簡易檢索 / 詳目顯示

研究生: 陳立鈞
Li-Chun Chen
論文名稱: 銅鎳雙金屬觸媒結構成份對乙醇蒸氣重組反應的影響
Effect of the structure and the composition of CuNi bimetallic catalysts on ethanol steam reforming reaction
指導教授: 林昇佃
Shawn D. Lin
口試委員: 黃炳照
none
劉端祺
none
江志強
none
萬本儒
none
汪成斌
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 165
中文關鍵詞: 乙醇蒸氣重組銅鎳合金相混合相反應路徑
外文關鍵詞: Ethanol, Steam reforming, Cu-Ni, alloy phase, mixed phase, booron, Reaction pathway
相關次數: 點閱:304下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫氣(H2)為一種理想的潔淨能源載體,用以支持永續能源的發展與供應的同時,應考慮採用可再生的原料和能源來製備H2。利用生質乙醇蒸氣重組製氫過程中,可以使氫氣能源供應所產生的二氧化碳為一封閉的碳循環。乙醇蒸氣重整製氫為一個涉及多個途徑的複雜反應,為了有效地提高氫氣生產和抑制積碳與一氧化碳與甲烷的生成,關鍵在於蒸汽供應並減少乙醇脫水和分解反應,其中觸媒扮演一重要的角色。本研究的目的是設計一個高活性乙醇蒸氣重組觸媒,並討論其活性與結構間的關聯性。
    本研究第一部分從熱力學角度探討乙醇蒸氣重組(ESR)操作條件對於氫氣濃度與能源消耗的影響,在選定的水醇比 (S/E=6) 條件進行乙醇蒸氣重組反應測試。在具有較佳斷C-C鍵能力之鎳金屬觸媒中添加第二金屬觸媒-銅,以幫助鎳金屬進行脫氫與水氣轉移反應之外,利用鈍性二氧化矽當做觸媒載體,以化學還原法於其表面負載銅鎳合金雙金屬觸媒,並經由改變銅鎳原子比例 (Cu/Ni) 釐清其間協同效應,經由產物分析建構出一ESR反應路徑:乙醇脫氫生成乙醛,乙醛斷碳碳鍵同時存在乙醛分解與乙醛重組反應互相競爭,接續一氧化碳經水氣轉移反應轉化成二氧化碳,相對於含量鎳比例較多觸媒銅比例較高觸媒具有較高乙醇、乙醛轉化率與乙醛重組路徑選擇率以及較低積碳程度。銅鎳比例為1的觸媒擁有最高的乙醇與乙醛轉化活性,最佳乙醛蒸氣重組路徑選擇率與抗燒結的觸媒穩定性。由XRD, XPS, and EXAFS分析結果銅比例較高觸媒具有銅鎳合金與表面具有較多的鎳原子包覆。
    經化學還原法製備的觸媒具有銅鎳合金相與部分鎳氧化物,本研究第二部分以400oC氧氣鍛燒改變觸媒結構變成銅鎳混和氧化物,再經不同溫度氫氣還原於等前處理條件,發現氧氣鍛燒後觸媒於350 oC氫氣還原後,經原位X光繞射與X光吸收光譜表徵結果,形成富含銅之合金伴鄰氧化鎳結構,此結構具有較佳乙醇與乙醛轉化率,並具有較低的甲烷選擇率。提高水醇比更顯著抑制甲烷的生成,推論富含銅合金伴鄰氧化鎳的結構具有穩定甲烷基的功用。
    經化學還源法製備的觸媒會有硼 (B) 殘留,第三部分測試硼添加於銅鎳觸媒中,對於改善觸媒穩定性與增進抗積碳能力的影響,採用硼酸後添加方式與化學還原法當硼氫化鈉為硼源,程溫還原結果顯示硼添加會降低觸媒還原程度,XPS實驗結果指出硼添加於鎳觸媒使部分電子由硼轉移到鎳金屬。乙醇蒸氣重組反應中,硼添加於銅鎳觸媒後轉化率與產物選擇率無太大影響,但鎳觸媒添加硼後活性降低,推測為過多硼覆蓋鎳表面活性點。然而硼添加確實有效提高鎳及銅鎳觸媒抗積碳能力。
    本研究第四部分利用平衡常數計算熱力學平衡狀態來評估乙醇蒸氣重組反應的可能路徑,其中變數包含溫度與水醇比。乙醇轉化為乙醛為熱力學可行的反應,但乙醛轉化可能受到平行(乙醛分解)與接續進行反應(水氣轉移與甲烷重組)的影響,熱力學分析結果支持先前實驗結果提出的反應路徑。


    Hydrogen (H2) has been identified as an ideal clean energy carrier to support sustainable energy development. For sustainable energy supply, renewable raw materials and renewable energy should be adopted for H2 production. The steam reforming of bio-ethanol, the ethanol obtained from bio-materials, can make a close cycle of CO2 for H2 energy supply. Ethanol steam reforming for H2 production was a complex reaction involving different reaction pathways. In order to maximize H2 yield and to inhibit coke formation and CO production, it is crucial to ensure sufficient supply of steam and to minimize ethanol dehydration and decomposition. The purpose of this study is to design a highly active catalyst for ethanol steam reforming via identification of the relationship between its activity and structure.
    We first evaluated the operating conditions of SRE (steam reforming of ethanol) reaction by thermodynamics, considering the requirements for hydrogen purity and energy consumption. Under the select operating conditions, 5% CuNi/SiO2 catalysts with different Cu/Ni ratios were prepared by incipient-wetness co-impregnation, followed by NaBH4 reduction at room temperature, and again by H2 at 623 K prior to temperature-programmed SRE. A reaction scheme is derived based on the observed products, involving ethanol dehydrogenation to acetaldehyde, wherein acetaldehyde steam reforming and acetaldehyde decomposition compete, and with subsequent CO conversion to CO2 via water gas shift reaction. The catalysts with Cu/Ni ≥ 1 showed higher ethanol conversion, higher acetaldehyde conversion, higher selectivity of acetaldehyde steam reforming, and lower coking at temperatures below 673 K than the Ni-rich catalysts. Analyses by XRD, XPS, and EXAFS indicate that the Cu-rich catalysts had formed an alloy structure with Ni-enriched surface. The catalyst with Cu/Ni = 1 showed the highest performance in ethanol conversion, acetaldehyde conversion, the selectivity of acetaldehyde steam reforming, and the stability against particle sintering.
    Bimetallic CuNi/SiO2 catalysts prepared by NaBH4 reduction have good performance for low temperature ethanol steam reforming. The prepared catalysts contain alloy nanoparticles and some Ni oxide phase. With calcination at 400oC, the catalyst morphology changes to mixed phases of CuO and NiO, and improves ESR performance after the calcined catalyst is reduced at 350oC (coded as calc-CuNi-R350). Characterization using in situ X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) suggests that reduced Cu-rich nanoparticles are in close proximity to NiO in the more active calc-CuNi-R350 catalyst. The cal-CuNi-R350 catalyst had higher turnover frequency for ethanol conversion and for acetaldehyde conversion and lower selectivity to CH4 formation than the uncalcined catalyst (asis-CuNi-R350 catalyst). Increasing the steam/ethanol (S/E) ratio from 6 to 9 significantly suppresses CH4 formation in this calc-CuNi-R350 catalyst. The results of this study suggest that the interface between NiO and Cu-rich nanoparticles may stabilize the methyl groups from the decomposition of acetaldehyde (AA) intermediate and decrease the probability of CH4 evolution.
    Boron residue was formed in the bimetallic CuNi/SiO2 catalyst prepared by NaBH4 reduction, we examine 10 wt.% CuNi/SiO2 catalysts incorporated with boron (B) either rusing boric acid impregnation or sodium borohydride. The catalysts were characterized with TPR, XRD, XPS and EXAFS, and used for catalytic ethanol steam reforming (ESR). The reduction temperature of Ni in TPR increased with boron addition. XPS results suggested a partial electrons transfer from B to Ni. The ESR activity of Ni catalyst increased and the coking tendency decreased after the boron addition, and the effect depend on the boron source.
    Chapter 5 uses thermodynamic calculations to examine the ESR pathways using equilibrium constants and the effect of reforming temperature and water-to-ethanol ratio have been studied. Ethanol can be completely converted to acetaldehyde (AA) which is thermodynamically feasible. Furthermore, acetaldehyde decomposition is thermodynamically favorable than ASR, but ASR can be enhanced further by an increase in S/E and by the subsequent WGS. Thermodynamic analysis indicates that the reaction pathways proposed from previous experimental results are feasible.

    摘要 II Abstract IV 誌謝 VII Table of Contents IX List of Figures XI List of Tables XIV List of Schemes XV Chapter 1 Introduction 1 1.1 Hydrogen as Renewable Energy 1 1.2 Technical aspect of Hydrogen Production 2 1.3 Ethanol Steam Reforming 7 1.4 Catalysts for ESR 9 1.4.1 Noble metal catalysts 10 1.4.2 Non-noble metal catalysts 13 1.4.3 Modified Ni catalysts 17 1.5 Motivation and Goal 20 Chapter 2 The ethanol steam reforming over Cu-Ni/SiO2 catalysts: Effect of Cu/Ni ratio 23 2.1 Introduction 23 2.2 Experimental 25 2.3 Results 29 2.3.1 Thermodynamic analysis of SRE 29 2.3.2 Catalyst Characterization 32 2.3.3 SRE analysis of CuNi/SiO2 43 2.4 Discussion 52 2.5 Summary 58 Chapter 3 Influence of the morphology of CuNi/SiO2 catalysts on ethanol steam reforming: the effects of pretreatment 60 3.1 Introduction 60 3.2 Experimental 62 3.2.1 Preparation of catalysts 63 3.2.2 Characterizations 63 3.2.3 Catalytic ESR test 64 3.3 Results 66 3.3.1 TPR analysis 66 3.3.2 In-situ XRD 68 3.3.3 XANES and EXAFS analysis 69 3.3.4 ESR on asis-CuNi and calc-CuNi catalysts 76 3.3.5 Effect of S/E ratio 82 3.4 Discussion 84 3.5 Summary 89 Chapter 4 Effect of boron residue on the stability of CuNi/SiO2 catalysts during ethanol steam reforming 91 4.1 Introduction 91 4.2. Experimental 92 4.2.1 Catalyst preparation 92 4.2.2 Characterization 93 4.2.3 Catalytic ESR test 94 4.3 Results and discussion 95 4.3.1 TPR analysis 95 4.3.2 XRD analysis 96 4.3.3 XANES and EXAFS analysis 99 4.3.4 XPS analysis 103 4.3.5 Catalytic activity 107 4.3.6 Coke deposition analysis over used catalyst 111 4.4 Summary 113 Chapter 5 SRE for Hydrogen Production: Thermodynamic Analysis 114 5.1 Introduction and literature review 114 5.2 Sorption-enhanced SRE (SE-SRE) 120 5.3 Methodology 124 5.4 Results and Discussion 126 5.4.1 Thermodynamic analysis on the proposed scheme of ESR 126 5.5 Summary 136 Chapter 6 Conclusions 137 Reference 139 Curriculum Vitae 146 List of publications 147

    1. V.A. Goltsov, T.N. Veziroglu, and L.F. Goltsova, Int. J. Hydrogen Energy 2(2006) 153-159.
    2. M. Ni, D.Y.C. Leung, M.K.H. Leung, and K. Sumathy, Fuel Process. Technol. 5(2006) 461-472.
    3. M. Ni, M.K.H. Leung, D.Y.C. Leung, and K. Sumathy, Renew. Sust. Energ. Rev. 3(2007) 401-425.
    4. M. Ni, M.K.H. Leung, K. Sumathy, and D.Y.C. Leung, Int. J. Hydrogen Energy 10(2006) 1401-1412.
    5. M.A. Pen˜a, J.P. Gómez, and J.L.G. Fierro, Appl. Catal. A: Gen 1–2(1996) 7-57.
    6. A. Alvarez, S. Ivanova, M.A. Centeno, and J.A. Odriozola, Appl. Catal. A: Gen 0(2012) 9-17.
    7. A.K. Avci, D.L. Trimm, and Z. İlsen Önsan, Chem. Eng. Sci. 2(2001) 641-649.
    8. F. de Bruijn, Green Chemistry 3(2005) 132-150.
    9. M. Asadullah, S.I. Ito, K. Kunimori, M. Yamada, and K. Tomishige, Enviro. Sci. Technol. 20(2002) 4476-4481.
    10. T. Hanaoka, S. Fujimoto, T. Yoshida, K. Kamei, M. Harada, Y. Suzuki, S. Yokoyama, and T. Minowa, Hydrogen production from woody biomass by novel gasification using CO2 Sorbent, in Studies in Surface Science and Catalysis, J.-S.C. Sang-Eon Park and L. Kyu-Wan, Editors. 2004, Elsevier. p. 103-108.
    11. H. Idriss, Platinum Met. Rev. 3(2004) 105-115.
    12. A. Steinfeld, Solar Energy 5(2005) 603-615.
    13. J. E. Funk, Int. J. Hydrogen Energy 3(2001) 185-190.
    14. J. Turner, G. Sverdrup, M.K. Mann, P.-C. Maness, B. Kroposki, M. Ghirardi, R.J. Evans, and D. Blake, Int. J. Energ. Res. 5(2008) 379-407.
    15. J.N. Armor, Appl. Catal. A: Gen 2(1999) 159-176.
    16. Z. Chen, Y. Yan, and S.S.E.H. Elnashaie, Chem. Eng. Sci. 10(2004) 1965-1978.
    17. M. Galbe and G. Zacchi, Appl. Microbiol. and Biotechnol. 6(2002) 618-628.
    18. B.S. Dien, M.A. Cotta, and T.W. Jeffries, Appl. Microbiol. Biotechnol. 3(2003) 258-266.
    19. Y. Sun and J. Cheng, Bioresour. Technol. 1(2002) 1-11.
    20. M.A. Goula, S.K. Kontou, and P.E. Tsiakaras, Appl. Catal. B: Enviro 2(2004) 135-144.
    21. F. Aupretre, C. Descorme, D. Duprez, D. Casanave, and D. Uzio, J. Catal. 2(2005) 464-477.
    22. A. Haryanto, S. Fernando, N. Murali, and S. Adhikari, Energ. Fuel. 5(2005) 2098-2106.
    23. X. Wu and S. Kawi, Energ. Enviro. Sci. 3(2010) 334-342.
    24. A. Le Valant, N. Bion, F. Can, D. Duprez, and F. Epron, Appl. Catal. B: Enviro 1–2(2010) 72-81.
    25. Y. Choi and P. Liu, Catal. Today 1(2011) 64-70.
    26. S. Li, M. Li, C. Zhang, S. Wang, X. Ma, and J. Gong, Int. J. Hydrogen Energy 3(2012) 2940-2949.
    27. D.K. Liguras, D.I. Kondarides, and X.E. Verykios, Appl. Catal. B: Enviro 4(2003) 345-354.
    28. S. Cavallaro, Energ. Fuel. 6(2000) 1195-1199.
    29. A.J. Byrd, K.K. Pant, and R.B. Gupta, Energ. Fuel. 6(2007) 3541-3547.
    30. J. Rass-Hansen, R. Johansson, M. Møller, and C.H. Christensen, Int. J. Hydrogen Energy 17(2008) 4547-4554.
    31. P.D. Vaidya and A.E. Rodrigues, Ind. Eng. Chem. Res. 19(2006) 6614-6618.
    32. A.C. Basagiannis and X.E. Verykios, Catal. Today 1–4(2007) 256-264.
    33. A.C. Basagiannis and X.E. Verykios, Appl. Catal. B: Enviro 1–2(2008) 77-88.
    34. I.A.C. Ramos, T. Montini, B. Lorenzut, H. Troiani, F.C. Gennari, M. Graziani, and P. Fornasiero, Catal. Today 1(2012) 96-104.
    35. J.P. Breen, R. Burch, and H.M. Coleman, Appl. Catal. B: Enviro. 1(2002) 65-74.
    36. G. Jacobs, R.A. Keogh, and B.H. Davis, J. Catal. 2(2007) 326-337.
    37. P. Ciambelli, V. Palma, and A. Ruggiero, Appl. Catal. B: Enviro. 1–2(2010) 18-27.
    38. A. Casanovas, J. Llorca, N. Homs, J.L.G. Fierro, and P. Ramírez de la Piscina, J. Mol. Catal. A: Chem. 1–2(2006) 44-49.
    39. B. Zhang, X. Tang, Y. Li, Y. Xu, and W. Shen, Int. J. Hydrogen Energy 13(2007) 2367-2373.
    40. J. Llorca, N. Homs, and P. Ramirez de la Piscina, J. Catal. 2(2004) 556-560.
    41. F. Haga, T. Nakajima, H. Miya, and S. Mishima, Catal. Lett. 3(1997) 223-227.
    42. S. Cavallaro, N. Mondello, and S. Freni, J. Power Sources 1–2(2001) 198-204.
    43. R.R. Davda, J.W. Shabaker, G.W. Huber, R.D. Cortright, and J.A. Dumesic, Appl. Catal. B: Enviro 1–2(2005) 171-186.
    44. M.S. Batista, R.K.S. Santos, E.M. Assaf, J.M. Assaf, and E.A. Ticianelli, J. Power Sources 1(2003) 99-103.
    45. A.N. Fatsikostas, D.I. Kondarides, and X.E. Verykios, Catal. Today 1–4(2002) 145-155.
    46. A.N. Fatsikostas, D.I. Kondarides, and X.E. Verykios, Chem. Commun. 9(2001) 851-852.
    47. J. Ahmed, K.V. Ramanujachary, S.E. Lofland, A. Furiato, G. Gupta, S.M. Shivaprasad, and A.K. Ganguli, Colloid. Surface. A 3(2008) 206-212.
    48. Y. Yang, J. Ma, and F. Wu, Int. J. Hydrogen Energy 7(2006) 877-882.
    49. N. Laosiripojana and S. Assabumrungrat, Appl. Catal. B: Enviro 1–2(2006) 29-39.
    50. F. Frusteri, S. Freni, V. Chiodo, S. Donato, G. Bonura, and S. Cavallaro, Int. J. Hydrogen Energy 15(2006) 2193-2199.
    51. S. Freni, S. Cavallaro, N. Mondello, L. Spadaro, and F. Frusteri, J. Power Sources 1–2(2002) 53-57.
    52. F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, O. Di Blasi, G. Bonura, and S. Cavallaro, Appl. Catal. A: Gen 1–2(2004) 1-7.
    53. M.C. Sanchez-Sanchez, R.M. Navarro Yerga, D.I. Kondarides, X.E. Verykios, and J.L.G. Fierro,J. Phys. Chem. A 11(2009) 3873-3882.
    54. A.J. Vizcaíno, P. Arena, G. Baronetti, A. Carrero, J.A. Calles, M.A. Laborde, and N. Amadeo, Int. J. Hydrogen Energy 13(2008) 3489-3492.
    55. V. Fierro, O. Akdim, and C. Mirodatos, Green Chem. 1(2003) 20-24.
    56. V. Fierro, V. Klouz, O. Akdim, and C. Mirodatos, Catal. Today 1-4(2002) 141.
    57. V. Klouz, V. Fierro, P. Denton, H. Katz, J.P. Lisse, S. Bouvot-Mauduit, and C. Mirodatos, J. Power Sources 1(2002) 26-34.
    58. F.J. Mariño, E.G. Cerrella, S. Duhalde, M. Jobbagy, and M.A. Laborde, Int. J. Hydrogen Energy 12(1998) 1095-1101.
    59. F. Mariño, G. Baronetti, M.a. Jobbagy, and M. Laborde, Appl. Catal. A: Gen 1(2003) 41-54.
    60. F. Mariño, M. Boveri, G. Baronetti, and M. Laborde, Int. J. Hydrogen Energy 7(2001) 665-668.
    61. F. Marino, M. Boveri, G. Baronetti, and M. Laborde, Int. J. Hydrogen Energy (2004) 67.
    62. S. Velu, N. Satoh, C.S. Gopinath, and K. Suzuki, Catal. Lett. 1(2002) 145-152.
    63. P.D. Vaidya and A.E. Rodrigues, Chem. Eng. J. 1(2006) 39-49.
    64. A.N. Fatsikostas and X.E. Verykios, J. Catal. 2(2004) 439-452.
    65. M. Benito, J.L. Sanz, R. Isabel, R. Padilla, R. Arjona, and L. Daza, J. Power Sources 0(2005) 11-17.
    66. P. Ciambelli, V. Palma, and A. Ruggiero, Appl. Catal. B: Enviro 1–2(2010) 190-197.
    67. T. Yamazaki, N. Kikuchi, M. Katoh, T. Hirose, H. Saito, T. Yoshikawa, and M. Wada, Appl. Catal. B: Enviro 1–2(2010) 81-88.
    68. F. Frusteri, S. Freni, L. Spadaro, V. Chiodo, G. Bonura, S. Donato, and S. Cavallaro, Catal. Commun. 10(2004) 611-615.
    69. A. Erdőhelyi, J. Raskó, T. Kecskés, M. Tóth, M. Dömök, and K. Baán, Catal. Today 3(2006) 367-376.
    70. M.S. Batista, R.K.S. Santos, E.M. Assaf, J.M. Assaf, and E.A. Ticianelli, J. Power Sources 1(2004) 27-32.
    71. A. Denis, W. Grzegorczyk, W. Gac, and A. Machocki, Catal. Today 2–4(2008) 453-459.
    72. A. Carrero, J.A. Calles, and A.J. Vizcaíno, Appl. Catal. A: Gen 1(2007) 82-94.
    73. A.J. Vizcaíno, A. Carrero, and J.A. Calles, Int. J. Hydrogen Energy 10–11(2007) 1450-1461.
    74. A.C. Furtado, C.G. Alonso, M.P. Cantão, and N.R.C. Fernandes-Machado, Int. J. Hydrogen Energy 17(2009) 7189-7196.
    75. L. Zhang, J. Liu, W. Li, C. Guo, and J. Zhang, J. Nat. Gas Chem. 1(2009) 55-65.
    76. P. Biswas and D. Kunzru, Catal. Lett. 1-2(2007) 36-49.
    77. F. Wang, Y. Li, W. Cai, E. Zhan, X. Mu, and W. Shen, Catal. Today 1–2(2009) 31-36.
    78. O. Clause, L. Bonneviot, M. Che, and H. Dexpert, J. Catal. 1(1991) 21-28.
    79. O. Clause, B. Rebours, E. Merlen, F. Trifiró, and A. Vaccari, J. Catal. 1(1992) 231-246.
    80. M. Richard-Plouet, M. Guillot, A. Traverse, D. Chateigner, and S. Vilminot, Nucl. Instrum. Meth. B 0(2003) 148-154.
    81. A.I. Frenkel, C.W. Hills, and R.G. Nuzzo,J. Phys. Chem. B 51(2001) 12689-12703.
    82. S.D. Robertson, B.D. McNicol, J.H. De Baas, S.C. Kloet, and J.W. Jenkins, J. Catal. 3(1975) 424-431.
    83. M.-T. Tsay and F.-W. Chang, Appl. Catal. A: Gen 1(2000) 15-22.
    84. J. Ashok, P.S. Reddy, G. Raju, M. Subrahmanyam, and A. Venugopal, Energy. Fuel. 1(2008) 5-13.
    85. Y. Matsumura, K. Tanaka, N. Tode, T. Yazawa, and M. Haruta, J. Mol. Catal. A: Chem. 1–2(2000) 157-165.
    86. H.L. Niu, Q.W. Chen, Y.S. Lin, Y.S. Jia, H.F. Zhu, and M. Ning, Nanotechnology 8(2004) 1054-1058.
    87. G.R. Rao, B.G. Mishra, and H.R. Sahu, Mater. Lett. 27–28(2004) 3523-3527.
    88. Y. Wang and T. Gao, React. Kinet. Catal. Lett. 1(2000) 91-96.
    89. S. Cavallaro, V. Chiodo, S. Freni, N. Mondello, and F. Frusteri, Appl. Catal. A: Gen 1(2003) 119-128.
    90. J. Llorca, P.R.d.l. Piscina, J. Sales, and N. Homs, Chem. Commun. 7(2001) 641-642.
    91. Y. Li, Q. Fu, and M. Flytzani-Stephanopoulos, Appl. Catal. B:Enviro 3(2000) 179-191.
    92. J.A. Calles, A. Carrero, and A.J. Vizcaíno, Micropor. Mesopor. Mater. 1–3(2009) 200-207.
    93. A. Carrero, J.A. Calles, and A.J. Vizcaíno, Chem. Eng. J. 3(2010) 395-402.
    94. C.H. Bartholomew, Catal. Rev. 1(1982) 67-112.
    95. C.H. Bartholomew, Appl. Catal. A: Gen 1–2(2001) 17-60.
    96. T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, W.-J. Shen, and S. Imamura, Appl. Catal. A: Gen 1–2(2005) 273-277.
    97. Y. Zhang, W. Huang, S.E. Habas, J.N. Kuhn, M.E. Grass, Y. Yamada, P. Yang, and G.A. Somorjai, J. Phys. Chem. C 32(2008) 12092-12095.
    98. H.-W. Chen, C.-Y. Wang, C.-H. Yu, L.-T. Tseng, and P.-H. Liao, Catal. Today 2–3(2004) 173-180.
    99. M.d.l.A. Cangiano, M.W. Ojeda, A.C. Carreras, J.A. González, and M.d.C. Ruiz, Mater. Charact. 11(2010) 1135-1146.
    100. A. Kaiser, C. Görsmann, and U. Schubert, J. Sol-Gel Sci. Technol. 1(1997) 795-799.
    101. V. Mas, R. Kipreos, N. Amadeo, and M. Laborde, Int. J. Hydrogen Energy 1(2006) 21-28.
    102. Q. Zhang, J. Li, X. Liu, and Q. Zhu, Appl. Catal. A: Gen. 2(2000) 221-228.
    103. Y. Jin, A.K. Datye, E. Rightor, R. Gulotty, W. Waterman, M. Smith, M. Holbrook, J. Maj, and J. Blacksony, J. Catal. 2(2001) 292-306.
    104. W. Huang, J.R. McCormick, R.F. Lobo, and J.G. Chen, J. Catal. 1(2007) 40-51.
    105. D. Mei, M. Neurock, and C.M. Smith, J. Catal. 2(2009) 181-195.
    106. B.J. Hwang, C.H. Chen, L.S. Sarma, J.M. Chen, G.R. Wang, M.T. Tang, D.G. Liu, and J.F. Lee, J. Phys. Chem. B 13(2006) 6475-6482.
    107. S.H. Liu, W.Y. Yu, C.H. Chen, A.Y. Lo, B.J. Hwang, S.H. Chien, and S.B. Liu, Chem. Mater. 4(2008) 1622-1628.
    108. M.L. Lin, M.Y. Lo, and C.Y. Mou, J. Phys. Chem. C 36(2009) 16158-16168.
    109. D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, and G.J. Hutchings, Sci. 5759(2006) 362-365.
    110. T.C. Hsiao and S.D. Lin, J. Mol. Catal. A: Chem. 1-2(2007) 137-144.
    111. S. Cavallaro, Energ. Fuel. 6(2000) 1195-1199.
    112. S. Freni, J. Power Sources 1(2001) 14-19.
    113. M.S. Batista, R.K.S. Santos, E.M. Assaf, J.M. Assaf, and E.A. Ticianelli, J. Power Sources 1(2003) 99-103.
    114. V. Klouz, V. Fierro, P. Denton, H. Katz, J.P. Lisse, S. Bouvot-Mauduit, and C. Mirodatos, J. Power Sources 1(2002) 26-34.
    115. V. Fierro, O. Akdim, and C. Mirodatos, Green Chem. 1(2003) 20-24.
    116. A.N. Fatsikostas and X.E. Verykios, J. Catal. 2(2004) 439-452.
    117. T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, W.J. Shen, and S. Imamura, Appl. Catal. A: Gen. 1-2(2005) 273-277.
    118. A. Erdohelyi, J. Raskó, T. Kecskés, M. Tóth, M. Dömök, and K. Baán, Catal. Today 3(2006) 367-376.
    119. A.J. Vizcaíno, A. Carrero, and J.A. Calles, Int. J. Hydrogen Energy 10-11(2007) 1450-1461.
    120. M. Benito, R. Padilla, A. Serrano-Lotina, L. Rodríguez, J.J. Brey, and L. Daza, J. Power Sources 1(2009) 158-164.
    121. L.C. Chen and S.D. Lin, Appl. Catal. B: Enviro. 3-4(2011) 639-649.
    122. O. Clause, L. Bonneviot, M. Che, and H. Dexpert, J. Catal. 1(1991) 21-28.
    123. O. Clause, B. Rebours, E. Merlen, F. Trifiró, and A. Vaccari, J. Catal. 1(1992) 231-246.
    124. M. Richard-Plouet, M. Guillot, A. Traverse, D. Chateigner, and S. Vilminot, Nucl. Instrum. Meth. B (2003) 148-154.
    125. F. Mariño, G. Baronetti, M. Jobbagy, and M. Laborde, Appl. Catal. A: Gen. 1(2003) 41-54.
    126. J. Kugai, S. Velu, and C. Song, Catal. Lett. 3-4(2005) 255-264.
    127. A. Denis, W. Grzegorczyk, W. Gac, and A. Machocki, Catal. Today 2-4(2008) 453-459.
    128. A.J. Vizcaíno, P. Arena, G. Baronetti, A. Carrero, J.A. Calles, M.A. Laborde, and N. Amadeo, Int. J. Hydrogen Energy 13(2008) 3489-3492.
    129. M. Bowker and R.J. Madix, Surf. Sci. 3(1982) 549-572.
    130. J.H. Wang, C.S. Lee, and M.C. Lin, J. Phys. Chem. C 16(2009) 6681-6688.
    131. N. Homs, J. Llorca, and P.R. de la Piscina, Catal. Today 3(2006) 361-366.
    132. J. Comas, F. Marino, M. Laborde, and N. Amadeo, Chem. Eng. J. 1-2(2004) 61-68.
    133. S. Cavallaro, Energ. Fuel. (2000) 1195.
    134. A.F. Lee, D.E. Gawthrope, N.J. Hart, and K. Wilson, Surf. Sci. 1-3(2004) 200-208.
    135. J.R. Roy, M.A. Laliberté, S. Lavoie, M. Castonguay, and P.H. McBreen, Surf. Sci. 1-3(2005) 43-56.
    136. K.H. Lim, Z.X. Chen, K.M. Neyman, and N. Rösch, J. Phys. Chem. B 30(2006) 14890-14897.
    137. M.C. Sanchez-Sanchez, R.M.N. Yerga, D.I. Kondarides, X.E. Verykios, and J.L.G. Fierro, J. Phys. Chem. A 11(2010) 3873-3882.
    138. M. Bowker, R. Holroyd, N. Perkins, J. Bhantoo, J. Counsell, A. Carley, and C. Morgan, Surf. Sci. 17(2007) 3651-3660.
    139. H. Guo and F. Zaera, J. Phys. Chem. B 41(2004) 16220-16225.
    140. H. Guo and F. Zaera, J. Phys. Chem. B 41(2004) 16226-16232.
    141. K.A. Dickens and P.C. Stair, Langmuir 6(1998) 1444-1450.
    142. J. Llorca, N. Homs, and P. Ramirez de la Piscina, J. Catal. 2(2004) 556-560.
    143. J.M. Guil, N. Homs, J. Llorca, and P.R. De La Piscina, J. Phys. Chem. B 21(2005) 10813-10819.
    144. J.R. Rostrup-Nielsen, Catal. Today 4(1993) 305-324.
    145. D.L. Trimm, Catal. Today 3(1997) 233-238.
    146. D.L. Trimm, Catal. Today 1–3(1999) 3-10.
    147. F. Auprêtre, C. Descorme, and D. Duprez, Catal. Commun. 6(2002) 263-267.
    148. S. Freni, S. Cavallaro, N. Mondello, L. Spadaro, and F. Frusteri, Catal. Commun. 6(2003) 259-268.
    149. M.C.J. Bradford and M.A. Vannice, Appl. Catal. A: Gen 1(1996) 73-96.
    150. J.R.H. Ross, Catal. Today 1–2(2005) 151-158.
    151. S. Wang and G.Q.M. Lu, Appl. Catal. B: Enviro 3(1998) 269-277.
    152. J. Xu and M. Saeys, J. Catal. 1(2006) 217-226.
    153. H.S. Bengaard, J.K. Nørskov, J. Sehested, B.S. Clausen, L.P. Nielsen, A.M. Molenbroek, and J.R. Rostrup-Nielsen, J. Catal. 2(2002) 365-384.
    154. E. Nikolla, A. Holewinski, J. Schwank, and S. Linic, J. Am. Chem. Soc. 35(2006) 11354-11355.
    155. E. Nikolla, J. Schwank, and S. Linic, J. Catal. 1(2007) 85-93.
    156. F. Besenbacher, I. Chorkendorff, B.S. Clausen, B. Hammer, A.M. Molenbroek, J.K. Nørskov, and I. Stensgaard, Sci. 5358(1998) 1913-1915.
    157. P.M. Holmblad, J. Chem. Phys. 18(1996) 7289-7295.
    158. J. Juan-Juan, M.C. Román-Martínez, and M.J. Illán-Gómez, Appl. Catal. A: Gen 1(2006) 9-15.
    159. T. Osaki and T. Mori, J. Catal. 1(2001) 89-97.
    160. J. Xu and M. Saeys, Chem. Eng. Sci. 18–20(2007) 5039-5041.
    161. J. Xu and M. Saeys, J. Phys Chem. C 10(2009) 4099-4106.
    162. J. Xu, L. Chen, K.F. Tan, A. Borgna, and M. Saeys, J. Catal. 2(2009) 158-165.
    163. A.I. Frenkel, C.W. Hills, and R.G. Nuzzo, J. Phys. Chem. B 51(2001) 12689-12703.
    164. J. Fang, X. Chen, B. Liu, S. Yan, M. Qiao, H. Li, H. He, and K. Fan, J. Catal. 1(2005) 97-104.
    165. J.A. Turner, Sci. 5686(2004) 972-974.
    166. C. Song, Catal. Today 1–2(2002) 1
    7-49.
    167. M. Hoel and S. Kverndokk, Resour. Energ. Econ. 2(1996) 115-136.
    168. A. Haryanto, S. Fernando, N. Murali, and S. Adhikari, Energ. Fuel. 5(2005) 2098-2106.
    169. H. Vogel, Chem. Ing. Tech. 8(2009) 1041-1041.
    170. E.Y. García and M.A. Laborde, Int. J. Hydrogen Energy 5(1991) 307-312.
    171. K. Vasudeva, N. Mitra, P. Umasankar, and S.C. Dhingra, Int. J. Hydrogen Energy 1(1996) 13-18.
    172. W. Wang and Y.Q. Wang, Int. J. Energ. Res. 15(2008) 1432-1443.
    173. A. Lima da Silva, C.d.F. Malfatti, and I.L. Müller, Int. J. Hydrogen Energy 10(2009) 4321-4330.
    174. F. Díaz Alvarado and F. Gracia, Chem. Eng. J. 2(2010) 649-657.
    175. G. Rabenstein and V. Hacker, J. Power Sources 2(2008) 1293-1304.
    176. S. Liu, K. Zhang, L. Fang, and Y. Li, Energ. Fuel 2(2008) 1365-1370.
    177. J. Li, H. Yu, G. Yang, F. Peng, D. Xie, H. Wang, and J. Yang, Energ. Fuel. 6(2011) 2643-2650.
    178. S. Freni, G. Maggio, and S. Cavallaro, J. Power Sources 1(1996) 67-73.
    179. T. Ioannides, J. Power Sources 1–2(2001) 17-25.
    180. L. Hernández and V. Kafarov, J. Power Sources 1(2009) 195-199.
    181. I. Fishtik, A. Alexander, R. Datta, and D. Geana, Int. J. Hydrogen Energy 1(2000) 31-45.
    182. C. Graschinsky, P. Giunta, N. Amadeo, and M. Laborde, Int. J. Hydrogen Energy 13(2012) 10118-10124.
    183. J. Comas, M. Laborde, and N. Amadeo, J. Power Sources 1–2(2004) 61-67.
    184. A. Lima da Silva and I.L. Müller, Int. J. Hydrogen Energy 3(2011) 2057-2075.
    185. M. Li, Int. J. Hydrogen Energy 23(2009) 9362-9372.
    186. L. Barelli, G. Bidini, F. Gallorini, and S. Servili, Energy 4(2008) 554-570.
    187. D.P. Harrison, Ind Eng. Chem. Res. 17(2008) 6486-6501.
    188. Y.I. Yoon, I.H. Baek, and S.D. Park, J. Ind. Eng. Chem. 5(2007) 842-849.
    189. K. Johnsen, H.J. Ryu, J.R. Grace, and C.J. Lim, Chem. Eng. Sci. 4(2006) 1195-1202.
    190. K.B. Lee, M.G. Beaver, H.S. Caram, and S. Sircar, Ind. Eng. Chem. Res. 14(2007) 5003-5014.
    191. A.I. Lysikov, S.N. Trukhan, and A.G. Okunev, Int. J. Hydrogen Energy 12(2008) 3061-3066.
    192. K. Essaki, T. Muramatsu, and M. Kato, Int. J. Hydrogen Energy 22(2008) 6612-6618.
    193. Q. Wang, J. Luo, Z. Zhong, and A. Borgna, Energ. Enviro. Sci. 1(2011) 42-55.
    194. E.L.G. Oliveira, C.A. Grande, and A.E. Rodrigues, Sep. Purif. Technol. 1(2008) 137-147.

    QR CODE