM) or equal channel angular pressing (ECAP). Finally, the measurement of hydrogen absorption and desorption is performed.
    The results show that after the HEBM process, adding carbon material can effectively improve the hydrogen storage performance of AZ31 magnesium alloys. The increase in hydrogen storage performance from large to small additions of graphene, carbon black and activated carbon. After the ECAP process, only added activated carbon or carbon black can effectively improve the hydrogen storage performance of AZ31 magnesium alloys. The addition of graphene will result in a decrease in hydrogen storage performance. The increase in hydrogen storage performance from large to small addition of carbon black and activated carbon. Compared with the HEBM or ECAP process, the AZ31 magnesium alloy without added carbon has better hydrogen storage performance through the ECAP process, while the AZ31 magnesium matrix composite with carbon added has better hydrogen storage performance through the HEBM process.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 鎂基合金於儲氫領域之相關文獻 3 1.3.2 加入碳材添加物之鎂基複合材料相關文獻 13 1.3.3 本實驗室之鎂基複合材料鑄造製程之簡介 16 1.4 文獻回顧整理 18 1.5 研究目的 19 第二章 研究理論基礎 20 2.1 鎂合金之簡介 20 2.1.1 鎂之基本性質 20 2.1.2 鎂合金之熱處理【19】 21 2.2 HEBM製程之簡介 22 2.3 ECAP製程之簡介 24 2.4 固態儲氫合金 27 2.5 儲氫合金動力學性質 29 2.6 儲氫合金熱力學性質 30 第三章 實驗方法 33 3.1 實驗材料及流程 33 3.2 實驗設備 35 3.2.1 鑄造用熔煉爐 35 3.2.2 熱處理高溫爐 38 3.2.3 等徑轉角擠壓試驗機 38 3.2.4 高能球磨法 39 3.3.5 濕式自動研磨機及拋光機 40 3.3.6 光學顯微鏡 41 3.3.7 掃描式電子顯微鏡 42 3.3.8 X光繞射分析儀 43 3.3.9 Sievert-type儲氫量測設備 43 第四章 結果與討論 45 4.1經HEBM製程之儲氫粉末特徵分析 45 4.1.1 粒徑分析 45 4.1.2 成份分析 47 4.2經ECAP製程之儲氫材料特徵分析 53 4.2.1 宏觀分析 53 4.2.2 微觀分析 54 4.2.3 成份分析 57 4.3 粉末微觀結構分析 63 4.4 吸放氫分析 70 4.4.1 儲氫粉末活化 70 4.4.2 經HEBM製程之儲氫粉末吸放氫分析 72 4.4.3 經ECAP製程之儲氫粉末吸放氫分析 79 4.4.4 經HEBM或ECAP製程之儲氫粉末吸放氫曲線比較 86 4.4.5 儲氫量分析 89 4.4.6 XRD分析 92 4.4.7 粉末比表面積及孔隙率分析 95 第五章 結論 97 第六章 未來研究方向 99 參考文獻 100

    [1] 蘇順發,儲氫材料,科學發展學報,483期,12-17,2013年3月。
    [2] 陳學仕,量子點簡介,化工資訊 ChemNet 奈米專欄,2002年9月。
    [3] E. David, “Nanocrystalline magnesium and its properties of hydrogen sorption”, Journal of Achievements in Materials and Manufacturing Engineering, Vol.20, 87-90, 2006.
    [4] J. Graetz, J. Reilly, G. Sandrock, J. Johnson, W. Zhou, J. Wegrzyn, “Aluminum Hydride, A1H3, As a Hydrogen Storage Compound”, Journal of The ,Winemls, Metuls & Muteriuls Society, 57-63, 2006.
    [5] J.-C. Crivello, T. Nobuki, T. Kuji, “Improvement of Mg–Al alloys for hydrogen storage applications”, Journal of hydrogen energy, Vol.34, 1937-1943, 2009.
    [6] A. Andreasen, “Hydrogenation properties of Mg-Al alloys”, International Journal of Hydrogen Energy, Vol.33, Issue 24, 7489-7497, 2008.
    [7] Z. Lan, W. Peng, W. Wei, L. Xu, J. Guo, “Preparation and hydrogen storage properties of Mg-Al-Li solid solution”, International Journal of Hydrogen Energy, Vol.41, 6134-6138, 2016.
    [8] 張永強,郭鴻鎮,趙 嚴,王 濤,王彥偉,姚澤坤, “鈦及鈦合金等通道轉角擠壓變形工藝研究現狀”, The Chinese Journal of Nonferrous Metals, Vol.20, 2010.
    [9] A. Muralidhar, S. Narendranath, H. S. Nayaka, “Effect of equal channel angular pressing on AZ31 wrought magnesium alloys”, Journal of Magnesium and Alloys, Vol.1, 336-340, 2013.
    [10] N. Skryabina, N. Medvedeva, A. Gabov, D. Fruchart, S. Nachev, P. d. Rango, “Impact of Severe Plastic Deformation on the stability of MgH2”, Journal of Alloys and Compounds, Vol.645, S14-S17, 2015.
    [11] M. Krystian, M. J. Zehetbauer, H. Kropik, B. Mingler, “Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by Equal Channel Angular Pressing”, Journal of Alloys and Compounds, 509S, S449-S455, 2011.
    [12] J. Huot, N. Y. Skryabina, D. Fruchart, “Application of Severe Plastic Deformation Techniques to Magnesium for Enhanced Hydrogen Sorption Properties”, Journal of Metals, 2, 329-343, 2012.
    [13] C. Z. Wu, P. Wang, X. Yao, C. Liu, D. M. Chen, G. Q. Lu, H. M. Cheng, “Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride”, Journal of Alloys and Compounds, Vol.414, 259-264, 2006.
    [14] J. Wang, C. Wu, J. Nieh, H. Lin, K. M. Lin, H. Bor, “Improving the hydrogen absorption properties of commercial Mg-Zn-Zr alloy”, International Journal of Hydrogen Energy, Vol.35, 1250-1256, 2009.
    [15] 陳志亦,鎂基複合材料AZ91D/SiCp製備之研究,國立中正大學機械工程系碩士論文,2005年7月。
    [16] 洪品森,鎂基複合材料的製備及其熱處理後機械性質之研究,國立中正大 學機械工程學系碩士論文,2009年7月。
    [17] 黃建忠,強化相粒徑對AZ61/SiCp鎂基複合材料鑄錠及擠型材之機械性質影響的研究,國立臺灣科技大學機械工程學系碩士論文,2013年7月。
    [18] 李勝隆,工程材料科學課本,高立圖書出版,2016年6月。
    [19] 劉偉均,機械製造概論,東華書局印行,1997年。
    [20] R. Z. Valiev, T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Progress in Materials Science, Vol. 51, 881-981, 2006.
    [21] Y. T. Zhu, T. C. Lowe, “Observations and issues on mechanisms of grain refinement during ECAP process”, Journal of Materials Science and Engineering, Vol.291, 46-53, 2000.
    [22] 丘群,Hydrogen technology and application,國立臺灣科技大學 氫能技術與應用之課堂講義。
    [23] A. Züttel, “Hydrogen storage materials:keynote address”, 2004 H2NET Seminar, University of Birmingham, 2004.
    [24] Y. Jia, C. Sun, S. Shen, J. Zou, S. S. Mao, X. Yao, “Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage”, Renewable and Sustainable Energy Reviews, Vol.44, 289-303, 2015.
    [25] 周暾煜,等徑轉角擠壓(ECAP)製程及添加物對AZ鎂合金儲氫性能之影響,國立臺灣科技大學機械工程學系碩士論文,2016年8月。

    QR CODE