簡易檢索 / 詳目顯示

研究生: 賴醇純
Chun-chun Lai
論文名稱: 製備中之溶劑對Cu/ZnO/Al2O3觸媒甲醇蒸氣重組活性的影響
Effects of solvent in preparation on the activity of Cu/ZnO/Al2O3 catalyst in methanol steam-reforming
指導教授: 劉端祺
Tuan-Chi Liu
口試委員: 萬本儒
Ben-Zu Wan
蕭敬業
Ching-Yeh Shiau
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 86
中文關鍵詞: 燃料電池Cu/ZnO/Al2O3氫氣
外文關鍵詞: fuel cell, Cu/ZnO/Al2O3, hydrogen
相關次數: 點閱:319下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 燃料電池(fuel cell)為未來最具潛力的潔淨能源裝置,燃料電池以氫氣當燃料,所需之氫氣一般皆是以甲醇水蒸氣重組產生。本研究以共沉澱法製備甲醇水蒸氣重組之Cu/ZnO/Al2O3觸媒,使用四種不同溶劑(水、乙醇、丙醇、乙二醇)來製備所需的觸媒並探討溶劑對Cu/ZnO/Al2O3性質及重組活性的影響。
    本研究利用熱重/熱示差分析儀(TG/DTA)決定製備時煅燒所需溫度,由氫氣程式升溫還原(H2-TPR)決定製備時還原所需溫度。所合成的Cu/ZnO/Al2O3觸媒以N2O的氧化測其銅分散度;以X光繞射分析(XRD)判定觸媒之晶相及銅的粒徑;以場發射掃瞄式電子顯微鏡(FESEM)取得觸媒之形狀;以感應耦合電漿原子發射光譜(ICP)測定觸媒組成;並以BET測定觸媒表面積。
    觸媒的活性於常壓下進行測試;反應溫度介於180~280℃之間,其它實驗變數包括進料之H2O/CH3OH比(0.8~1.4),結果顯示,反應溫度以240℃最為適當,因此時CO選擇率僅為5%,為最低,提升進料之H2O/CH3OH比,不影響選擇率,但可提升甲醇之轉化率。由四種不同溶劑所製備的Cu/ZnO/Al2O3觸媒,依活性大小的順序並以溶劑表示為乙二醇>乙醇>丙醇>水。以乙二醇所製備的Cu/ZnO/Al2O3活性較高是因觸媒中的銅含量高達90%以上,以乙醇及丙醇所製備的Cu/ZnO/Al2O3則以銅的分散度高見長。


    Fuel cell is a device of great potential in providing clean energy in the future. Fuel cell uses hydrogen as its fuel. The hydrogen is often produced from methanol steam reforming. In this study, coprecipitation was used to prepare the Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Four different solvents, including water, ethanol, 1-propanol, and ethylene glycol were employed in preparing the catalysts. The effects of the solvent in the properties of the Cu/ZnO/Al2O3 catalyst were examined.
    The calcination temperature in preparing the catalyst was determined by TG/DTA, the reduction temperature was determined by H2-TPR. The synthesized Cu/ZnO/Al2O3 catalysts were characterized by XRD for their crystalline phases, by FESEM for their morphologies, by ICP for their composition, and by nitrogen adsorption for their BET surface areas.
    The activity of the Cu/ZnO/Al2O3 catalysts was examined under atmospheric pressure at a reaction temperature ranged between 180 and 280oC. The effect of the H2O/CH3OH ratio in the feed was also examined. The results showed that the optimum reaction temperature was 240oC at which the selectivity of CO was 5% , the lowest of among the temperatures studied. Varying the H2O/CH3OH ratio in the range of 0.8-1.4 would not affect CO selectivity. However, the conversion of methanol would increase with an increase in the ratio. The order of the activity of the Cu/ZnO/Al2O3 catalysts prepared by varied solvents, in terms of the solvent names, was ethylene glycol > ethyl alcohol > 1-propanol > water. The reason for the ethylene glycol catalyst exhibiting the highest activity was high content of copper in the catalyst. The catalyst contained more than 90% copper. The Cu/ZnO/Al2O3 catalysts prepared by ethyl alcohol and 1-propanol were characterized by their high dispersion of the components in the catalysts.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅲ 致謝 Ⅴ 目錄 Ⅵ 圖目錄 Ⅸ 表目錄 ⅩⅠ 第一章 緒論 1 第二章 文獻回顧 3 2.1 燃料電池 3 2.2 以甲醇製造氫氣 8 2.3 Cu/ZnO/Al2O3觸媒 10 2.3.1 Cu/ZnO/Al2O3的製備 16 第三章 實驗 22 3.1 實驗氣體、藥品與儀器設備 22 3.1.1 實驗氣體 22 3.1.2 實驗藥品 23 3.1.3 實驗儀器 25 3.2 觸媒的製備 26 3.3 觸媒的鑑定 28 3.3.1 熱重/熱示差分析儀(TG/DTA) 28 3.3.2 氫氣程式升溫還原(H2-TPR) 30 3.3.3 表面積與孔徑量測 33 3.3.4 場發射掃瞄式電子顯微鏡(FESEM) 35 3.3.5 X光繞射光譜分析(XRD) 36 3.3.6 感應耦合電漿原子發射光譜(ICP) 37 3.3.7 銅分散度的測量 38 3.4 甲醇產氫氣反應 40 3.4.1反應裝置與操作 40 3.4.2分析方法與儀器 42 3.4.3甲烷化 45 第四章 結果與討論 46 4.1 觸媒的製備 46 4.1.1 熱重/熱示差分析儀(TG/DTA) 46 4.1.2 氫氣程式升溫還原(H2-TPR) 50 4.1.3 X光繞射光譜分析(XRD) 52 4.2 觸媒的鑑定 55 4.2.1 觸媒的物理性質 55 4.2.2 場發射掃瞄電子顯微鏡(FESEM) 59 4.2.3 X光繞射光譜分析(XRD) 62 4.2.4 感應耦合電漿原子發射光譜(ICP) 65 4.2.5 銅分散度的測量 67 4.3 觸媒反應活性 73 4.3.1 觸媒活性的比較 73 4.3.2 進料中H2O/CH3OH莫耳比對甲醇蒸氣重組的影響 77 第五章 結論 81 參考文獻 82 圖目錄 圖3-1 熱重/熱示差分析儀 29 圖3-2 氫氣程式升溫還原(H2-TPR)裝置圖 31 圖3-3 表面積與孔徑測量儀 34 圖3-4 感應耦合電漿原子發射光譜(ICP) 37 圖3-5 甲醇產氫氣反應流程圖 41 圖3-6 甲醇產氫氣反應產物GC圖譜 45 圖4-1 CZA-W觸媒TGA分析圖譜 47 圖4-2 CZA-E觸媒TGA分析圖譜 47 圖4-3 CZA-P觸媒TGA分析圖譜 48 圖4-4 CZA-G觸媒TGA分析圖譜 48 圖4-5 不同觸媒之H2-TPR圖譜 51 圖4-6 不同觸媒乾燥後鍛燒前之XRD分析圖譜 53 圖4-7 不同觸媒鍛燒後之XRD分析圖譜 54 圖4-8 不同觸媒之BJH孔徑分佈圖 58 圖4-9 四種不同觸媒之FESEM圖(1μm,放大10,000倍率) 60 圖4-10 四種不同觸媒之FESEM圖(100nm,放大100,000倍率) 61 圖4-11 不同觸媒還原後之XRD分析圖譜 63 圖4-12 CZA-E與N2O在不同溫度下作用再進行TPR所得之H2消耗量 69 圖4-13 不同觸媒在90℃與N2O作用後再進行TPR所得之圖譜 70 圖4-14 不同觸媒之轉化率與反應溫度的關係 74 圖4-15 不同觸媒之CO選擇率與反應溫度的關係 75 圖4-16 不同觸媒之H2產率與反應溫度的關係 76 圖4-17 進料組成對甲醇轉化率的影響 78 圖4-18 進料比對CO選擇率的影響 79 圖4-19 進料比對H2產率的影響 80 表目錄 表2-1 六種燃料電池的特性及應用 5 表3-1 觸媒命名 27 表4-1 於不同溶劑中各金屬成份之沉澱比例 46 表4-2 不同觸媒在TGA之重量損失(%) 50 表4-3 不同觸媒之表面積、孔體積及平均孔徑 57 表4-4 由XRD測得之半高寬及粒徑 65 表4-5 由ICP測得的觸媒之組成 67 表4-6 銅的分散度 73 表4-7 不同觸媒之銅表面積及銅粒徑 73

    參考文獻
    Amphlett, J.C., R.F. Mann, B.A. Peppley, P.R. Roberge, A. Rodrigues and J.P Salvador,
    “Simulation of a 250 kW diesel fuel processor/PEM fuel cell system”, J. Power Sources 71,p179-184(1998).

    Alejo, L., R. Lago, M. A. Pena and J. L. G. Fierro, “Partial oxidation of methanol to produce hydrogen over Cu-Zn based catalyste”, Appl. Catal. A:General 162, p281-297(1997).

    Barroso, M. N., M. F. Gomez, J. A. Gamboa, L. A. Arrua, M. C. Abello, “Preparation and characterization of CuZnAl catalysts by citrate gel process”, Journal of physics and chemistry of solids 67, p1583-1589(2006).

    Brinker, C. J. and G. W. Scherer, “Sol-Gel science the physics and chemistry of sol-gel processing”, Academic press Inc.,(1990).

    Cao, W., G. Chen, S. Li and Q. Yuan,“methanol steam reforming over a ZnO-Cr2O3/CeO2-ZrO2/Al2O3 catalyst”, Chem. Engineering J.119 p93-98(2006).

    Cubeiro, M.L. and J.L.G. Fierro,“Partial oxidation of methanol over supported palladium catalysts” , Appl. Catal. A:General 168, p307-322(1998).

    Evans, J. W., M. S. Wainwright, A. J. Bridgewater and D. J. Young,“On thedetermination of copper surface area by reaction with nitrous oxide”, Appl. Catal. 7, p75-83(1983).

    Fierro, J.L.G., L. Alejo, R. Lago and M.A. Peña, “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts”, Appl. Catal. A:General 162, p281-297(1996).

    Fixman, E. M., M. C. Abello, O. F. Goriz and L. A. Arrua, “Preparation of Cu/SiO2 catalysts with and without tartaric acid as template via a sol–gel process Characterization and evaluation in the methanol partial”, Appl. Catal. A: General 319, p111-118(2007).

    Lindström, B., L. J. Pettersson and M. Govind, “Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on γ-alumina for methanol reforming for fuel cell vehicles”, Appl. Catal. A:General 234, p111-125(2002).

    Lyubovsky, M. and S. Roychoudhury, “Novel catalytic reactor for oxidative reforming of methanol”, Appl. Catal. B:Eevironmental 54, p203-215(2004).

    Saito, M. and K. Murtata, “Development of high performance Cu/ZnO-based catalysts for methanol synthesis and the water-gas shift reaction”, Catalysis Surveys from Asia 8, p285-294(2004).

    Suzuki, K., S. Velu and T. Osaki, “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides”, Catal. Lett. 62, p159-167(1999).

    Shishido, T., Y. Yamamoto, H. Morioka, K. Takaki, K. Takehira, “Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol”, Appl. Catal. A:General 263, p249-253(2004).

    Shen, J. P., S. Chunshan, “Influence of preparation method on performance of Cu /Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells”, Catal. Today 77, p89-98(2002).

    Shishido, T., Y. Yamamoto, H. Morioka, K. Takehira, “Production of hydrogen from over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitaton:Steam reforming and oxidative steam reforming”, Journal. of molecular catalysis A;Chemical 268, p185-194(2007).

    Turco, M., G. Bagasco, U. Costantino, F. Marmotini, T. Montanari, G. Ramis and G. Busca, “Production of hydrogen from oxidative steam reforming of methanol Ⅱ. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts”, J.of Catal. 228, p56-65(2004).

    Tohji, K., Y. Udagawa, and Y. Mizushima, “The structure of the Cu/ZnO catalyst by an in-situ EXAFS study”, J. Phys. Chem.89, p5671-5676(1985).

    Osinga, T. J., B. G. Linsen and W. P. Beek, “The determination of the specific copper surface area in catalysts”, J. Catal. 7, p277-303(1967).

    Wang, Z., Wang W., and Lu G., “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy 28, p151-158(2003).

    Wensheng, N., H. Shen and H. Liu, “Study of the effect of preparation method on CuO/ZnO/Al2O3 catalyst”, Appl. Catal. A: General 211, p153-157(2001).

    Yao, C. Z., L. C. Wang, Y. M. Liu, G. S. Wu, Y. Cao, W. L. Dai, H. Y. He, K. N. Fan, “Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts”, Appl. Catal. A:General 297, p151-158(2006).

    Zhang, X. R., L. C. Wang, C. Z. Yao, Y. Cao, W. L. Dai, H. Y. He and K. N. Fan,“A highly efficient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol”, Catal. Lett. 102, p183-190(2005).

    林昇佃、余子隆、張幼珍、翁芳柏、李碩仁、林育才、吳和生、魏榮宗、林修正、賴子珍、曾盛恕、詹世弘,燃料電池:新世紀能源,滄海,2006。

    許勇、吳善良、汪仁,Journal of Fuel Chemistry and Technology 20,
    p138,(1992)。

    孫康波、王保民“Sol-Gel法制備氧化鋁負載銅基超細粒子影響因素的研究”, 山西化工第26卷第2期 p18-20(2006)。

    石國軍、崔群、王小尚、姚虎卿“甲醇水蒸氣重整制氫的銅基催化劑研究”, 天然氣化工第30卷第5期 p5-9(2005)。

    呂佳偉 “利用草酸鹽凝膠共沉澱法製備Cu/Zn/Al2O3觸媒於二氧化碳加氫合成甲醇之研究” 台灣科技大學化學工程研究所碩士論文 (2006)。

    趙科量 “銅觸媒催化甲醇的部分氧化反應來製造氫氣” 清華大學化學工程研究所碩士論文 (2005)。

    QR CODE