簡易檢索 / 詳目顯示

研究生: 俞承宏
Cheng-hong Yu
論文名稱: 前處理條件對摻雜改質銅鎳觸媒催化對乙醇蒸氣重組反應的影響
Ethanol steam reforming over metal-doped CuNi catalysts with different pretreatment
指導教授: 林昇佃
Shawn-D.Lin
口試委員: 蘇威年
陳敬勳
黃炳照
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 113
中文關鍵詞: 銅鎳觸媒前處理條件蒸氣重組金屬界面氧化物
外文關鍵詞: Copper-nickel catalysts, pretreatment condition, steam reforming, metal oxide interface
相關次數: 點閱:417下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫氣為一種理想潔淨的能源載體,使用生質乙醇製氫,可以使二氧化碳成為一封閉的碳循環,而達到近乎零碳排放的目標。本實驗室先前研究顯示利用模板法合成之銅鎳觸媒中的CuNi-NiO界面有利乙醇蒸氣重組反應,可在溫和條件下催化乙醇重組獲得高氫氣產率,為了提高CuNi- NiO界面在H2中的穩定性,並開發簡易實用的觸媒製備方法。本研究以不同比例La、Gd摻雜NiO作為載體製作觸媒,期望藉由提升NiO還原溫度以維持活性界面,研究中並改變不同前處理條件進行比較討論。
    研究結果顯示摻雜15%La觸媒於P-2(250℃, 30min)半還原條件下可使觸媒還原程度接近50%,且CuNi合金和NiO晶粒較小,能產生較穩定且活性較好的CuNi-NiO界面,在反應溫度350℃時,在本研究的操作下可使EtOH幾乎完全轉化,含碳產物含有約20%CH4、15%CO、60%的CO2,H2的產率為3.8。比較不同摻雜金屬與其含量,摻雜La觸媒有優於摻雜Gd觸媒之反應速率,提高摻雜金屬含量會使反應活化能提高,對反應乙醇蒸氣重組有較好的改善。
    Cu/La15-NiO-P2觸媒在325℃持溫10小時可以保持穩定反應活性,得知反應後觸媒仍具有NiO結構,顯示可以穩定維持ESR反應活性,在10小時內仍可產生穩定的H2;說明Cu/La15-NiO觸媒中,摻雜金屬的NiO可以促使CuNi-NiO活性界面在較溫和反應條件下穩定存在。

    關鍵字: 銅鎳觸媒、前處理、蒸氣重組、金屬氧化物界面


    Hydrogen is an ideal clean carrier. Zero carbon emissions can be achieved by using, hydrogen from the reforming of bio-ethanol. In our previous study CuNi-NiO interface in a (Cu-NiO) catalyst prepared by hard-template method can have good activity in ethanol steam reforming reaction(ESR), obtaining high hydrogen yield at mildle conditions. This study intends to improve the stability of CuNi-NiO interface and to prepare workable catalyst preparation method for industal application. In this study dope La and Gd in NiO as support for Cu, expecting the acticity interface can be stabilized by an increase in the NiO reduction temperature.
    The results show that Cu/La15-NiO after P-2 pretreatment (250 ℃, 30min) have a degree of reduction of around 50% and good ESR activity. The CuNi alloy and NiO particle size are smaller than other catalysts, which can result in more CuNi-NiO interface. At 350℃, EtOH is nearly completely converted with C-products including 20% CH4, 15% CO and 60% CO2 and a H2 yield of 3.8. Comparing with different type and amount of dopant, the La-doped catalysts have better reaction performance than the Gd-doped catalysts.
    The stability test of Cu/La15-NiO-P2 catalyst at 325℃ for 10 hours, indicate stable ESR activity the same H2 yield, the spent catalyst still contain NiO structure, indicating that the metal–doped Cu/La15-NiO catalyst can maintain stable CuNi-NiO interface under the ESR condition.

    Keywords: Copper-nickel catalysts, pretreatment, steam reforming, metal oxide interface.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VI 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.2.1 乙醇製氫反應 2 1.2.2 銅鎳觸媒應用於乙醇蒸氣重組反應 3 1.2.3利用半還原銅鎳觸媒進行蒸氣重組反應 5 1.2.4 氧化鎳結構摻雜金屬對其還原峰影響 6 1.3 研究目的 10 第二章 研究設備與方法 11 2.1觸媒命名 11 2.2 研究架構及方法 12 2.3藥品及儀器設備 13 2.3.1藥品部分 13 2.3.2氣體部分 13 2.3.3儀器部分 14 2.4觸媒製備 14 2.4.1以共沉澱法製備 MX-NiO (M=La, Gd) 觸媒 14 2.4.2以初濕含浸法製備10%Cu/MX-NiO (M=La, Gd) 觸媒 15 2.4.3 SBA-15中孔洞氧化矽基材之製備 15 2.4.4以SBA-15為模板製備(NiO)sc觸媒 15 2.4.5以初濕含浸法製備Cu/(NiO)sc觸媒 16 2.5觸媒特性分析 17 2.5.1X光粉末繞射儀(XRD) 17 2.5.2程序升溫還原系統(TPR) 17 2.5.3比表面積與孔隙測定儀(BET) 18 2.5.4熱重分析儀(TGA) 18 2.5.5NSRRC EXAFS 18 2.5.6乙醇蒸氣重組反應(ESR) 18 第三章 結果與討論 20 3.1Cu/(NiO)sc觸媒和Cu/NiO觸媒之特性分析與ESR反應 20 3.1.1Cu/(NiO)sc與Cu/NiO觸媒特性分析 20 3.1.2Cu/NiO觸媒與(Cu-NiO)sc觸媒之ESR反應 26 3.2摻雜過渡金屬修飾氧化鎳載體效果及ESR反應 32 3.2.1 MX-NiO(M=La, Gd)觸媒特性分析 32 3.2.2 不同前處理理條件對於觸媒組成及反應之影響 40 3.2.3 動力學分析 68 3.3.綜合討論 74 3.3.1P-2前處理觸媒反應前後結構對ESR反應影響 74 3.3.2不同溫度下產物選擇率趨勢分析 79 3.3.3Cu/La15-NiO-P2穩定性測試 82 第四章 結論 85 Future Work 87 參考文獻 88 附錄 92 附錄A-ESR反應機制 92 附錄B-N2O吸附計算 93 附錄C-Origin分峰計算方式 94 附錄D-EXFAS分析 95 附錄E 102 I. Cu/M15-NiO-P2 TGA分析 102 II. 其他金屬修飾NiO載體 104 III. 比較含浸與共沉澱Cu於La15-NiO之差別 108 IV. 以Cu/La15-NiO之觸媒加入載體(MgO, ZrO2, Al2O3)對ESR影響 113

    [1] J.R. Rostrup-Nielsen, Catalytic steam reforming, in: Catalysis, Springer, 1984, pp. 1-117.
    [2] T. Hou, S. Zhang, Y. Chen, D. Wang, W. Cai, Hydrogen production from ethanol reforming: Catalysts and reaction mechanism, Renewable and Sustainable Energy Reviews, 44 (2015) 132-148.
    [3] <review.pdf>.
    [4] A. Bshish, Z. Yaakob, B. Narayanan, R. Ramakrishnan, A. Ebshish, Steam-reforming of ethanol for hydrogen production, Chemical Papers, 65 (2011).
    [5] D.K. Liguras, D.I. Kondarides, X.E. Verykios, Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts, Applied Catalysis B: Environmental, 43 (2003) 345-354.
    [6] C. Rioche, S. Kulkarni, F.C. Meunier, J.P. Breen, R. Burch, Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts, Applied Catalysis B: Environmental, 61 (2005) 130-139.
    [7] A. Basagiannis, X. Verykios, Reforming reactions of acetic acid on nickel catalysts over a wide temperature range, Applied Catalysis A: General, 308 (2006) 182-193.
    [8] J.F. Da Costa-Serra, R. Guil-López, A. Chica, Co/ZnO and Ni/ZnO catalysts for hydrogen production by bioethanol steam reforming. Influence of ZnO support morphology on the catalytic properties of Co and Ni active phases, International Journal of Hydrogen Energy, 35 (2010) 6709-6716.
    [9] A.E. Galetti, M.F. Gomez, L.A. Arrua, M.C. Abello, Ethanol steam reforming over ni/znal 2 o 4-ceo 2. influence of calcination atmosphere and nature of catalytic precursor, Applied Catalysis A: General, 408 (2011) 78-86.
    [10] J.-Y. Liu, C.-C. Lee, C.-H. Wang, C.-T. Yeh, C.-B. Wang, Application of nickel–lanthanum composite oxide on the steam reforming of ethanol to produce hydrogen, International Journal of Hydrogen Energy, 35 (2010) 4069-4075.
    [11] A. Machocki, A. Denis, W. Grzegorczyk, W. Gac, Nano- and micro-powder of zirconia and ceria-supported cobalt catalysts for the steam reforming of bio-ethanol, Applied Surface Science, 256 (2010) 5551-5558.
    [12] F. Frusteri, S. Freni, L. Spadaro, V. Chiodo, G. Bonura, S. Donato, S. Cavallaro, H 2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts, Catalysis Communications, 5 (2004) 611-615.
    [13] L. Zhao, T. Han, H. Wang, L. Zhang, Y. Liu, Ni-Co alloy catalyst from LaNi 1−x Co x O 3 perovskite supported on zirconia for steam reforming of ethanol, Applied Catalysis B: Environmental, 187 (2016) 19-29.
    [14] X. Zhao, G. Lu, Modulating and controlling active species dispersion over Ni–Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming, International Journal of Hydrogen Energy, 41 (2016) 3349-3362.
    [15] A.N. Fatsikostas, X.E. Verykios, Reaction network of steam reforming of ethanol over Ni-based catalysts, Journal of Catalysis, 225 (2004) 439-452.
    [16] A.C. Furtado, C.G. Alonso, M.P. Cantão, N.R.C. Fernandes-Machado, Bimetallic catalysts performance during ethanol steam reforming: Influence of support materials, International Journal of Hydrogen Energy, 34 (2009) 7189-7196.
    [17] Y. Matsumura, T. Nakamori, Steam reforming of methane over nickel catalysts at low reaction temperature, Applied Catalysis A: General, 258 (2004) 107-114.
    [18] Yue Li1, Qi Fu, Maria Flytzani-Stephanopoulos∗Applied Catalysis B: Environmental 27 (2000) 179–191.
    [19] S. Cavallaro, S. Freni, Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation, International Journal of Hydrogen Energy, 21 (1996) 465-469.
    [20] P. Carninci, T. Kasukawa, S. Katayama, J. Gough, M. Frith, N. Maeda, R. Oyama, T. Ravasi, B. Lenhard, C. Wells, The transcriptional landscape of the mammalian genome, Science, 309 (2005) 1559-1563.
    [21] F. Marino, M. Boveri, G. Baronetti, M. Laborde, Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al 2 O 3 catalysts. Effect of Ni, International Journal of Hydrogen Energy, 26 (2001) 665-668.
    [22] L.C. Chen, H. Cheng, C.W. Chiang, S.D. Lin, Sustainable hydrogen production by ethanol steam reforming using a partially reduced copper-nickel oxide catalyst, ChemSusChem, 8 (2015) 1787-1793.
    [23] L.-C. Chen, S.D. Lin, Effects of the pretreatment of CuNi/SiO2 on ethanol steam reforming: Influence of bimetal morphology, Applied Catalysis B: Environmental, 148-149 (2014) 509-519.
    [24] L.-C. Chen, S.D. Lin, The ethanol steam reforming over Cu-Ni/SiO2 catalysts: Effect of Cu/Ni ratio, Applied Catalysis B: Environmental, 106 (2011) 639-649.
    [25] 江致威, 銅鎳觸媒應用於中溫甲烷蒸汽重組反應之研究, in: 化學工程系, 國立臺灣科技大學, 台北市, 2014, pp. 98.
    [26] D. Han, X. Jing, J. Wang, P. Yang, D. Song, J. Liu, Porous lanthanum doped NiO microspheres for supercapacitor application, Journal of Electroanalytical Chemistry, 682 (2012) 37-44.
    [27] J.A. Calles, A. Carrero, A.J. Vizcaíno, Ce and La modification of mesoporous Cu–Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming, Microporous and Mesoporous Materials, 119 (2009) 200-207.
    [28] M. Sánchez-Sánchez, R. Navarro, J. Fierro, Ethanol steam reforming over Ni/MxOy–Al2O3 (M= Ce, La, Zr and Mg) catalysts: influence of support on the hydrogen production, International Journal of Hydrogen Energy, 32 (2007) 1462-1471.
    [29] Q. Zhou, D. Zhou, Y. Wu, T. Wu, Oxidative dehydrogenation of ethane over RE-NiO (RE=La, Nd, Sm, Gd) catalysts, Journal of Rare Earths, 31 (2013) 669-673.
    [30] T. Zhang, J. Ma, Y. Leng, S. Chan, P. Hing, J. Kilner, Effect of transition metal oxides on densification and electrical properties of Si-containing Ce 0.8 Gd 0.2 O 2− δ ceramics, Solid State Ionics, 168 (2004) 187-195.
    [31] J. Singh, A. Roychoudhury, M. Srivastava, P.R. Solanki, D.W. Lee, S.H. Lee, B.D. Malhotra, A highly efficient rare earth metal oxide nanorods based platform for aflatoxin detection, Journal of Materials Chemistry B, 1 (2013) 4493.
    [32] A. Boreave, H. Tan, V. Roche, P. Vernoux, J.-P. Deloume, Oxygen mobility in lanthanum nickelate catalysts for deep oxidation of propane, Solid State Ionics, 179 (2008) 1071-1075.
    [33] W. Yang, Y. Feng, W. Chu, Catalytic Chemical Vapor Deposition of Methane to Carbon Nanotubes: Copper Promoted Effect of Ni/MgO Catalysts, Journal of Nanotechnology, 2014 (2014) 1-5.
    [34] T. Mondal, K.K. Pant, A.K. Dalai, Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO 2–ZrO 2 catalyst, international journal of hydrogen energy, 40 (2015) 2529-2544.
    [35] L. Bednarczuk, P.R. de la Piscina, N. Homs, Efficient CO 2-regeneration of Ni/Y 2 O 3 La 2 O 3 ZrO 2 systems used in the ethanol steam reforming for hydrogen production, International Journal of Hydrogen Energy, 41 (2016) 19509-19517.
    [36] V. Palma, F. Castaldo, P. Ciambelli, G. Iaquaniello, CeO2-supported Pt/Ni catalyst for the renewable and clean H2 production via ethanol steam reforming, Applied Catalysis B: Environmental, 145 (2014) 73-84.
    [37] H.F. Wang, H.Y. Li, X.Q. Gong, Y.L. Guo, G.Z. Lu, P. Hu, Oxygen vacancy formation in CeO2 and Ce(1-x)Zr(x)O2 solid solutions: electron localization, electrostatic potential and structural relaxation, Phys Chem Chem Phys, 14 (2012) 16521-16535.
    [38] J. Deng, W. Chu, B. Wang, W. Yang, X.S. Zhao, Mesoporous Ni/Ce1−xNixO2−y heterostructure as an efficient catalyst for converting greenhouse gas to H2 and syngas, Catal. Sci. Technol., 6 (2016) 851-862.
    [39] B. Paul, K. Singh, T. Jaroń, A. Roy, A. Chowdhury, Structural properties and the fluorite–pyrochlore phase transition in La 2 Zr 2 O 7: the role of oxygen to induce local disordered states, Journal of Alloys and Compounds, 686 (2016) 130-136.
    [40] M. Tada, S. Zhang, S. Malwadkar, N. Ishiguro, J. Soga, Y. Nagai, K. Tezuka, H. Imoto, S. Otsuka-Yao-Matsuo, S. Ohkoshi, Y. Iwasawa, The active phase of nickel/ordered Ce2Zr2O(x) catalysts with a discontinuity (x=7-8) in methane steam reforming, Angew Chem Int Ed Engl, 51 (2012) 9361-9365.
    [41] F. Zhang, C. Tracy, M. Lang, R. Ewing, Stability of fluorite-type La 2 Ce 2 O 7 under extreme conditions, Journal of Alloys and Compounds, 674 (2016) 168-173.
    [42] H. Teterycz, R. Klimkiewicz, M. Łaniecki, The role of Lewis acidic centers in stabilized zirconium dioxide, Applied Catalysis A: General, 249 (2003) 313-326.
    [43] J. Bellido, E. Assaf, Nickel catalysts supported on ZrO 2, Y 2 O 3-stabilized ZrO 2 and CaO-stabilized ZrO 2 for the steam reforming of ethanol: effect of the support and nickel load, Journal of Power Sources, 177 (2008) 24-32.
    [44] J. Bussi, M. Musso, S. Veiga, N. Bespalko, R. Faccio, A.-C. Roger, Ethanol steam reforming over NiLaZr and NiCuLaZr mixed metal oxide catalysts, Catalysis Today, 213 (2013) 42-49.

    QR CODE