簡易檢索 / 詳目顯示

研究生: 楊賀智
He-Jhih Yiang
論文名稱: 不同成長條件與金屬反應源對成長氮化鎵奈米線之影響
The study of different growth conditions and metallic precursors in synthesizing GaN nanowires
指導教授: 鄭如茵
Ju-Yin Cheng
郭東昊
Dong-Hau Kuo
口試委員: 蘇程裕
Cherng-Yuh Su
陳建光
Jem-Kun Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 140
中文關鍵詞: 氮化鎵奈米線常壓化學氣相法金觸媒鎳觸媒旋鍍
外文關鍵詞: Gallium nitride nanowire, Atmospheric chemical vapor deposition, Gold catalyst, Nickel catalyst, Spin-coating
相關次數: 點閱:236下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,發藍光的LED材料是目前最重要的光電元件,由於GaN材料製程上的成熟,使得藍光GaN/GaInN 薄膜發光二極體廣泛應用在光電產業中。III族氮化物因製備條件的不同可為閃鋅礦結構,也可為纖鋅礦(Wurtzite)結構,閃鋅礦結構的III族氮化物為間接半導體,而纖鋅礦結構的III族氮化物為直接半導體,具有很好的發光性能。
    本實驗內容有 :
    1. 以旋鍍法於矽基板上塗佈硝酸鎳溶液,乾燥後在650oC下氧化裂解15分鐘,爾後在不同的溫度下還原30分鐘(溫度有850oC、750oC、650oC等,氣體氛圍為Ar / H2 = 93 / 7)。最後,以GaCl3、NH3作反應源,在不同溫度下分別成長30分(900oC、800oC、750o,氣體氛圍為NH3 / N2 = 100sccm / 50sccm),並探討最佳之成長條件。
    2. 以物理氣相沉積法在矽基板上沉積金觸媒、鎳觸媒、鎳-金雙層觸媒,在不同溫度下退火30分鐘後,以GaCl3、NH3作反應源,於不同溫度下分別成長30分(900oC、800oC、750oC,氣體氛圍為NH3 / N2 = 100sccm / 50sccm)。另外,利用AAO基板和自製氧化鋁多孔碇基板以相同的方式沉積觸媒後,於最適合之成長溫度下成長30分,並研究基板表面對成長氮化鎵奈米線之影響。
    3. 利用1、2中最佳之成長條件於不同金屬前驅物之GaN奈米線成長比較,金屬前驅物為GaCl3和Ga2Cl4。
    本實驗利用非主流之金屬前驅物於常壓CVD下成長出型態優良之奈米線,並且找出適合成長氮化鎵奈米線的成長條件及觸媒侷限對產物分佈與樣貌之影響。


    Due to the progress in synthesizing GaN films, GaN/GaInN light-emitting diodes (LEDs) have successfully developed and are the most important optoelctronic component. Therefore, group III nitrides have become important semiconductor materials. Group III nitrides have two kinds of structures, zinc blende and wurtzite, depending upon the process conditions. Zinc blende belongs to an indirect semiconductor and wurtzite with good luminescent properties a direct one.
    Our experiments involve the following three approaches.

    1. The nickel nitrate solution was spin-coated on silicon substrates. The dried substrates were pyrolyzed at 650oC for 15 minutes followed by the reduction at different temperatures (850 oC, 750 oC, 650 oC) for 30 minutes. Finally, the GaN nanowires were synthesized on those catalyst-covered substrates at different temperatures (900 oC, 800 oC, 750 oC) for 30 minutes.

    2. The GaN nanowires were grown at different temperatures (900 oC, 800 oC, 750 oC) for 30 minutes by using the gold, nickel or nickel-gold catalyzed substrates. These catalysts were deposited by PVD followed by annealing at different temperatures for 30 minutes. Additionally, different substrates such as AAO and self-fabricated porous alumina disks were also used for studing the effect of surface morphology of substrates on the growth of GaN nanowires.
    3. GaN nanowires were grown by different Ga precursors, GaCl3 and Ga2Cl4, by using the growth condition obtained from the approaches 1 and 2. The growth behaviors of these two precursors were investigated.

    The GaN nanowires with good morphology were synthesized by using the GaCl3 and Ga2Cl4 as precursors via APCVD. Besides, we find the best parameters for the growth of GaN, the relationship between the morphology and distribution of products, and the effects of catalysts on the nanowire growth.

    目錄 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 氮化鎵一維材料之介紹 2 1-3 研究背景 3 第二章 文獻回顧與理論基礎 5 2-1 氮化鎵之晶體結構 5 2-2 奈米一維材料之各種成長機制 6 2-2-1 溶液法 6 2-2-2 氣相法 10 2-3 成長氮化鎵奈米材料之文獻回顧 17 2-3-1 改變氣體反應源 17 2-3-2 改變觸媒製備方法 20 2-3-3 改變基板表面型態 26 2-3-4 影響產物成長之相關研究 27 第三章 實驗方法與步驟 34 3-1 實驗設備與藥品 34 3-1-1 旋轉塗佈機(spin-coating) 34 3-1-2 鍍金機(電極蒸鍍機) 35 3-1-3 DC濺鍍機 35 3-1-4 管型加溫爐 36 3-1-5 實驗使用之氣體與金屬反應源 37 3-1-6 其他藥品 38 3-2 實驗流程 39 3-2-1 基板製備 39 3-2-2 反應成長流程與各種基板成長參數 42 3-3 一維材料特性分析儀器 43 3-3-1高解析度場發射掃描式電子顯微鏡 43 3-3-2 穿透式電子顯微鏡 44 3-3-3 雷射螢光/光致發光光譜儀 44 第四章 結果與討論 45 4-1 以旋鍍法製備觸媒層並成長氮化鎵奈米線 45 4-1-1 場發射掃描式電子顯微鏡(FESEM)影像分析 45 4-1-2 穿透式電子顯微鏡(TEM)影像分析與元素分析 59 4-2 以物理氣相沉積法製備觸媒層並成長氮化鎵奈米線 64 4-2-1場發射掃描式電子顯微鏡(FESEM)影像分析 64 4-2-2 穿透式電子顯微鏡(TEM)影像分析與元素分析 97 4-2-3 雷射螢光/光致發光(PL)光譜 117 第五章 結論 121 參考文獻 122

    1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature, 318, 162-163.
    2. Sumio Iijima, Nature 354, 56-58
    3. http://web.mit.edu/ibita/www/MRS
    4. Philip Kim and Charles M. Lieber, Science, 286, 2148
    5. Yoshikazu Nakayama, Hidehiro Nishijima, Seiji Akita, Ken I. Hohmura, Shige H. Yoshimura, and Kunio Takeyasu, J. Vac. Sci. Technol. B, 18, pp.661(2000).
    6. Justin C. Johnson, Haoquan Yan, Richard D. Schaller, Louis H. Haber, Richard J. Saykally, and Peidong Yang, J. Phys. Chem. B, 105, pp.11387.
    7. Heon-Jin Choi, Justin C. Johnson, Rongrui He, Sang-Kwon Lee, Franklin Kim, Peter Pauzauskie, Joshua Goldberger, Richard J. Saykally, and Peidong Yang, J. Phys. Chem. B, 107, pp.8721.
    8. Silvija Gradečak, Fang Qian, Yat Li, Hong-Gyu Park, and Charles M. Lieber , Appl. Phys. Lett. 87, 173111 (2005).
    9. Fang Qian, Silvija Grade ak, Yat Li, Cheng-Yen Wen, and Charles M. Lieber, Nano. Lett., 5, 2287.
    10. Hwa-Mok Kim, Yong-Hoon Cho, Hosang Lee, Suk Il Kim, Sung Ryong Ryu, Deuk Young Kim, Tae Won Kang, and Kwan Soo Chung, Nano. Lett., 5, pp 1059–1062.
    11. S. Nakamura, D. Pearton, G. Fasol, in : The Blue Laser Diode : The Complete Story second ed. , Springer, Berlin, 2000(Chapter 10).
    12. D. Takagi, Y. Homma, H. Hibino, S. Suzuki, Y. Kobayashi, 2006, Nano. Lett. vol.6, No.12, 2642-2645.
    13. G. T. Wang, A. A. Talin, D. J. Werder, J. R. Creighton, E. Lai, R. J. Anderson, and I. Arslan, Nanotechnology, 17(2006), 5773-5780.
    14. “晶體之結構與性質”, 渤海堂文化公司, 1987, 余樹楨著
    15. M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, Appl. Phys. Lett. 79,839(2001).
    16. J. Wang and L. Gao, “Hydrothermal synthesis and photoluminescence properties of ZnO nanowires”, Solid State Communications, 132, pp.269-271(2004).
    17. J. Xie, P. Li, Y. Li, Y. Wang, and Y. Wei, Materials Chemistry and Physics, 114, 943(2009).
    18. Gai. L. G., Jiang. H. H., Ma. W. Y., Cui. D. L, Lun. N, Wang. Q, Journal of Physical Chemistry C, vol.111, pp.2386-2390, 2007.
    19. Jentys. A., Pham. N. H., Vinek. H., J. Chem. Soc. Faraday Trans. 1996, 92, 3287.
    20. L. Cao, H. Z. Chen, H. Y. Li, H. B. Zhou, J. Z. Sun, X. B. Zhang, and M. Wang, Chem. Mater. 2003, 15, 3247-3249.
    21. X. Duan and Lieber C. M. , J. Am. Chem. Soc. 2000,122, 188-189.
    22. W.Q. Han and A. Zettl , Appl. Phys. Lett., vol. 80, No. 2, pp.303. 14,January 2002
    23. Peidong Yang and Charles M. Lieber, J. Mater. Res., 12, pp.2981(1997).
    24. L. X. Zhao, G. W. Meng, X. S. Peng, X. Y. Zhang, L. D. Zhang, “Large-scale synthesis of GaN nanorods and their photoluminescence”, Applied Physics a-Materials Science & Processing, vol. 74, pp. 587-590(2002).
    25. S. T. Lee, N. Wang, C. S. Lee, Mat. Sci. Eng. A-Struct, 286, 16(2000).
    26. C. C. Tang, S. S. Fan, H. Y. Dang, P. Li, and Y. M. Liu, “Simple and high-yield method for synthesizing single-crystal GaN nanowires” Appl Phys. Lett., vol. 77, pp. 1961-1963(2000).
    27. Qiming Li and George T. Wang, Appl. Phys. Lett. 93, 043119(2008)
    28. H. M. Kim, D. S. Kim, Y. S. Park, D. Y. Kim, T. W. Kang, K. S. Chung, Adv. Mater. 2002, 14, No.13-14, pp.991-993.
    29. H. M. Kim, T. W. Kang, and K. S. Chung, Adv. Mater. 2003, 15, No.7-8, pp.567-569.
    30. X. Chen, J. Li, Y. Cao, Y. Lan, H. Li, M. He, C. Wang, Z. Zhang, and Z. Qiao, Adv. Mater. 2000, 12, NO. 19, October2.
    31. B. K. Ridley, Quantum Process in Semiconductor, Clarendon, Oxford 1982, pp.62-66.
    32. Y. B. Tang, X. H. Bo, C. S. Lee, H. T. Cong, H. M. Cheng, Z. H. Chen,
    W. J. Zhang, I. Bello, and S. T. Lee, Adv. Funct. Mater., 2008, 18, 3515-3522.
    33. G. Frens, Nature Phys. Sci. 1973, 211, 20.
    34. S. D. Hersee, X. Sun, and X. Wang, Nano Letters, 2006, vol.6, No.8, 1808-1811.
    35. T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, nature materials, Vol3, August 2004.
    36. W. C. Hou and Franklin C.-N. Hong, Nenotechnology, 20(2009), 055606.
    37. S. Noor Mohammad, The Journal Of Chemical Physics, 127, 244702(2007).
    38. S. Noor Mohammad, The Journal Of Chemical Physics, 131, 224702(2009).
    39. X. Weng, R. A. Burke, and J. M. Redwing, Nanotechnology, 20(2009), 085610.
    40. Tuan H-Y, Lee D C, Hanrath T and Korgel B A, 2005, Chem. Mater. ,17, 5705
    41. http://en.wikipedia.org/wiki/Mesoscopic
    42. http://en.wikipedia.org/wiki/Polyvinyl_alcohol
    43. “材料電子顯微鏡學”, pg.75-84, 陳力俊等著。
    44. Kuo. Don-Hau, and Shen. Wei-Ting, INEC 2010 - 2010 3rd International Nanoelectronics Conference, Proceedings, p 1064-1065, 2010, INEC 2010 - 2010 3rd International Nanoelectronics Conference, Proceedings

    QR CODE