簡易檢索 / 詳目顯示

研究生: 楊智翔
Chih-Xsiang Yang
論文名稱: 製備以含鈦混合氧化物PtRu觸媒及其在含CO氫氣電化學氧化之研究
Preparation of Titanium mixed oxide supported Pt Ru catalysts for Hydrogen Electrochemical Oxidation Reaction of CO/H2
指導教授: 林昇佃
Shawn-D. Lin
口試委員: 黃炳照
Bing-Joe Hwang
林修正
Andrew-S. Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 199
中文關鍵詞: 含鈦混合氧化物鈣鈦礦乙二醇還原法氫氣氧化反應CO耐受性
外文關鍵詞: Titanium mixed oxide, Perovskite, Ethylene glycol method, hydrogen oxidation reaction, CO tolerance
相關次數: 點閱:238下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討含鈦混合氧化物載體製作PtRu觸媒,作為H2燃料電池陽極並分析其氫氣氧化活性與CO耐受性,混合氧化物載體的導電性不如傳統碳黑載體,但其潛在優勢為穩定性較碳黑高。實驗室先前探討含鈦釕混合氧化物載體,在擔載Pt的過程中,會有部分Ru還原析出,並可進一步與Pt形成Pt-Ru合金相,但對生成Pt-Ru合金相的組成結構不易控制,本研究探討改善混合氧化物擔載Pt-Ru合金觸媒的製備。首先測試前處理條件對實驗室先前製作Ti0.7Ru0.3O2載體的影響,進一步調整Pt與PtRu的擔載參數。其次為含鈦之鈷鎳鈣鈦礦混合金屬氧化物(CoTiO3、NiTiO3),具有高介電性質、特殊的電子結構且對CO、烴類等完全氧化有良好的活性,故將其擔載金屬並進一步優化調整PtRu的擔載比例,了解觸媒中各成分可能扮演的角色,及其對電化學反應特性與抗CO毒化的影響。
    研究結果顯示經前處理之Ti0.7Ru0.3O2-C650載體有良好的結構穩定性,在擔載Pt過程中Ru不易還原析出,並透過調整PtRu的擔載參數擔所製20Pt10Ru/Ti0.7Ru0.3O2-C650 觸媒其PtRu合金粒徑約2奈米,分析顯示CO氧化起始電位低於20Pt10Ru/C-JM商用觸媒,氫氣氧化反應(HOR)在純氫、250和500 ppm CO/H2環境下的旋轉圓盤電極分析也具有良好的氫氣氧化活性與穩定性。含鈦之鎳鈷混合氧化物CoTiO3-1000及NiTiO3-1000載體經優化調整PtRu的擔載比例後所製的30Pt15Ru/CoTiO3-1000、 40Pt20Ru/CoTiO3-1000觸媒及 30Pt15Ru/NiTiO3-1000觸媒,亦有約2奈米之PtRu合金粒徑,具有低於商用觸媒的CO氧化電位、良好的氫氣氧化活性與穩定性,在長時間CO耐受性測試中,30Pt15Ru/CoTiO3-1000觸媒具有最好的CO容忍度表現。


    This study explores the production of PtRu catalysts containing Titanium mixed oxide supports as H2 fuel cell anodes and analyzes Hydrogen electrochemical Oxidation activity and CO tolerance. The conductivity of mixed oxide supports are not as good as carbon supports, but its potential advantage is that it is more stable than Carbon supports. The laboratory previously discussed the Titanium-Ruthenium mixed oxide support, during the process of loading Pt, part of Ru will be reduced and precipitated, and it can further form a Pt-Ru alloy phase with Pt, but that the composition structure of the Pt-Ru alloy phase is hard to control. To discuss the improvement of the preparation of mixed oxide supported Pt-Ru alloy catalyst. First, test the effect of pre-processing conditions on the Ti0.7Ru0.3O2, and further adjust the loading parameters of Pt or PtRu. The second is Titanium-Cobalt (or Titanium-Nickel) perovskite oxides supports (CoTiO3, NiTiO3), which have high dielectric properties, special electronic structure and good activity for the complete oxidation of CO and hydrocarbons, and further optimizely adjust the loading ratio of PtRu content to understand the possible role of each component in the catalyst and its influence on the electrochemical reaction characteristics and resistance to CO poisoning.
    The research results show that the pre-treated Ti0.7Ru0.3O2-C650 support has better structural stability, and Ru element is not easy to be reduced during the loading Pt process, and the 20Pt10Ru/Ti0.7Ru0.3O2-C650 catalyst has PtRu alloy particle size of about 2 nanometers. Analysis shows that the CO oxidation onset potential is lower than Commercial catalyst (20Pt10Ru/C-JM). And it has better hydrogen oxidation activity and stability with the rotating disk electrode (RDE) analysis by the hydrogen oxidation reaction (HOR) in pure hydrogen, 250 and 500 ppm CO/H2. With CoTiO3-1000 and NiTiO3-1000 as supports loading ratio of PtRu, 30Pt15Ru/CoTiO3-1000, 40Pt20Ru/CoTiO3-1000 and 30Pt15Ru/NiTiO3-1000 catalys are also the PtRu alloy particle size of about 2 nanometers, which has a lower CO oxidation potential than commercial catalysts (20Pt10Ru/C-JM), and better hydrogen oxidation activity and stability. At last, in the long-term CO tolerance test, 30Pt15Ru/CoTiO3-1000 catalyst has the best CO tolerance performance.

    摘要 I Abstract III 致謝 V 圖目錄 X 表目錄 XIII 第1章、 緒論 1 1.1 前言 1 1.2 燃料電池 3 1.2.1 質子交換薄膜燃料電池 (PEMFC) 3 1.2.2 直接甲醇燃料電池 (DMFC) 5 1.3 文獻回顧 6 1.3.1 碳載體觸媒 7 1.3.2 金屬氧化物載體 9 1.3.2.1 氧化鈦 (Titanium oxides、TiOx) 10 1.3.2.2 氧化釕 (Ruthenium oxides、RuOx) 13 1.3.2.3 鈣鈦礦結構 (Pervoskite, ABO3) 14 1.3.2.4 混合金屬氧化物 16 1.3.3 Pt金屬觸媒 17 1.3.3.1 二元合金觸媒 18 1.3.3.2 多元合金觸媒 18 1.4 研究目的與方法 19 第2章、 研究設備與方法 20 2.1 研究架構 20 2.2 實驗藥品與設備 22 2.2.1 實驗藥品與氣體 22 2.2.2 實驗設備 23 2.3 觸媒載體製備方法 24 2.3.1 水熱法製備TiO2載體 24 2.3.2 水熱法製備Ti0.7Ru0.3O2載體 25 2.3.3 共沉澱法製備CoTiO3(或NiTiO3)載體 26 2.4 乙二醇還原法擔載Pt金屬觸媒 27 2.4.1 製備40wt%Pt金屬觸媒 27 2.4.2 製備20wt%Pt - 10wt%Ru、30wt%Pt - 15wt%Ru、40wt%Pt - 20wt%Ru合金觸媒 28 2.5 材料鑑定方法 29 2.5.1 X光繞射分析(XRD) 29 2.5.2 表面積與孔隙度測定儀 (BET) 30 2.5.3 掃描式電子顯微鏡-能量散射光譜儀 (SEM-EDS) 31 2.5.4 感應耦合電漿原子放射光譜儀 (ICP-AES) 32 2.5.5 X光吸收光譜 (XANES) 32 2.6 電化學分析方法 34 2.6.1 薄膜電極的製備 34 2.6.2 可逆氫電極(RHE)的前置作業 35 2.6.3 循環伏安法 (Cyclic voltammetry) 35 2.6.4 CO電催化氧化分析 (CO-stripping) 35 2.6.5 氫氣氧化反應之陽極測試條件 (HOR-pure H2) 36 2.6.6 氫氣氧化反應之陽極測試條件(HOR-250 or 500ppmCO/H2) 36 2.6.7 CO耐受性測試條件(PureH2 or 250ppmCO/H2) 37 2.6.8 電化學活性表面積與CO/H比例計算 38 2.6.9 塔弗方程式 (Tafel equation) 39 2.6.10 氫氣氧化之分析方法 39 第3章、 結果與討論 41 3.1 不同前處理Ti0.7Ru0.3O2載體擔載40%Pt觸媒 42 3.1.1 載體與觸媒特性分析 42 3.1.1.1 XRD分析 42 3.1.1.2 氮氣等溫吸/脫附分析及孔徑參數分析 49 3.1.1.3 材料之形貌及組成分析 53 3.1.2 不同前處理載體擔載40%Pt觸媒之電化學反應特性分析 58 3.1.2.1 觸媒之循環伏安法分析 58 3.1.2.2 觸媒之CO氧化脫除分析 60 3.1.2.3 不同前處理載體擔載40%Pt觸媒之氫氣氧化反應分析 64 3.2 調整Pt-Ru擔載參數對製成觸媒的影響 71 3.2.1 載體與觸媒特性分析 72 3.2.1.1 XRD分析 72 3.2.1.2 氮氣等溫吸/脫附分析及孔徑參數分析 76 3.2.1.3 材料之形貌及組成分析 80 3.2.2 擔載Pt-Ru金屬製成觸媒之電化學反應特性分析 85 3.2.2.1 觸媒之循環伏安法分析 85 3.2.2.2 觸媒之CO氧化脫除分析 87 3.2.2.3 擔載Pt-Ru金屬製成觸媒之氫氣氧化反應分析 91 3.3 含鈦鈣鈦礦載體擔載PtRu觸媒的特性 98 3.3.1 載體與觸媒特性分析 98 3.3.1.1 XRD分析 98 3.3.1.2 氮氣等溫吸/脫附分析及孔徑參數分析 104 3.3.1.3 材料之形貌及組成分析 108 3.3.1.4 CoTiO3-1000載體擔載PtRu製成觸媒Co-K edge之XANES圖譜 114 3.3.1.5 NiTiO3-1000載體擔載PtRu製成觸媒Ni-K edge之XANES圖譜 117 3.3.1.6 鈣鈦礦載體擔載PtRu製成觸媒Pt-L3 edge之XANES圖譜 120 3.3.1.7 鈣鈦礦載體擔載PtRu製成觸媒Ru-K edge之XANES圖譜 124 3.3.2 含鈦鈣鈦礦載體擔載PtRu觸媒之電化學反應特性分析 128 3.3.2.1 觸媒之循環伏安法分析 128 3.3.2.2 觸媒之CO氧化脫除分析 132 3.3.2.3 鈣鈦礦載體擔載PtRu觸媒之氫氣氧化反應分析 135 3.4 觸媒穩定度測試 144 第4章、 結論 148 第5章、 參考文獻 150 附錄A Nafion 厚度計算 156 附錄B 氫氣氧化動力學數據處理 157 附錄C 改良觸媒的影響 170 C.1 載體與觸媒特性分析 170 C.1.1 XRD分析 170 C.1.2 氮氣等溫吸/脫附分析及孔徑參數分析 173 C.2 Ti0.7Ru0.3O2-c650擔載Pt-Ru觸媒之電化學反應特性分析 175 C.2.1 觸媒之CO氧化脫除分析 175 C.2.3 Ti0.7Ru0.3O2-c650擔載Pt-Ru觸媒之氫氣氧化反應分析 177 附錄D EXAFS參數分析結果 180

    [1] 衣寶廉, 黃., 林修正, 燃料電池-原理與應用. 2005, 台北: 五南圖書出版.
    [2] 彭怡貞, 金屬混合氧化物擔載Pt觸媒製備參數對其氫氣氧化反應的CO耐受性探討.2016, 臺灣科技大學.
    [3] Appleby, A.J., Issues in fuel cell commercialization. Journal of Power Sources, 1996. 58(2): p. 153-176.
    [4] 李書鋒, 質子交換膜燃料電池性能之理論探討. 2004, 大葉大學.
    [5] H.‐F. Oetjen, V.M.S., U. Stimming and F. Trila, Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas. J. Electrochem. Soc, 1996. 143(12): p. 3838-3842.
    [6] 謝宗達, RuOxHy助觸媒的合成與其對Pt電催化甲醇氧化反應的影響. 2013, 臺灣科技大學.
    [7] Mukerjee S, McBreen J. An in situ X-ray absorption spectroscopy investigation of the effect of Sn additions to carbon-supported Pt electrocatalysts - Part I. Journal of the Electrochemical Society. 1999;146(2):600-6.
    [8] J.C, A., C. K.A.M, and Davis, Proc.9th Word Hydrogen Energy Conf Pairs. 1992. France.
    [9] Page T, Johnson R, Hormes J, Noding S, Rambabu B, A study of methanol electro-oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-catalysts by EXAFS. Journal of Electroanalytical Chemistry. 2000;485(1):34-41.
    [10] Choi JH, Park KW, Kwon BK, Sung YE, Methanol oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni anode electrocatalysts at different temperatures for DMFCs. Journal of the Electrochemical Society. 2003;150(7):A973-A8.
    [11] Antolini E, Salgado JRC, Santos L, Garcia G, Ticianelli EA, Pastor E, et al., Carbon supported Pt-Cr alloys as oxygen-reduction catalysts for direct methanol fuel cells. Journal of Applied Electrochemistry. 2006;36(3):355-62.
    [12] Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, et al., Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science. 1998;280(5370):1735-7.
    [13] Deivaraj, T.C., W. Chen, and J.Y. Lee, Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. Journal of Materials Chemistry, 2003. 13(10): p. 2555-2560.
    [14] Park, K.-W., et al., PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell. Journal of Catalysis, 2004. 224(2): p. 236-242.
    [15] Uchida H, Ozuka H, Watanabe M., Electrochemical quartz crystal microbalance analysis of CO-tolerance at Pt-Fe alloy electrodes. Electrochimica Acta. 2002;47(22-23):3629-36.
    [16] P. K. Shen, K.Y.C.a.A.C.C.T., CO Oxidation on Pt‐Ru WO3 Electrodes. J. Electrochem. Soc, 1995. 142(6): p. L85-L86.
    [17] Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, et al., Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science. 1998;280(5370):1735-7.
    [18] Whitacre JF, Valdez T, Narayanan SR, Investigation of direct methanol fuel cell electrocatalysts using a robust combinatorial technique. Journal of the Electrochemical Society. 2005;152(9):A1780-A9.
    [19] Götz, M. and H. Wendt, Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochimica Acta, 1998. 43(24): p. 3637-3644.
    [17] Suffredini HB, Tricoli V, Avaca LA, Vatistas N, Sol-gel method to prepare active Pt-RuO2 coatings on carbon powder for methanol oxidation. Electrochemistry Communications. 2004;6(10):1025-8.
    [18] Santos AL, Profeti D, Olivi P, Electrooxidation of methanol on Pt microparticles dispersed on SnO2 thin films. Electrochimica Acta. 2005;50(13):2615-21.
    [19] Raghuveer V, Viswanathan B, Synthesis, characterization and electrochemical studies of Ti-incorporated tungsten trioxides as platinum support for methanol oxidation. Journal of Power Sources. 2005;144(1):1-10.
    [20] Jiang LH, Sun GQ, Zhou ZH, Sun SG, Wang Q, Yan SY, et al., Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. Journal of Physical Chemistry B. 2005;109(18):8774-8.
    [21] Watanabe, M. and S. Motoo, Electrocatalysis by ad-atoms: Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975. 60(3): p. 267-273.
    [22] Shahgaldi, S. and J. Hamelin, Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon, 2015. 94: p. 705-728.
    [23] Meier, J.C., Galeano, C., Katsounaros, I., Witte, J., Bongard, H.J., Topalov, A.A., Baldizzone, C., Mezzavilla, S., Schuth, F., and Mayrhofer, K.J., Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotechnol, 2014. 5: p. 44-67.
    [24] Antolini, E., Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009. 88(1–2): p. 1-24.
    [25] Meier, J.C., et al., Design criteria for stable Pt/C fuel cell catalysts. Beilstein J Nanotechnol, 2014. 5: p. 44-67.
    [26] Meier, J.C., et al., Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start–Stop Conditions. ACS Catalysis, 2012. 2(5): p. 832-843.
    [27] 黃國晏, 鎢釕混合氧化物擔載Pt觸媒製備參數對其氫氣氧化反應的CO耐受性探討.2016, 臺灣科技大學.
    [28] Zhang, Z., Liu, J., Gu, J., Su, L., and Cheng, L., An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy & Environmental Science, 2014. 7(8): p. 2535-2558.
    [29] Graves, J.E., et al., The electrochemistry of Magnéli phase titanium oxide ceramic electrodes Part I. The deposition and properties of metal coatings. Journal of Applied Electrochemistry, 1991. 21(10): p. 848-857.
    [30] Nagaraju, S.C., Roy, A.S., and Ramgopal, G., Conductivity of surface modified TiO 2 dope nanocomposites. Measurement, 2015. 60: p. 214-221.
    [31] Benson, J.E., Kohn, H.W., and Boudart, M., On the reduction of tungsten trioxide accelerated by platinum and water. Journal of Catalysis, 1966. 5(2): p. 307-313.
    [32] Fujishima, A. and K. Honda, Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature, 1972. 238(5385): p. 37-38.
    [33] Tauster, S.J., S.C. Fung, and R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. Journal of the American Chemical Society, 1978. 100(1): p. 170-175.
    [34] Huang, S.-Y., et al., Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications. Journal of the American Chemical Society, 2009. 131(39): p. 13898-13899.
    [35] Huang, S.-Y., P. Ganesan, and B.N. Popov, Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Applied Catalysis B: Environmental, 2011. 102(1–2): p. 71-77.
    [36] 王竣仟, 吳逢彬, 曾霈軒, 戴愷含, 黃建民, 煅燒溫度對二氧化鈦光電催化降解染料之影響. 2011, 朝陽科技大學.
    [37] Zhang, L., et al., Ti4O7 supported Ru@Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction. Applied Energy, 2013. 103: p. 507-513.
    [38] S.D. Mo, W.Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Physical Review B, 51 (1995) 13023-13032.
    [39] Suffredini, H.B., et al., Sol–gel method to prepare active Pt–RuO2 coatings on carbon powder for methanol oxidation. Electrochemistry Communications, 2004. 6(10): p. 1025-1028.
    [40] Lasch, K., et al., Mixed conducting catalyst support materials for the direct methanol fuel cell. Journal of Power Sources, 2002. 105(2): p. 305-310.
    [41] Pylypenko, S., et al., Composition- and Morphology-Dependent Corrosion Stability of Ruthenium Oxide Materials. ACS Applied Materials & Interfaces, 2009. 1(3): p. 604-611.
    [42] 許夢舫, 以鈣鈦礦(Perovskite)結構之材料製作固態氧化物燃料電池(SOFC).2005, 清華大學.
    [43] T. Ishihara, H. Matsuda, and Y. Talita, Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor, J.Am.Chem.Soc.,116(1994)3801-3803.
    [44] T. Ishihara, H. Matsuda, and Y. Talita,Effect of rare earth cations doped for La site on the oxide ionic conductivity of LaGAO3-based perovskite type oxide, Solid State Ionics 79(1995)147-151.
    [45] T. Fukui, S. Ohara, K. Murata, H. Yoshida, H. Miura and T. Inagaki, Performance of intermediate temperature solid oxide fuel cells with La(Sr)Ga(Mg)O3 electrolyte film, Journal of Power Sources 106(2002)142-145.
    [46] K. Yamaji, T.Horita, M. Ishikawa, N. Sakai and H. Yokawa, Compatibility of La0.9Sr0.1Ga0.8Mg0.2O2.85 as the electrolyte for SOFCs, Solid State Ionics 108(1998)415-421.
    [47] R. Pelosato, I.N. Sora, V. Ferrari, G. Dotelli and C.M. Mari, Preparation and characterization of supported La0.83Sr0.17Ga0.83Mg0.17O2.83 thick films for application in IT-SOFCs, Solid State Ionics 175(2004)87-92
    [48] D. Lybye, F.W. Poulsen and M. Mogensen, Conducitivity of A- and B-site doped LaAlO3, LaGaO3, LaScO3 and LaInO3 perovskites, Solid State Ionics 128(2000)91-103.
    [49] T.Y. Chen and K.Z. Fung, Comparison of dissolution behavior and ionic conduction between Sr and/or Mg doped LaGaO3 and LaAlO3, Journal of Power Sources 132(2004)1-10.
    [50] 曾冠棋, 製備鈦-鈷金屬氧化物奈米纖維與其本質催化性質之研究.2015, 中央大學.
    [51] X. Zhang, B. Lu, R. Li , C. Fan , Z. Liang, P. Han, Structural, electronic and optical properties of ilmenite ATiO3 (A=Fe, Co, Ni) , Materials Science in Semiconductor Processing, vol.39 (2015) 6–16.
    [52] L.U. Jing, H. Jianfeng, W.U. Jianpeng, J. Tao, Effect of Preparation Process on Crystallization and Microstructure of Nano-CoTiO3 Powder, Journal of The Chinese Ceramic Society, 2011. 39(10) : p. 7-11.
    [52] García, B.L., R. Fuentes, and J.W. Weidner, Low-Temperature Synthesis of a PtR/Nb0.1Ti0.9O2 Electrocatalyst for Methanol Oxidation. Electrochemical and Solid-State Letters, 2007. 10(7): p. B108-B110.
    [53] Nguyen, T.-T., et al., Synthesis of Ti0.7Mo0.3O2 supported-Pt nanodendrites and their catalytic activity and stability for oxygen reduction reaction. Applied Catalysis B: Environmental, 2014. 154–155: p. 183-189.
    [54] Lo, C.-P., et al., TiO2–RuO2 electrocatalyst supports exhibit exceptional electrochemical stability. Applied Catalysis B: Environmental, 2013. 140–141: p. 133-140.
    [55] Ho, V.T.T., et al., Robust non-carbon Ti0.7Ru0.3O2 support with co-catalytic functionality for Pt: enhances catalytic activity and durability for fuel cells. Energy & Environmental Science, 2011. 4(10): p. 4194-4200.
    [56] 張育銘, 釕摻雜鑭系層狀鈣鈦礦氧化物觸媒Ln2Ti1.6Ru0.4O7 (Ln= La、Pr和Nd)對乙醇氧化蒸氣重組產氫反應的影響. 2018, 交通大學.
    [57] 杜曉波,呂喆,劉志國,裴力,蘇文輝, 雙摻雜鈣鈦礦型複合氧化物La0.7Sr0.3Co1-xMxO3的電性能研究,吉林大學自然科學學報, 3(2001): p. 55-58.
    [58] 謝俊彥, 金修飾對鉑奈米顆粒電催化一氧化碳與甲醇氧化反應的影響.2012, 臺灣科技大學.
    [59] Hong, L., et al., High performance of polyoxometalate/PtPd nanoparticles/carbon nanotubes electrocatalysts for the methanol electrooxidation. International Journal of Hydrogen Energy, 2013. 38(25): p. 11074-11079.
    [60] Hassan, A., et al., Effect of heat treatment on the activity and stability of carbon supported PtMo alloy electrocatalysts for hydrogen oxidation in proton exchange membrane fuel cells. Journal of Power Sources, 2014. 247: p. 712-720.
    [61] Hsieh, C.T., Y.S. Chang, and K.M. Yin, Pt–Sn Nanoparticles Decorated Carbon Nanotubes as Electrocatalysts with Enhanced Catalytic Activity. The Journal of Physical Chemistry C, 2013. 117(30): p. 15478-15486.
    [62] Rocha, T.A., et al., Nb as an influential element for increasing the CO tolerance of PEMFC catalysts. Journal of Applied Electrochemistry, 2013. 43(8): p. 817-827.
    [63] A. Lima, C. Coutanceau, J.M. Léger, et al., Investigation of ternary catalysts for methanol electrooxidation. Journal of Applied Electrochemistry, 2001, 31(4): p. 379-386.
    [64] K.W. Park , J. H. Choi, B. K. Kwon, et al. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. The Journal of Physical Chemistry B, 2002, 106(8): p. 1869-1877.
    [65] 周弦篁, 直接甲醇燃料電池應用三元觸媒Pt-Ru-Ni之甲醇電氧化性能.2011, 虎尾科技大學.
    [66] 陳力嘉, 鈦釕混合氧化物擔載Pt觸媒的製備與其在電化學反應特性研究. 2015, 臺灣科技大學.
    [67] Gojković, S.L., Zečević, S., and Savinell, R., O2 Reduction on an Ink‐Type Rotating Disk Electrode Using Pt Supported on High‐Area Carbons. Journal of The Electrochemical Society, 1998. 145(11): p. 3713-3720.
    [68] Schmidt, T., Gasteiger, H., Stäb, G., Urban, P., Kolb, D., and Behm, R., Characterization of high‐surface‐area electrocatalysts using a rotating disk electrode configuration. Journal of The Electrochemical Society, 1998. 145(7): p. 2354-2358.
    [69] Lin, R.B. and Shih, S.M., Kinetics of hydrogen oxidation reaction on Nafion-coated Pt/C electrodes under high overpotentials. Journal of the Chinese Institute of Chemical Engineers, 2007. 38(5–6): p. 365-370.
    [70] H.C. Chang, C.L. Kao, S.L. Kuo, et al.,Effects of heat temperature on the characterization of TiO2 electrode by an anodic oxidation. Journal of Technology, 2013. 28(4): p. 211-216
    [71] A. Kim, D.P. Debecker, F. Devred, V. Dubois, C. Sanchez, C.Sassoye, CO2 methanation on Ru/TiO2 catalysts: On the effect of mixing anatase and rutile TiO2 supports. Applied Catalysis B: Environmental, 2018. 220: p. 615-625.
    [72] W.F. Lin, T. Iwasita, and W. Vielstich, Catalysis of CO Electrooxidation at Pt, Ru, and PtRu Alloy. An in Situ FTIR Study. J. Phys. Chem. B, 1999, 103: 3250-3257.
    [73] S.M. Brokovic, M.P. Kaninski, P.Z. Lausevic, et al., Non-stoichiometric tungsten-carbide-oxide-supported Pt-Ru anode catalysts for PEM fuel cells - From basic eletrochemistry to fuel cell performance. International Journal of Hydrogen Energy, 2020, 45(27): p.13929-13938.
    [74] Higuchi, E., Uchida, H., and Watanabe, M., Effect of loading level in platinum-dispersed carbon black electrocatalysts on oxygen reduction activity evaluated by rotating disk electrode. Journal of Electroanalytical Chemistry, 2005. 583(1): p. 69-76.

    QR CODE