簡易檢索 / 詳目顯示

研究生: 劉俊水
I Made Binar Andromeda
論文名稱: 添加MAX相對AZ61合金儲氫催化效果之研究
Catalytic Effect of MAX Phase Addition to AZ61 Alloy for Hydrogen Storage Application
指導教授: 丘群
Chun Chiu
口試委員: 黃崧任
Song-Jeng Huang
蔡榮庭
Jung-Ting Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 120
中文關鍵詞: 儲氫MAX相鎂合金催化劑
外文關鍵詞: hydrogen storage, MAX phase, magnesium alloy, catalyst
相關次數: 點閱:30下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球不斷增長的能源需求主要由化石燃料滿足,佔能源供應總量的86%,加劇了環境問題。氫作為一種綠色能源,為解決其高能量含量問題提供了一種替代解決方案。鎂是儲存高達 7.6 wt% 氫氣的合適材料。鎂雖然在儲氫應用上有其重要性,但其熱力學和動力學性質也有其限制。為了改善氫儲存,必須引入催化劑。 MAX相材料是一種將金屬層和陶瓷層整合在單一結構中的複合材料。該物質可以成為改善氫儲存的催化劑。

    本研究採用AZ61鎂合金,加入3 wt%、 7 wt%不同類型的MAX相催化劑Ti3AlC2、Ti2AlC、Ti3AlCN和Mn3AlC2,研究Ti基和Mn基MAX相對氫的影響儲存屬性。該材料透過高能量球磨(HEBM)在1200rpm下研磨30小時來製備。使用 Sievert 裝置在 350 oC 下進行 1800 秒 20 個循環的氫氣測試,並透過 SEM、XRD、XPS 和 DSC 進行分析

    球磨過程將小顆粒的粒徑從 70 μm 減小到 1-20 μm,將較粗的顆粒減小到 20 – 150 μm。氫氣測試顯示AZ61可以吸收1.78 wt%的氫氣。加入催化劑將儲氫量提高至 2.18 – 4.71 wt%。純 AZ61 的吸收率為 0.0174 wt%/s,而添加 3 wt% 催化劑可使吸收率增加 0.0239 – 0.0612 wt%/s,而添加 7 wt% 催化劑則略微增加約 0.0470 – 0.0533 wt%/s。最佳的催化效果是透過添加3 wt% Mn3AlC2 來實現的,由於粒徑較小、無氧化形式且催化劑分散良好,儲氫量達到4.71 wt%;隨後添加7 wt% Ti3AlC2 催化劑,由於無氧化形式,其儲氫量達到4.19 wt%。氧化物的形成和催化劑在鎂表面的均勻分佈為催化效果增加的主要原因。添加 7 wt% Ti3AlC2 後反應的活化能 為200.4 kJ/mol,而添加 3 wt% Mn3AlC2 後反應的活化能 為165.0 kJ/mol。


    The increasing global energy demand is mostly fulfilled by fossil fuels, making up 86% of the total energy supply which worsens environmental problems. Hydrogen as a green energy source offers an alternative solution to addressing its high energy content. Magnesium is a suitable material for storing hydrogen up to 7.6 wt%. While important, magnesium has limitations in its thermodynamic and kinetic properties. To improve hydrogen storage, a catalyst is introduced. The MAX phase material is a composite material integrating metallic and ceramic layers in a single structure. The substance could be a catalyst for improving hydrogen storage.
    In this research, AZ61 magnesium alloy is used and the addition of 3 wt% and 7 wt% of different types MAX Phase catalysts Ti3AlC2, Ti2AlC, Ti3AlCN and Mn3AlC2 are investigated to know the effect of Ti based and Mn based MAX phase to the hydrogen storage properties. The materials are prepared by high energy ball mill (HEBM) for 30 hours at 1200 rpm. Hydrogen tests were conducted using Sievert’s Apparatus at 350 oC in 1800 s for 20 cycles and characterized by SEM, XRD, XPS and DSC.
    The ball milling process reduces the particle size from 70 μm into 1- 20 μm for small particles and 20 – 150 μm for coarser size. The hydrogen test shows pure AZ61 can absorb 1.78 wt% hydrogen. The addition catalysts enhance the capacity into 2.18 – 4.71 wt%. Pure AZ61 has absorption rate 0.0174 wt%/s while addition at 3 wt% catalyst increase the absorption rate ranging from 0.0239 – 0.0612 wt%/s while 7 wt% catalyst addition increase slightly about 0.0470 – 0.0533 wt%/s. The best improvement is achieved by the addition of 3 wt% Mn3AlC2 which achieve 4.71 wt% due to the smaller particle size, no oxidation form, and the well dispersed catalyst and followed by 7 wt% Ti3AlC2 catalyst addition which reach 4.19 wt% due to no oxide formation and uniformly distributed catalyst on the Mg surface. The addition of 7 wt% Ti3AlC2 result in Ea 200.4 kJ/mol while 3 wt% addition of Mn3AlC2 result in Ea 165.0 kJ/mol.

    Table of content i List of figures iv List of tables ix CHAPTER 1 INTRODUCTION 1.1. Forewords 1 1.2. Research Motivation 3 CHAPTER 2 LITERATURE REVIREW 2.1. Hydrogen Energy 6 2.1.1. Hydrogen Energy Storage and Technology 6 2.1.1.1. Hydrogen Gas Storage System 8 2.1.1.2. Liquid Hydrogen (LH2) Storage System 10 2.1.1.3. Material Based Hydrogen Storage System 10 2.1.2. Metal Hydride-Hydrogen Theory 14 2.2. Magnesium Alloy 19 2.2.1. Magnesium Alloy Properties and Applications 19 2.2.2. Magnesium Alloy AZ61 22 2.3. High Energy Ball Milling (HEBM) Process 26 2.3.1. HEBM Principles 26 2.3.2. HEBM Parameters 28 2.4. MAX Phase Materials 34 2.5. Literature Review on Mg Alloy Hydrogen Storage 38 2.6. Research Purpose after the Literature Review 43 CHAPTER 3 EXPERIMENTAL METHODS 3.1. Experimental Process Flow 44 3.2. Raw Material 45 3.3. Material Preparation 45 3.4. High Energy Ball Mill Process (HEBM) 47 3.5. Hydrogen Test with Sievert’s Apparatus 48 3.6. Scanning Electron Microscope (SEM) Analysis 50 3.7. X-Ray Diffraction (XRD) Analysis 51 3.8. X-Ray Photoelectron Spectroscopy (XPS) Analysis 52 3.9. Differential Scanning Calorimetry (DSC) Analysis 53 CHAPTER 4 RESULT AND DISCUSSION 4.1. Raw Material Characterization 54 4.1.1. AZ61 Magnesium Alloy Characterization 54 4.1.2. Catalyst Characterization 56 4.1.2.1. MAX Phase Ti3AlC2 56 4.1.2.2. MAX Phase Ti2AlC 58 4.1.2.3. MAX Phase Ti3AlCN 60 4.1.2.4. MAX Phase Mn3AlC2 62 4.2. Ball Mill and Hydrogen Storage Performance 65 4.2.1. Ball Mill and Hydrogen Storage Performance of Pure AZ61 65 4.2.2. Ball Mill and Hydrogen Storage Performance of AZ61 + 3 wt% Ti3AlC2 70 4.2.3. Ball Mill and Hydrogen Storage Performance of AZ61 + 7 wt% Ti3AlC2 75 4.2.4. Ball Mill and Hydrogen Storage Performance of AZ61 + 3 wt% Ti2AlC 80 4.2.5. Ball Mill and Hydrogen Storage Performance of AZ61 + 7 wt% Ti2AlC 85 4.2.6. Ball Mill and Hydrogen Storage Performance of AZ61 + 3 wt% Ti3AlCN 90 4.2.7. Ball Mill and Hydrogen Storage Performance of AZ61 + 7 wt% Ti3AlCN 95 4.2.8. Ball Mill and Hydrogen Storage Performance of AZ61 + 3 wt% Mn3AlC2 100 4.2.9. Ball Mill and Hydrogen Storage Performance of AZ61 + 7 wt% Mn3AlC2 105 4.2.10. Hydrogen storage capacity for all samples 109 4.3. Differential Scanning Calorimetry (DSC) analysis 114 4.4. X-ray photoelectron spectroscopy (XPS) analysis 116 4.5. The comparison to the recent publications 119 CHAPTER 5 CONCLUSION AND FUTURE WORKS 5.1. Conclusion 120 5.2. Future work 120 REFERENCES 121

    [1] Gautam, P., S. Kumar, and S. Lokhandwala, Chapter 11 - Energy-Aware Intelligence in Megacities, in Current Developments in Biotechnology and Bioengineering, S. Kumar, R. Kumar, and A. Pandey, Editors. 2019, Elsevier. p. 211-238.
    [2] Pastuszak, J. and P. Węgierek, Photovoltaic Cell Generations and Current Research Directions for Their Development. Materials (Basel), 2022. 15(16).
    [3] Yue, M., H. Lambert, E. Pahon, R. Roche, Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 2021. 146: p. 111180.
    [4] Shao, H., L. He, H. Lin, Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review. Energy Technology, 2018. 6(3): p. 445-458.
    [5] Li, X., Z. Yuan, C. Liu, Research progress in improved hydrogen storage properties of Mg-based alloys with metal-based materials and light metals. International Journal of Hydrogen Energy, 2024. 50: p. 1401-1417.
    [6] DOE. Hydrogen storage. 2015 [cited 2023 22 December]; Available from: http://energy.gov/eere/fuelcells/hydrogenstorage.
    [7] Thirkell, A., R. Chen, and I. Harrington, A Fuel Cell System Sizing Tool Based on Current Production Aircraft. 2017.
    [8] Møller, K.T., et al., Hydrogen - A sustainable energy carrier. Progress in Natural Science: Materials International, 2017. 27(1): p. 34-40.
    [9] Pedersen, A.S., B. Vigeholm, J. Kjøller, The effect of cycling in impure hydrogen on the hydrogen capacity of magnesium powder. International Journal of Hydrogen Energy, 1987. 12(11): p. 765-771.
    [10] Wang, K., H. DU, Z. Wang, Novel MAX-phase Ti3AlC2 catalyst for improving the reversible hydrogen storage properties of MgH2. International Journal of Hydrogen Energy, 2017. 42(7): p. 4244-4251.
    [11] Passing, M., et al., Development and experimental validation of kinetic models for the hydrogenation/dehydrogenation of Mg/Al based metal waste for energy storage. Journal of Magnesium and Alloys, 2022. 10(10): p. 2761-2774.
    [12] C. J. Quarton , O. Tlili , L. Welder , C. Mansilla , H. Blanco , H. Heinrichs , J. Leaver , N. J. Samsatli , P. Lucchese , M. Robinius and S. Samsatli , The curious case of the conflicting roles of hydrogen in global energy scenarios, Sustainable Energy Fuels, 2020, 10.1039/C9SE00833K 4 , 80 —95 RSC)
    [13] Yue, M., et al., Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 2021. 146: p. 111180.
    [14] Cheng, Q., et al., Review of Common Hydrogen Storage Tanks and Current Manufacturing Methods for Aluminium Alloy Tank Liners. International Journal of Lightweight Materials and Manufacture, 2023.
    [15] Folkson, R., 6 - Hydrogen as an energy vector for transportation vehicles**J.W. Sheffield and K.B. Martin, formerly of Missouri University of Science and Technology, United States, contributed to first edition, in Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance (Second Edition), R. Folkson and S. Sapsford, Editors. 2022, Woodhead Publishing. p. 151-171.
    [16] Noakes, A, Toyota Mirai review: A futuristic, super-smooth hydrogen fuel cell car, 2015, https://arstechnica.com/cars/2015/11/toyota-mirai-review-the-first-hydrogen-fuel-cell-car-offers-a-glimpse-of-the-future/ [Access Jan 2024]
    [17] Rao, A.G., F. Yin, and H.G.C. Werij, Energy Transition in Aviation: The Role of Cryogenic Fuels. Aerospace, 2020. 7(12): p. 181.
    [18] Belloni, A, The cleanest energy carrier ever, Hydrogen Solutions from Linde Gas, Linde Gas Division, 2004, https://www.linde.co.th/en/images/HydrogenBrochure_EN_tcm368-10196.pdf [access Jan 2024].
    [19] Møller, K.T., et al., Hydrogen - A sustainable energy carrier. Progress in Natural Science: Materials International, 2017. 27(1): p. 34-40.
    [20] Shet, S.P., et al., A review on current trends in potential use of metal-organic framework for hydrogen storage. International Journal of Hydrogen Energy, 2021. 46(21): p. 11782-11803.
    [21] Møller, K.T., et al., Hydrogen - A sustainable energy carrier. Progress in Natural Science: Materials International, 2017. 27(1): p. 34-40.
    [22] Song, M., et al., Recent advances of magnesium hydride as an energy storage material. Journal of Materials Science & Technology, 2023. 149: p. 99-111.
    [23] Martin, M., et al., Absorption and desorption kinetics of hydrogen storage alloys. Journal of Alloys and Compounds, 1996. 238(1): p. 193-201.
    [24] Klopčič, N., et al., A review on metal hydride materials for hydrogen storage. Journal of Energy Storage, 2023. 72: p. 108456.
    [25] Passing, M., et al., Development and experimental validation of kinetic models for the hydrogenation/dehydrogenation of Mg/Al based metal waste for energy storage. Journal of Magnesium and Alloys, 2022. 10(10): p. 2761-2774.
    [26] Huang, S.-J. and M.P. Mose, High-energy ball milling-induced crystallographic structure changes of AZ61-Mg alloy for improved hydrogen storage. Journal of Energy Storage, 2023. 68: p. 107773.
    [27] Singh, V.P., et al., Recent research progress in solid state friction-stir welding of aluminium–magnesium alloys: a critical review. Journal of Materials Research and Technology, 2020. 9(3): p. 6217-6256.
    [28] Uppal, R, Magnesium Alloys in Military Applications, International Defense, Security & Technology, Inc, 2022, https://idstch.com/technology/materials/magnesium-alloys-in-military-applications/ [access Jan 2024].
    [29] Luo, A.A., Magnesium casting technology for structural applications. Journal of Magnesium and Alloys, 2013. 1(1): p. 2-22.
    [30] Gwynne B., Lyon B., Magnesium alloys in aerospace applications, Past Concerns, Current Solutions Magnesium, Triennial International Aircraft Fire & Cabin Safety Research Conference, 2007, http://www.fire.tc.faa.gov/2007conference/files-/Materials_Fire_ Safety/WedAM/Gwynne-Magnesium/GwynneMagnesiumPres.pdf [access Jan 2024].
    [31] Mandaokar, A, Magnesium Metal Market Research Report Information By Manufacturing Process (Thermal Reduction Process, Electrolytic Process, and Recycling), By Products (Pure Magnesium, Magnesium Compounds, and Magnesium Alloys), And By Region (North America, Europe, Asia-Pacific, And Rest Of The World) –Market Forecast Till 2032, 2024, .https://www.marketresearchfuture.com/reports/magnesium-metal-market-1977 [access Jan 2024].
    [32] Wang, J., et al., Multi-solute solid solution behavior and its effect on the properties of magnesium alloys. Journal of Magnesium and Alloys, 2022. 10(7): p. 1786-1820.
    [33] Andreasen, A., Hydrogenation properties of Mg–Al alloys. International Journal of Hydrogen Energy, 2008. 33(24): p. 7489-7497.
    [34] Chen, R., et al., Effect of Al Content on the Microstructural and Grain Growth Kinetics of Magnesium Alloys. Metals, 2022. 12(11): p. 1955.
    [35] Huang, S.-J., et al., Improving the hydrogenation properties of AZ31-Mg alloys with different carbonaceous additives by high energy ball milling (HEBM) and equal channel angular pressing (ECAP). International Journal of Hydrogen Energy, 2020. 45(42): p. 22291-22301.
    [36] Huang, S.-J., et al., Effect of equal channel angular pressing (ECAP) on hydrogen storage properties of commercial magnesium alloy AZ61. International Journal of Hydrogen Energy, 2018. 43(9): p. 4371-4380.
    [37] Wei, L.K., et al., Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review. Materials, 2023. 16(13): p. 4635.
    [38] Gorrasi, G. and A. Sorrentino, Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chemistry, 2015. 17(5): p. 2610-2625.
    [39] Zolriasatein, A., et al., Comparative study of SPEX and planetary milling methods for the fabrication of complex metallic alloy nanoparticles. Micro & Nano Letters, 2018. 13(4): p. 448-451.
    [40] Chen, X., et al., Effect of ball-to-powder weight ratio on microstructure evolution of nanocrystalline Mg-Zn powders prepared by mechanical milling. Indian Journal of Engineering & Material Sciences, 2019. 26: p.126-134.
    [41] Rios, J., et al., Effect of Ball Size on the Microstructure and Morphology of Mg Powders Processed by High-Energy Ball Milling. Metals, 2021. 11(10): p. 1621.
    [42] Liu, Z., et al., Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase. Acta Materialia, 2014. 73: p. 186-193.
    [43] Tao, Q., et al., Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat Commun, 2017. 8: p. 14949.
    [44] Gonzalez-Julian, J., Processing of MAX phases: From synthesis to applications. Journal of the American Ceramic Society, 2021. 104(2): p. 659-690.
    [45] Shahin, N., S. Kazemi, and A. Heidarpour, Mechanochemical synthesis mechanism of Ti3AlC2 MAX phase from elemental powders of Ti, Al and C. Advanced Powder Technology, 2016. 27(4): p. 1775-1780.
    [46] Ahmadian Z, J Ultrafine Grained Nanostruct Mater, 55(2), 2022, 112-121 https://jufgnsm.ut.ac.ir/article_90427_897ee220bc13acbbabb4e5149f84a140.pdf
    [47] Low, I.M.; Pang, W.K. Thermal Stability of MAX Phases. Key Eng. Mater. 2014, 617, 153–158.
    [48] Lange, C.; Barsoum, M.W.; Schaaf, P. Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition. Appl. Surf. Sci. 2007, 254, 1232–1235.
    [49] Guo, C.; Wang, E.; Wang, S.; Hou, X.; He, Z.; Liang, T.; Chou, K.-C. Oxidation mechanism of MAX phases (Ti3AlC2 powders) with and without Sn doping. Corros. Sci. 2020, 180, 109197.
    [50] Zhou, A., C.-A. Wang, and Y. Hunag, Synthesis and mechanical properties of Ti3AlC2 by spark plasma sintering. Journal of Materials Science, 2003. 38(14): p. 3111-3115.
    [51] Zhou, W.; Mei, B.; Zhu, J.; Hong, X. Synthesis of high-purity Ti3SiC2 and Ti3AlC2 by spark plasma sintering (SPS) technique. J. Mater. Sci. 2005, 8, 2099–2100.
    [52] Nelson, M., et al., Synthesis and characterization of the mechanical properties of Ti3SiC2/Mg and Cr2AlC/Mg alloy composites. Materials Science and Engineering: A, 2017. 705: p. 182-188.
    [53] Pi, X., et al., Processing and Mechanical Properties of Ti2AlC MAX Phase Reinforced AE44 Magnesium Composite. Materials (Basel), 2020. 13(4).
    [54] Huot, J., et al., Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. Journal of Alloys and Compounds, 1999. 293-295: p. 495-500.
    [55] Liang, G., et al., Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm=Ti, V, Mn, Fe and Ni) systems. Journal of Alloys and Compounds, 1999. 292(1): p. 247-252.
    [56] Duan, X.-Q., et al., Ti3AlCN MAX for tailoring MgH2 hydrogen storage material: from performance to mechanism. Rare Metals, 2023. 42(6): p. 1923-1934.
    [57] Huang, S.-J., M.P. Mose, and S. Kannaiyan, A study of the mechanical properties of AZ61 magnesium composite after equal channel angular processing in conjunction with machine learning. Materials Today Communications, 2022. 33: p. 104707.
    [58] Ovodok, E.A., et al., Synthesis of Ti3AlC2 max phase under vacuum, its structural characterization and using for Ti3C2Tx MXene preparation. Thin Solid Films, 2023. 771: p. 139759.
    [59] Scheibe, B., et al., The Influence of Oxygen Concentration during MAX Phases (Ti3AlC2) Preparation on the α-Al2O3 Microparticles Content and Specific Surface Area of Multilayered MXenes (Ti3C2Tx). Materials, 2019. 12(3): p. 353.
    [60] Liu, T., et al., Enhanced hydrogen storage properties of magnesium by the synergic catalytic effect of TiH1.971 and TiH1.5 nanoparticles at room temperature. Journal of Power Sources, 2014. 267: p. 69-77.
    [61] Kudiyarov, V.N., R.R. Elman, and N.E. Kurdyumov, The Effect of High-Energy Ball Milling Conditions on Microstructure and Hydrogen Desorption Properties of Magnesium Hydride and Single-Walled Carbon Nanotubes. Metals, 2021. 11(9): p. 1409.
    [62] Zhang, L., et al., Improved hydrogen storage properties of MgH2 by the addition of TiCN and its catalytic mechanism. SN Applied Sciences, 2018. 1(1): p. 101.
    [63] Li, J., et al., Catalytic effect of Ti2C MXene on the dehydrogenation of MgH2. International Journal of Hydrogen Energy, 2019. 44(13): p. 6787-6794.
    [65] Zhang, L., et al., Excellent catalysis of Mn3O4 nanoparticles on the hydrogen storage properties of MgH2: an experimental and theoretical study. Nanoscale Advances, 2020. 2(4): p. 1666-1675.
    [66] Shahi, R.R.; Tiwari, A.P.; Shaz, M.A.; Srivastava, O.N. Studies on de/rehydrogenation characteristics of nanocrystalline MgH2 co-catalyzed with Ti, Fe and Ni. Int. J. Hydrogen Energy 2013, 38, 2778–2784.
    [67] Gao, H.; Shi, R.; Liu, Y.; Zhu, Y.; Zhang, J.; Li, L.; Hu, X. Facet-dependent catalytic activity of two-dimensional Ti3C2Tx MXene on hydrogen storage performance of MgH2. J. Magnes. Alloys 2022, in press
    [68] Zhang, J.; Hou, Q.; Chang, J.; Zhang, D.; Peng, Y.; Yang, X. Improvement of hydrogen storage performance of MgH2 by MnMoO4 rod composite catalyst. Solid State Sci. 2021, 121, 106750.
    [69] Fu, H.; Nong, J.; Wen, X.; Liang, H.; Guo, J.; Zhou, W.; Huang, X.; Liu, H.; Ning, H.; Lan, Z. Facile and low-cost synthesis of carbon-supported manganese monoxide nanocomposites and evaluation of their superior catalytic effect toward magnesium hydride. J. Alloys Compd. 2021, 887, 161380.

    QR CODE