簡易檢索 / 詳目顯示

研究生: 曹惠珺
Hui chun Tsao
論文名稱: 銅鎳奈米顆粒製備乙醇蒸氣重組觸媒與製備參數的影響
Ethanol steam reforming catalysts prepared from copper-nickel nanoparticles : Effect of preparation parameters
指導教授: 林昇佃
Shawn D. Lin
口試委員: 劉端祺
Tuan-Chi Liu
汪成斌
Chen-Bin Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 122
中文關鍵詞: 乙醇蒸汽重組銅鎳合金
外文關鍵詞: Steam reforming of ethanol, copper-nickel alloy
相關次數: 點閱:216下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用化學還原法將銅鎳擔載在氧化矽上並移除保護劑,製備的方法有兩種,第一種稱A製備方法,是先將載體加入銅鎳前驅物-PVP中,再使用硼氫化鈉還原,另一種則稱B製備方法,先使用硼氫化鈉將銅鎳前驅物-PVP還原成奈米合金顆粒,再加入載體使之附著,並分別探討銅鎳比例對奈米合金顆粒觸媒催化乙醇蒸汽重組反應的影響。固定銅與鎳總擔載量為5wt%,所測試的銅鎳比例分別為(1:0;3:1;1:1;1:3;0:1),由XRD結果顯示,兩種製備方式之觸媒經350℃氫氣還原,觸媒呈FCC繞射特徵,(111)繞射訊號隨Ni/Cu比例上升而往純鎳的特徵峰位置偏移,表示是合金的狀態。由TPR與XRD分析得知使用B方法製備可控制金屬顆粒銅鎳比例,並且得到更小的銅鎳奈米顆粒,但顆粒在反應過程中較易有燒結。
    乙醇蒸氣重組反應測試,兩種製備方法中,以B製備方式之銅鎳比例觸媒優於A製備方法,並且以銅鎳比例1的觸媒活性最佳,因為乙醇轉化能力好,於325℃達到完全轉化,雖然CO轉化率高且氫產量僅次於純鎳的觸媒,但積碳量(16%)是優於純鎳觸媒的24%。
    再將B製備方式中的銅鎳比例之奈米合金顆粒置於不同載體上,其中以載體為Cu1Ni1/ZnO的觸媒最具活性,氫產率最高,積碳最低。


    In this study, 5% CuNi/SiO2 catalyst were prepared by NaBH4 reduction in the presence of PVP. Two preparation procedures were used, one is with SiO2 addition to PVP+precursor solution followed by NaBH4 reduction (Method A) and the other with SiO2 addition after NaBH4 reduction of PVP+precursor solution (Method B).XRD results showed that all catalysts had FCC diffraction characteristics and the (111) peak position shifted to higher 2θ when the Cu/Ni ratio decreased.The catalysts prepared by method B had smaller CuNi particle size than those by method A. The catalysts prepared by method A had lower tendency to sinter than those by method B and it is attributed to the presence of NiO-SiO2 interaction.
    The effect of copper/nickel ratio on the ethanol steam reforming reaction was examined after in-live H2 reduction at 350 oC. The catalysts with Cu/Ni=1 showed the best ethanol conversion, high CO conversion, good hydrogen, and low coking tendency. The catalysts by method B had better overall performance than A method catalysts.
    The preparation method B was applied for CuNi catalysts of Cu/Ni=1 using different supports. Cu1Ni1/ZnO catalyst showed high ethanol activity, the highest hydrogen yield, and low coking tendency minimum.

    摘要……………………………………………………………………….I Abstract……………………………………………………......................ii 致謝……………………………………………………………………...iii 目錄……………………………………………………………………...iv 圖目錄…………………………………………………………………..vii 表目錄………………………………………………………………….xiii 第一章 緒論............................................................................................. 1 1.1 前言......................................................................................... 1 1.2 文獻回顧 ................................................................................ 2 1.2.1 氫氣的產生 .................................................................... 2 1.2.2 乙醇製氫反應 ................................................................ 3 1.2.3 乙醇蒸汽重組反應文獻回顧 ........................................ 4 1.3 研究目的與方法 .................................................................. 10 第二章 實驗設備與方法 ...................................................................... 11 2.1 實驗架構圖 .......................................................................... 11 v 2.2 實驗藥品 .............................................................................. 12 2.3 觸媒製備 .............................................................................. 13 2.3.1 A方法之5%CuxNi1-x/SiO2觸媒製備 ......................... 13 2.3.2 B方法之5%CuxNi1-x/SiO2觸媒製備 ......................... 14 2.3.3 5%Cu1Ni1/different supports觸媒製備 ....................... 15 2.4 觸媒的特性鑑定 .................................................................. 16 2.4.1 程溫還原反應(Temperature Programmed Reduction) 16 2.4.2 X光粉末繞射儀(X-ray powder diffraction,XRD) ... 16 2.4.3 熱重分析儀(TGA) ....................................................... 17 2.4.4 紅外線分析儀(DRIFT) ................................................ 17 2.4.5 感應耦合電漿原子放射光譜儀(ICP-AES) ................ 18 2.5 SRE反應測試 ...................................................................... 18 第三章 結果與討論 .............................................................................. 20 3.1 PVP對銅鎳雙金屬觸媒的影響 .......................................... 20 3.1.1 PVP移除方法測試 ...................................................... 22 3.1.2 不同PVP移除方法對SRE活性的影響 ................... 25 vi 3.2 不同銅鎳比例觸媒的SRE活性比較 ................................. 38 3.2.1 不同銅鎳比例擔載在氧化矽之觸媒特性分析 .......... 38 3.2.2 不同銅鎳比例觸媒對SRE活性的影響 ..................... 43 3.3 製備方法對乙醇蒸氣重組活性影響 .................................. 55 3.3.1 B製備方法觸媒特徵分析 ........................................... 55 3.3.2 B製備方法觸媒對乙醇蒸汽重組活性的影響 .......... 59 3.3.3 三種製備方法之銅鎳1:1觸媒對SRE反應活性比較 71 3.4 載體效應對SRE活性的影響 ............................................. 82 3.4.1 銅鎳1:1合金顆粒擔載在不同載體之觸媒特徵分析 82 3.4.2 銅鎳1:1之合金顆粒擔載在不同載體對SRE活性的影響 86 第四章 結論........................................................................................... 95

    1. I. Dincer, Int. J. Hydrogen Energy 3(2002) 265-285.
    2. D. Das and T.N. Veziroǧlu, Int. J. Hydrogen Energy 1(2001) 13-28.
    3. P. Bichon, M. Asheim, S.A.J. T, M. Fathi, A. Holmen, and E.A.
    Blekkan, Int. J. Hydrogen Energy 12(2007) 1799-1805.
    4. T. Shishido, Y. Yamamoto, H. Morioka, K. Takaki, and K. Takehira,
    Appl. Catal. A:Gen. 2(2004) 249-253.
    5. Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii,
    and M. Kumagai, Appl. Catal. A:Gen. 1–2(2002) 137-145.
    6. M. Benito, J.L. Sanz, R. Isabel, R. Padilla, R. Arjona, and L. Daza, J.
    Power Sources 0(2005) 11-17.
    7. P. Biswas and D. Kunzru, Chem. Eng. J. 1(2008) 41-49.
    8. R. Guil-López, R.M. Navarro, M.A. Peña, and J.L.G. Fierro, Int. J.
    Hydrogen Energy 2(2011) 1512-1523.
    9. A. Haryanto, S. Fernando, N. Murali, and S. Adhikari, Energ. Fuel.
    5(2005) 2098-2106.
    10. C. Diagne, H. Idriss, K. Pearson, M.A. Gómez-García, and A.
    Kiennemann, Cr. Chim. 6–7(2004) 617-622.
    11. C. Diagne, H. Idriss, and A. Kiennemann, Catal. Commun. 12(2002)
    565-571.
    12. J. Llorca, N.s. Homs, J. Sales, and P.R.r. de la Piscina, J. Catal.
    2(2002) 306-317.
    13. J.Y.Z. Chiou, J.-Y. Siang, S.-Y. Yang, K.-F. Ho, C.-L. Lee, C.-T.
    Yeh, and C.-B. Wang, Int. J. Hydrogen Energy 0.
    14. J. Sun, X.-P. Qiu, F. Wu, and W.-T. Zhu, Int. J. Hydrogen Energy
    4(2005) 437-445.
    15. Y. Yang, J. Ma, and F. Wu, Int. J. Hydrogen Energy 7(2006)
    877-882.
    16. F. Frusteri, S. Freni, L. Spadaro, V. Chiodo, G. Bonura, S. Donato,
    and S. Cavallaro, Catal. Commun. 10(2004) 611-615.
    17. A.N. Fatsikostas and X.E. Verykios, J. Catal. 2(2004) 439-452.
    99
    18. F.J. Mariño, E.G. Cerrella, S. Duhalde, M. Jobbagy, and M.A.
    Laborde, Int. J. Hydrogen Energy 12(1998) 1095-1101.
    19. A.J. Vizcaíno, A. Carrero, and J.A. Calles, Int. J. Hydrogen Energy
    10–11(2007) 1450-1461.
    20. A.C. Furtado, C.G. Alonso, M.P. Cantão, and N.R.C.
    Fernandes-Machado, Int. J. Hydrogen Energy 17(2009) 7189-7196.
    21. F. Marino, G. Baronetti, M. Jobbagy, and M. Laborde, Appl. Catal.
    A:Gen. 1(2002) 41-54.
    22. J Nat Gas Chem 1(2009) 55-65.
    23. Q. Liu, Z. Liu, X. Zhou, C. Li, and J. Ding, J. Rare Earth ,9(2011)
    872-877.
    24. L.C. Chen and S.D. Lin, Appl. Catal. B:Enviro. 3–4(2011) 639-649.
    25. D. Wang, Q. Wang, and T. Wang, Cryst. Eng. Comm. 11(2010)
    3797-3805.
    26. X.-J. Dai, Y.-S. Luo, S.-Y. Fu, W.-Q. Chen, and Y. Lu, Solid State
    Sci. 4(2010) 637-642.
    27. R. Rioux, H. Song, M. Grass, S. Habas, K. Niesz, J. Hoefelmeyer, P.
    Yang, and G. Somorjai, Top. Catal. 3(2006) 167-174.
    28. 劉芥瑄, 逢甲大學(2006).
    29. H. Fajardo, E. Longo, D. Mezalira, G. Nuernberg, G. Almerindo, A.
    Collasiol, L. Probst, I. Garcia, and N. Carreño, Enviro. Chem. Lett.
    1(2010) 79-85.
    30. 陳立鈞, 國立台灣科技大學(2012).
    31. M.C. Sánchez-Sánchez, R.M. Navarro, and J.L.G. Fierro, Int. J.
    Hydrogen Energy 10–11(2007) 1462-1471.
    32. S. Freni, S. Cavallaro, N. Mondello, L. Spadaro, and F. Frusteri,
    Catal. Commun. 6(2003) 259-268.
    33. G. Kim, Ind. Eng. Chem. 2(1982) 267-274.
    34. J. Llorca, P.R.d.l. Piscina, J. Sales, and N. Homs, Chem. Commun.
    7(2001) 641-642.

    QR CODE