簡易檢索 / 詳目顯示

研究生: 施威豪
Wei-Hao Shih
論文名稱: 以噴霧乾燥法製備含硼之生物活性玻璃
Preparation and characterization of spray dried boron-doped bioactive glasses
指導教授: 周育任
Yu-Jen Chou
口試委員: 施劭儒
Shao-Ju Shih
曾修暘
Siou-Yang Zeng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 66
中文關鍵詞: 噴霧乾燥法生物活性玻璃血管生成牛主動脈
外文關鍵詞: Spray drying, Bioactive glass, Angiogenesis, BAOEC
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物活性玻璃因其優異的生物活性及可降解性,已被廣泛地使用於各種臨床應用,如骨替代材料、牙科填料、藥物載體和軟組織填充劑等。而含有SiO2-CaO-P2O5組成的含硼生物活性玻璃,能使材料與骨組織形成良好的鍵結,並刺激骨細胞分化與增殖,進而促進新生骨的形成。此外,藉不同摻雜以增加其性質,例如:摻雜銀可以提供抗菌的能力,摻雜鋅可以有抗發炎的效果,摻雜硼可以促進血管的形成等。相較於熔膠凝膠法有較短的製備時間、步驟簡單、且產量較大。因此本實驗擬利用噴霧乾燥法製備含硼生物活性玻璃,。藉由摻雜1mol%, 3 mol%, 5 mol%之含硼生物活性玻璃,並以熱重分析儀判斷其鍛燒溫度,以傅立葉轉換紅外線光譜儀、X光繞射儀、掃描式電子顯微鏡、光學顯微鏡、細胞存活率來分析其化學鍵結、結晶結構、表面形貌等性質、牛主動脈細胞增生狀況及細胞存活率。最後,結果顯示以噴霧乾燥法所製備之含硼生物活性玻璃可維持同樣具有生物活性,並且具有幫助牛主動脈細胞增生的作用,往後以傷口癒合及斷肢接合做為後續的發展。


    The biological activity and degradability of bioluminescent glass has been widely used in various clinical applications, such as bone substitute materials, dental filler, drug carriers and soft tissue fillers. Among bioluminescent glasses, bioluminescent glass that contains SiO2-CaO-P2O5 can form good bonding between the materials and bones, stimulate bone cells to proliferate and differentiate, and promote bone regeneration. In addition, doping other material in the glass can introduce more functionality, for example, silver doping with antibacterial ability, zinc doping with anti-inflammatory ability, boron doping with angiogenesis. In this experiment, the boron doped bioglass was prepared by the spray drying method, which has the advantage of facile preparation, shorter producing time, and higher output when compared with the tradition sol-gel method. The calcining temperatures of the boron-containing bioglasses were first analyzed by thermogravimetric analyzer. The chemical compositions of them were determined by Fourier transform infrared spectrometer. X-ray diffractometer was implemented to study their crystallography. The surface morphologies were confirmed by scanning electron microscope and optical microscope. The bioactivity of boron-containing bioglasses was studied by cell survival and proliferation of bovine aortic cells. Finally, the results suggested that the boron-containing bioactive glass prepared by the spray drying method can promote cell survival and proliferation. The bioglass has the potential in would healing and replantation of amputated and limb amputated, and bone regeneration in the future.

    目錄 第一章 緒論 11 1.1 研究背景 11 1.2 研究動機 13 第二章 文獻回顧 14 2.1 骨骼(Bone) 14 2.2 生醫陶瓷 21 2.3 生物活性玻璃 24 2.4 生物活性玻璃合成 27 2.5 摻雜硼對血管新生的影響 33 第三章 實驗方法 34 3.1 實驗設計 34 3.2 實驗藥品 35 3.3 實驗儀器 36 3.4 樣品製備 37 3.5 樣品性質及分析方法 38 第四章 實驗結果 47 4.1 生醫玻璃性質分析 47 4.2 生醫玻璃之體外生物活性測試 54 第五章 結果討論 62 5.1 摻雜不同濃度硼於生物活性玻璃對體外生物活性之影響 62 5.2 摻雜不同濃度硼於生物活性玻璃對體細胞增生的影響 62 第六章 結論 63

    參考文獻
    [1] M. Gholipourmalekabadi, N. Nezafati, L. Hajibaki, M. Mozafari, F. Moztarzadeh, S. Hesaraki, A. Samadikuchaksaraei, Detection and qualification of optimum antibacterial and cytotoxic activities of silver-doped bioactive glasses, IET nanobiotechnology, 9 (2015) 209-214.
    [2] Y.F. Goh, A.Z. Alshemary, M. Akram, M.R. Abdul Kadir, R. Hussain, Bioactive glass: an in‐vitro comparative study of doping with nanoscale copper and silver particles, International Journal of Applied Glass Science, 5 (2014) 255-266.
    [3] J. Bejarano, R. Detsch, A.R. Boccaccini, H. Palza, PDLLA scaffolds with Cu‐and Zn‐doped bioactive glasses having multifunctional properties for bone regeneration, Journal of Biomedical Materials Research Part A, 105 (2017) 746-756.
    [4] S. Chen, M. Michálek, D. Galusková, M. Michálková, P. Švančárek, A. Talimian, H. Kaňková, J. Kraxner, K. Zheng, L. Liverani, Multi-targeted B and Co co-doped 45S5 bioactive glasses with angiogenic potential for bone regeneration, Materials Science and Engineering: C, 112 (2020) 110909.
    [5] A.L. Boskey, Bone composition: relationship to bone fragility and antiosteoporotic drug effects, Bonekey Rep, 2 (2013).
    [6] J. Jones, A. Clare, Bio-glasses: an introduction, John Wiley & Sons, 2012.
    [7] K.J. Burg, S. Porter, J.F. Kellam, Biomaterial developments for bone tissue engineering, Biomaterials, 21 (2000) 2347-2359.
    [8] R.D. Bostrom, A.G. Mikos, Tissue engineering of bone, in: Synthetic biodegradable polymer scaffolds, Springer, 1997, pp. 215-234.
    [9] M. Kruyt, S. Van Gaalen, F. Oner, A. Verbout, J.D. de Bruijn, W. Dhert, Bone tissue engineering and spinal fusion: the potential of hybrid constructs by combining osteoprogenitor cells and scaffolds, Biomaterials, 25 (2004) 1463-1473.
    [10] B. Clarke, Normal bone anatomy and physiology, Clinical journal of the American Society of Nephrology, 3 (2008) S131-S139.
    [11] E. Tsuruga, H. Takita, H. Itoh, Y. Wakisaka, Y. Kuboki, Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis, The Journal of Biochemistry, 121 (1997) 317-324.
    [12] M.R. Urist, B.F. Silverman, K. DÜRING, F.L. Dubuc, J.M. Rosenberg, 24 The Bone Induction Principle, Clinical Orthopaedics and Related Research (1976-2007), 53 (1967) 243-284.
    [13] M.R. Urist, B.S. Strates, Bone morphogenetic protein, Journal of dental research, 50 (1971) 1392-1406.
    [14] T.D. Rachner, S. Khosla, L.C. Hofbauer, Osteoporosis: now and the future, The Lancet, 377 (2011) 1276-1287.
    [15] R.K. Kulkarni, E. Moore, A. Hegyeli, F. Leonard, Biodegradable poly (lactic acid) polymers, Journal of biomedical materials research, 5 (1971) 169-181.
    [16] L.M. Pineda, M. Büsing, R.P. Meinig, S. Gogolewski, Bone regeneration with resorbable polymeric membranes. III. Effect of poly (L‐lactide) membrane pore size on the bone healing process in large defects, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 31 (1996) 385-394.
    [17] Z. Gugala, S. Gogolewski, Regeneration of segmental diaphyseal defects in sheep tibiae using resorbable polymeric membranes: a preliminary study, Journal of orthopaedic trauma, 13 (1999) 187-195.
    [18] J.O. Hollinger, J.P. Schmitz, Macrophysiologic roles of a delivery system for vulnerary factors needed for bone regeneration, Annals of the New York Academy of Sciences, 831 (1997) 427-437.
    [19] M. Marcacci, E. Kon, V. Moukhachev, A. Lavroukov, S. Kutepov, R. Quarto, M. Mastrogiacomo, R. Cancedda, Stem cells associated with macroporous bioceramics for long bone repair: 6-to 7-year outcome of a pilot clinical study, Tissue engineering, 13 (2007) 947-955.
    [20] L.L. Hench, R.J. Splinter, W. Allen, T. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of biomedical materials research, 5 (1971) 117-141.
    [21] S.L. Hui, C.W. Slemenda, C.C. Johnston, Age and bone mass as predictors of fracture in a prospective study, The Journal of clinical investigation, 81 (1988) 1804-1809.
    [22] S. Hulbert, L. Hench, D. Forbers, L. Bowman, History of bioceramics, Ceramics international, 8 (1982) 131-140.
    [23] M. Vallet‐Regí, E. Ruiz‐Hernández, Bioceramics: from bone regeneration to cancer nanomedicine, Advanced Materials, 23 (2011) 5177-5218.
    [24] L.L. Hench, Bioceramics: from concept to clinic, Journal of the american ceramic society, 74 (1991) 1487-1510.
    [25] W. Cao, L.L. Hench, Bioactive materials, Ceramics International, 22 (1996) 493-507.
    [26] H. Oonishi, Orthopaedic applications of hydroxyapatite, Biomaterials, 12 (1991) 171-178.
    [27] X. Yan, C. Yu, X. Zhou, J. Tang, D. Zhao, Highly ordered mesoporous bioactive glasses with superior in vitro bone‐forming bioactivities, Angewandte Chemie International Edition, 43 (2004) 5980-5984.
    [28] R. Li, A. Clark, L. Hench, An investigation of bioactive glass powders by sol‐gel processing, Journal of Applied Biomaterials, 2 (1991) 231-239.
    [29] L.L. Hench, The story of Bioglass®, Journal of Materials Science: Materials in Medicine, 17 (2006) 967-978.
    [30] M. Vallet-Regí, A.J. Salinas, Ceramics as bone repair materials, in: Bone repair biomaterials, Elsevier, 2019, pp. 141-178.
    [31] J.R. Jones, Review of bioactive glass: from Hench to hybrids, Acta biomaterialia, 9 (2013) 4457-4486.
    [32] D.S. Jung, S.B. Park, Y.C. Kang, Design of particles by spray pyrolysis and recent progress in its application, Korean Journal of Chemical Engineering, 27 (2010) 1621-1645.
    [33] S.-J. Shih, Y.-J. Chou, I.-C. Chien, One-step synthesis of bioactive glass by spray pyrolysis, Journal of Nanoparticle Research, 14 (2012) 1-8.
    [34] A. Bashir, P.H. Wöbkenberg, J. Smith, J.M. Ball, G. Adamopoulos, D.D. Bradley, T.D. Anthopoulos, High‐Performance Zinc Oxide Transistors and Circuits Fabricated by Spray Pyrolysis in Ambient Atmosphere, Advanced Materials, 21 (2009) 2226-2231.
    [35] P.H. Wöbkenberg, T. Ishwara, J. Nelson, D.D. Bradley, S.A. Haque, T.D. Anthopoulos, TiO 2 thin-film transistors fabricated by spray pyrolysis, Applied Physics Letters, 96 (2010) 082116.
    [36] G.L. Messing, S.C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, Journal of the American Ceramic Society, 76 (1993) 2707-2726.
    [37] A. Gharsallaoui, G. Roudaut, O. Chambin, A. Voilley, R. Saurel, Applications of spray-drying in microencapsulation of food ingredients: An overview, Food research international, 40 (2007) 1107-1121.
    [38] K. Okuyama, I.W. Lenggoro, Preparation of nanoparticles via spray route, Chemical engineering science, 58 (2003) 537-547.
    [39] P. Giunchedi, U. Conte, H. Alpar, PDLLA microspheres containing steroids: spray-drying, o/w and w/o/w emulsifications as preparation methods, Journal of microencapsulation, 15 (1998) 185-195.
    [40] (!!! INVALID CITATION !!! [37, 40-42]).
    [41] P. Balasubramanian, T. Buettner, V.M. Pacheco, A.R. Boccaccini, Boron-containing bioactive glasses in bone and soft tissue engineering, Journal of the European ceramic society, 38 (2018) 855-869.
    [42] T.A. Devirian, S.L. Volpe, The physiological effects of dietary boron, (2003).
    [43] L.A.H. Durand, A. Góngora, J.M.P. López, A.R. Boccaccini, M.P. Zago, A. Baldi, A. Gorustovich, In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO 2–CaO–P 2 O 5–Na 2 O system, Journal of Materials Chemistry B, 2 (2014) 7620-7630.
    [44] C. Wu, R. Miron, A. Sculean, S. Kaskel, T. Doert, R. Schulze, Y. Zhang, Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds, Biomaterials, 32 (2011) 7068-7078.
    [45] Y. Zhu, X. Zhu, G. Wu, Y. Ma, Y. Li, X. Zhao, Y. Yuan, J. Yang, S. Yu, F. Shao, Synthesis, in vitro and in vivo biological evaluation, docking studies, and structure− activity relationship (SAR) discussion of dipeptidyl boronic acid proteasome inhibitors composed of β-amino acids, Journal of medicinal chemistry, 53 (2010) 1990-1999.
    [46] H. Fu, Q. Fu, N. Zhou, W. Huang, M.N. Rahaman, D. Wang, X. Liu, In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method, Materials Science and Engineering: C, 29 (2009) 2275-2281.
    [47] S. Stegen, N. van Gastel, G. Carmeliet, Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration, Bone, 70 (2015) 19-27.
    [48] Y. Zhou, Y. Wu, X. Jiang, X. Zhang, L. Xia, K. Lin, Y. Xu, The effect of quercetin on the osteogenesic differentiation and angiogenic factor expression of bone marrow-derived mesenchymal stem cells, PloS one, 10 (2015) e0129605.
    [49] H. Winet, The role of microvasculature in normal and perturbed bone healing as revealed by intravital microscopy, Bone, 19 (1996) S39-S57.
    [50] M. Grunewald, I. Avraham, Y. Dor, E. Bachar-Lustig, A. Itin, S. Yung, S. Chimenti, L. Landsman, R. Abramovitch, E. Keshet, VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells, Cell, 124 (2006) 175-189.
    [51] R.M. Day, Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro, Tissue engineering, 11 (2005) 768-777.
    [52] R.M. Day, A.R. Boccaccini, S. Shurey, J.A. Roether, A. Forbes, L.L. Hench, S.M. Gabe, Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds, Biomaterials, 25 (2004) 5857-5866.
    [53] H. Keshaw, A. Forbes, R.M. Day, Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass, Biomaterials, 26 (2005) 4171-4179.
    [54] R.B. Prime, H.E. Bair, S. Vyazovkin, P.K. Gallagher, A. Riga, Thermogravimetric analysis (TGA), Thermal analysis of polymers: Fundamentals and applications, (2009) 241-317.
    [55] Z. Movasaghi, S. Rehman, D.I. ur Rehman, Fourier transform infrared (FTIR) spectroscopy of biological tissues, Applied Spectroscopy Reviews, 43 (2008) 134-179.
    [56] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 27 (2006) 2907-2915.
    [57] D. Gerlier, N. Thomasset, Use of MTT colorimetric assay to measure cell activation, Journal of immunological methods, 94 (1986) 57-63.
    [58] Y. Liu, D.A. Peterson, H. Kimura, D. Schubert, Mechanism of cellular 3‐(4, 5‐dimethylthiazol‐2‐yl)‐2, 5‐diphenyltetrazolium bromide (MTT) reduction, Journal of neurochemistry, 69 (1997) 581-593.
    [59] P. Kumar, A. Nagarajan, P.D. Uchil, Analysis of cell viability by the MTT assay, Cold spring harbor protocols, 2018 (2018) pdb. prot095505.
    [60] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials, 26 (2005) 4847-4855.

    無法下載圖示 全文公開日期 2024/09/28 (校內網路)
    全文公開日期 2026/09/28 (校外網路)
    全文公開日期 2024/09/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE