簡易檢索 / 詳目顯示

研究生: 鍾馮鈞
Fong-Jyun Jhong
論文名稱: 以不同後段處理法提升鈣鈦礦太陽能電池效能之研究
The Study of Improving Performance of Perovskite Solar Cells by Different Post Treatment Strategies
指導教授: 陳良益
Liang-Yih Chen
口試委員: 江志強
Jyh-Chiang Jiang
陳良益
Liang-Yih Chen
陳貞夙
Jen-Sue Chen
吳季珍
Jih-Jen Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 180
中文關鍵詞: 鈣鈦礦太陽能電池一步驟溶液沉積法反溶劑處理溶劑預處理熱壓處理鋰處理
外文關鍵詞: perovskite solar cell, one step solution deposition process, anti-solvent treatment, solvent pretreatment, hot-stamping treatment, lithium treatment
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討使用一步驟溶液法製作鈣鈦礦太陽能電池,並使用反溶劑處理、溶劑預處理、鋰摻雜二氧化鈦結構層處理、熱壓處理與甲脒(formamidinium)陽離子置換來探討鈣鈦礦太陽能電池的效率以及遲滯效應。由實驗結果發現:未經過任何後段處理的鈣鈦礦太陽能電池之光電轉換效率只有1 %左右,主要是因甲基胺碘鉛鈣鈦礦的前驅物甲基胺碘與碘化鉛對溶劑的溶解度差異很大,造成旋轉塗佈的鈣鈦礦膜覆蓋性很差所造成。因此,在旋轉塗佈的過程中使用反溶劑處理可增加鈣鈦礦的覆蓋性使效率增加至13.0 %,但仍有非常大的遲滯效應。推測是鈣鈦礦溶液黏度較高導致鈣鈦礦無法有效滲入二氧化鈦結構層所致。對此,在本研究中於塗佈鈣鈦礦層之前先以溶解甲基胺碘與碘化鉛的溶劑進行預滴旋塗,藉此幫助鈣鈦礦前驅溶液滲入二氧化鈦結構層,如此可使效率提升至14.4 %且可更進一步降低遲滯效應。接著,再以熱壓處理來提升鈣鈦礦鍍層的結晶性並將效率提升至15.0 %,並再進一步將遲滯因子降至0.3。最後,以雙三氟甲烷磺酰亞胺鋰修飾二氧化鈦結構層氧空缺,將光電轉換效率提升至15.8 %。若同時將10 %的甲基胺碘置換成甲脒碘可以降低能隙使太陽能電池可吸收更多入射光產生較高電流,使效率達到16.4 %。在本研究中,所得的鈣鈦礦太陽能電池最高效率可達17.2%。


    In this study, perovskite solar cells were fabricated by one-step solution process. Various post treatment strategies were employed to study the influence on the efficiency and hysteresis of perovskite solar cells, such as anti-solvent treatment, solvent pre-treatment, lithium ion doped titanium diode (TiO2) structural layer, hot stamping treatment and FA cation exchange. From analysis results, we could find the efficiency of perovskite solar cell without any post treatment was only 1 % due to poor coverage of methylene ammonium lead iodide (MAPbI3). We speculated the solubility difference between MAI and PbI2 is too large to cause the non-uniformity of perovskite coating. Therefore, anti-solvent treatment was employed to enhance the coverage of MAPbI3 coating and the performance could achieve 13%; however, the hysteresis behavior is still high. We speculated that the infiltration of perovskite precursor solution into TiO2 nanostructual layer was difficulty due to high viscosity. In order to reduce the hysteresis behavior, the precursor solvent was used to pre-treat TiO2 nanostructural layer before precursor solution infiltration. From analysis results, we observed the efficiency of perovskite solar cells could achieve 14.4% and the hysteresis could be effectively reduced. To increasing the crystallinity of perovskite layer furthermore, the hot stamping process was used to improve the efficiency approach 15.0% and reduce the hysteresis index around 0.3. Finally, bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI) was used to modified the oxygen vacancy of TiO2 structural layer and 10% formamidinium (FA) cation was incorporated into precursor solution, the efficiencies of perovskite solar cell could achieve 15.8% and 16.4%, respectively. The best efficiency of perovskite solar cell could achieve 17.2% in this study.

    中文摘要 III Abstract IV 致謝 VI 圖目錄 XI 表目錄 XX 第一章 緒論 1 1-1 前言 1 1-2研究動機 3 第二章 理論基礎與文獻回顧 6 2-1半導體材料 6 2-1-1半導體特性 6 2-1-2 p-n接面(p-n junction) 9 2-2 鈣鈦礦材料 11 2-2-1 鈣鈦礦結構 11 2-2-2鈣鈦礦能隙特性 13 2-2-3離子遷移(ionic migration) 15 2-2-4鐵電效應(ferroelectric polarization) 18 2-3鈣鈦礦太陽能電池結構介紹 21 2-3-1介孔型態結構 23 2-3-2 n-i-p平面型態結構 25 2-3-3 p-i-n反向平面結構 27 2-4鈣鈦礦層製作方式 29 2-4-1一步驟溶液沉積法(one step solution deposition) 29 2-4-2連續沉積法(sequential deposition) 32 2-4-3真空氣相沉積法(vacuum deposition) 35 2-4-4氣相輔助溶液法(vapor-assisted solution process) 36 2-5 鈣鈦礦太陽能電池性質及優化製程 38 2-5-1遲滯效應(hysteresis effect) 38 2-5-2電子傳輸層的摻雜與修飾 41 2-5-3調整鈣鈦礦組成 44 2-5-4後處理及添加物 47 第三章 實驗方法與步驟 50 3-1實驗流程步驟圖 50 3-2實驗藥品與儀器設備 51 3-2-1實驗藥品 51 3-2-1實驗設備 54 3-2-2分析儀器 56 3-3實驗步驟 62 3-3-1清洗導電基板及定義工作面積 62 3-3-2二氧化鈦緻密層及結構層製備 65 3-3-3鋰處理修飾二氧化鈦電子傳輸層 67 3-3-4溶劑預處理及沉積鈣鈦礦層 68 3-3-5熱壓處理 70 3-3-6沉積電洞傳輸層 71 3-3-7蒸鍍金電極 72 3-3-8量測元件效率 73 第四章 結果與討論 74 4-1一步法製程條件之探討 74 4-1-1 旋轉塗佈轉速對電池效能的影響 74 4-1-2反溶劑處理對電池效能的影響 78 4-1-3 不同二氧化鈦結構層厚度對電池效能的影響 81 4-1-4 溶劑預處理對電池效能的影響 86 4-1-5 不同反溶劑時間點對電池效能的影響 93 4-1-6 熱壓處理對電池效能的影響 98 4-2 鈣鈦礦太陽能電池之電子傳輸層探討 110 4-2-1 最佳濃度、轉速之Li-TFSI處理 110 4-2-2 Li-TFSI處理對電池效能的影響 115 4-3 改變鈣鈦礦組成之探討 124 4-3-1 以FAI置換MAI對鈣鈦礦形貌與結構之影響 124 4-3-2 以FAI置換MAI對鈣鈦礦太陽能電池效能的影響 129 第五章 結論 133 參考文獻 134

    1. https://www.eia.gov/outlooks/ieo/, International Energy Outlook 2018.
    2. D. Adachi, J. L. Hernández and K. Yamamoto.Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Applied Physics Letters 107 (23), 1-3 (2015).
    3. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama and S. Okamoto.Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE Journal of Photovoltaics 4 (6), 1433-1435 (2014).
    4. A. Richter, J. Benick, R. Müller, F. Feldmann, C. Reichel, M. Hermle and S. W. Glunz.Tunnel oxide passivating electron contacts as full-area rear emitter of high-efficiency p-type silicon solar cells. Progress in Photovoltaics: Research and Applications 26 (8), 579-586 (2018).
    5. D. Yan, A. Cuevas, S. P. Phang, Y. Wan and D. Macdonald.23% efficient p-type crystalline silicon solar cells with hole-selective passivating contacts based on physical vapor deposition of doped silicon films. Applied Physics Letters 113 (6), 1-4 (2018).
    6. K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu and K. Yamamoto.Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Solar Energy Materials and Solar Cells 173, 37-42 (2017).
    7. J. Gong, S. B. Darling and F. You.Perovskite photovoltaics: Life-cycle assessment of energy and environmental impacts. Energy & Environmental Science 8 (7), 1953-1968 (2015).
    8. A. Kojima, K. Teshima, Y. S. and and T. Miyasaka.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 131 (17), 6050-6051 (2009).
    9. https://www.nrel.gov/pv/cell-efficiency.html, best reserch cell efficiency.
    10. D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano and J.-P. C. Baena.Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science advances 2 (1), 1-7 (2016).
    11. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim and J. H. Noh.Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356 (6345), 1376-1379 (2017).
    12. M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Gratzel.Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy & Environmental Science 9 (6), 1989-1997 (2016).
    13. A. D. Jodlowski, C. Roldán-Carmona, G. Grancini, M. Salado, M. Ralaiarisoa, S. Ahmad, N. Koch, L. Camacho, G. de Miguel and M. K. Nazeeruddin.Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells. Nature Energy 2 (12), 972-979 (2017).
    14. W. Liao, D. Zhao, Y. Yu, N. Shrestha, K. Ghimire, C. R. Grice, C. Wang, Y. Xiao, A. J. Cimaroli, R. J. Ellingson, N. J. Podraza, K. Zhu, R. G. Xiong and Y. Yan.Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. Journal of the American Chemical Society 138 (38), 12360-12363 (2016).
    15. D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C. R. Grice, A. J. Cimaroli, L. Guan, R. J. Ellingson, K. Zhu, X. Zhao, R.-G. Xiong and Y. Yan.Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy 2 (4), 1-7 (2017).
    16. G. Kapil, T. S. Ripolles, K. Hamada, Y. Ogomi, T. Bessho, T. Kinoshita, J. Chantana, K. Yoshino, Q. Shen, T. Toyoda, T. Minemoto, T. N. Murakami, H. Segawa and S. Hayase.Highly efficient 17.6% tin-lead mixed perovskite solar cells realized through spike structure. Nano Letters 18 (6), 3600-3607 (2018).
    17. T. Leijtens, R. Prasanna, K. A. Bush, G. E. Eperon, J. A. Raiford, A. Gold-Parker, E. J. Wolf, S. A. Swifter, C. C. Boyd, H.-P. Wang, M. F. Toney, S. F. Bent and M. D. McGehee.Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustainable Energy & Fuels 2 (11), 2450-2459 (2018).
    18. 施敏 and 伍國珏, 半導體元件物理學. (國立交通大學出版社, 2009).
    19. S. O. Kasap, Optoelectronics and Photonics. (Pearson Education Limited, 2015).
    20. N.-G. Park.Perovskite solar cells: An emerging photovoltaic technology. Materials Today 18 (2), 65-72 (2015).
    21. V. M. Goldschmidt.Die gesetze der krystallochemie. Naturwissenschaften 14 (21), 477-485 (1926).
    22. W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon and R. G. Palgrave.On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chemical Science 7 (7), 4548-4556 (2016).
    23. G. Kieslich, S. Sun and A. K. Cheetham.Solid-state principles applied to organic–inorganic perovskites: New tricks for an old dog. Chemical Science 5 (12), 4712-4715 (2014).
    24. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao and Z. Guo.Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallographica section B 64 (Pt 6), 702-707 (2008).
    25. P. Gao, M. Grätzel and M. K. Nazeeruddin.Organohalide lead perovskites for photovoltaic applications. Energy & Environmental Science 7 (8), 2448-2463 (2014).
    26. L. Protesescu, S. Yakunin, S. Kumar, J. Bar, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko, M. I. Bodnarchuk, C. J. Shih and M. V. Kovalenko.Dismantling the "Red Wall" of colloidal perovskites: highly luminescent formamidinium and formamidinium-cesium lead iodide nanocrystals. ACS Nano 11 (3), 3119-3134 (2017).
    27. Z. Wang, Z. Shi, T. Li, Y. Chen and W. Huang.Stability of perovskite solar cells: A prospective on the substitution of the A cation and X anion. Angewandte Chemie International Edition 56 (5), 1190-1212 (2017).
    28. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok.Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters 13 (4), 1764-1769 (2013).
    29. T. Jesper Jacobsson, J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel and A. Hagfeldt.Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy & Environmental Science 9 (5), 1706-1724 (2016).
    30. T. Fischer, Material science for engineering students. (Elsevier, 2009).
    31. J. M. Azpiroz, E. Mosconi, J. Bisquert and F. De Angelis.Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy & Environmental Science 8 (7), 2118-2127 (2015).
    32. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’Regan, A. Walsh and M. S. Islam.Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications 6 (1), 1-8 (2015).
    33. J. Haruyama, K. Sodeyama, L. Han and Y. Tateyama.First-principles study of ion diffusion in perovskite solar cell sensitizers. Journal of the American Chemical Society 137 (32), 10048-10051 (2015).
    34. P. Delugas, C. Caddeo, A. Filippetti and A. Mattoni.Thermally activated point defect diffusion in methylammonium lead trihalide: Anisotropic and ultrahigh mobility of iodine. Journal of Physical Chemistry Letters 7 (13), 2356-2361 (2016).
    35. Y. Yuan, J. Chae, Y. Shao, Q. Wang, Z. Xiao, A. Centrone and J. Huang.Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Advanced Energy Materials 5 (15), 1-7 (2015).
    36. Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey and N. P. Padture.Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. Journal of Physical Chemistry Letters 5 (19), 3335-3339 (2014).
    37. B. Chen, J. Shi, X. Zheng, Y. Zhou, K. Zhu and S. Priya.Ferroelectric solar cells based on inorganic–organic hybrid perovskites. Journal of Materials Chemistry A 3 (15), 7699-7705 (2015).
    38. L. M. Garten, D. T. Moore, S. U. Nanayakkara, S. Dwaraknath, P. Schulz, J. Wands, A. Rockett, B. Newell, K. A. Persson and S. Trolier-McKinstry.The existence and impact of persistent ferroelectric domains in MAPbI3. Science Advances 5 (1), 1-9 (2019).
    39. M. Qin, K. Yao and Y. C. Liang.High efficient photovoltaics in nanoscaled ferroelectric thin films. Applied Physics Letters 93 (12), 1-4 (2008).
    40. H.-S. Kim, S. K. Kim, B. J. Kim, K.-S. Shin, M. K. Gupta, H. S. Jung, S.-W. Kim and N.-G. Park.Ferroelectric polarization in CH3NH3PbI3 perovskite. The journal of physical chemistry letters 6 (9), 1729-1735 (2015).
    41. T. S. Sherkar and L. J. Koster.Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells? Phys Chem Chem Phys 18 (1), 331-338 (2016).
    42. D. Rossi, A. Pecchia, M. A. d. Maur, T. Leonhard, H. Röhm, M. J. Hoffmann, A. Colsmann and A. D. Carlo.On the importance of ferroelectric domains for the performance of perovskite solar cells. Nano Energy 48, 20-26 (2018).
    43. H. Rohm, T. Leonhard, A. D. Schulz, S. Wagner, M. J. Hoffmann and A. Colsmann.Ferroelectric properties of perovskite thin films and their implications for solar energy conversion. Advanced Materials, 1-7 (2019).
    44. M. Grätzel.Photoelectrochemical cells. Nature 414 (6861), 338 (2001).
    45. H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park.Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports 2, 1-7 (2012).
    46. F. Wang, Y. Cao, C. Chen, Q. Chen, X. Wu, X. Li, T. Qin and W. Huang.Materials toward the upscaling of perovskite solar cells: Progress, challenges, and strategies. Advanced Functional Materials 28 (52), 1-45 (2018).
    47. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok.High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348 (6240), 1234-1237 (2015).
    48. K. Kranthiraja, K. Gunasekar, H. Kim, A. N. Cho, N. G. Park, S. Kim, B. J. Kim, R. Nishikubo, A. Saeki, M. Song and S. H. Jin.High-performance long-term-stable dopant-free perovskite solar cells and additive-free organic solar cells by employing newly designed multirole pi-conjugated polymers. Advanced Materials 29 (23), 1-8 (2017).
    49. J. Lian, B. Lu, F. Niu, P. Zeng and X. Zhan.Electron-transport materials in perovskite solar cells. Small Methods 2 (10), 1-27 (2018).
    50. R. Zhang, C. Fei, B. Li, H. Fu, J. Tian and G. Cao.Continuous size tuning of monodispersed ZnO nanoparticles and its size effect on the performance of perovskite solar cells. ACS Appl Mater Interfaces 9 (11), 9785-9794 (2017).
    51. L. Xiong, M. Qin, C. Chen, J. Wen, G. Yang, Y. Guo, J. Ma, Q. Zhang, P. Qin, S. Li and G. Fang.Fully high-temperature-processed SnO2
    as blocking layer and scaffold for efficient, stable, and hysteresis-free mesoporous perovskite solar cells. Advanced Functional Materials 28 (10), 1-10 (2018).
    52. B. Roose, J.-P. C. Baena, K. C. Gödel, M. Graetzel, A. Hagfeldt, U. Steiner and A. Abate.Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells. Nano Energy 30, 517-522 (2016).
    53. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338 (6107), 643-647 (2012).
    54. D. Ramirez, K. Schutt, J. F. Montoya, S. Mesa, J. Lim, H. J. Snaith and F. Jaramillo.Meso-superstructured perovskite solar cells: Revealing the role of the mesoporous layer. The Journal of Physical Chemistry C 122 (37), 21239-21247 (2018).
    55. J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith.Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 6 (6), 1739-1743 (2013).
    56. K. Lee, C. M. Yoon, J. Noh and J. Jang.Morphology-controlled mesoporous SiO2 nanorods for efficient scaffolds in organo-metal halide perovskite solar cells. Chemical Communications 52 (22), 4231-4234 (2016).
    57. T. Leijtens, B. Lauber, G. E. Eperon, S. D. Stranks and H. J. Snaith.The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells. The Journal of Physical Chemistry Letters 5 (7), 1096-1102 (2014).
    58. G. Xiao, C. Shi, K. Lv, C. Ying and Y. Wang.Nb-doping TiO2 electron transporting layer for efficient perovskite solar cells. ACS Applied Energy Materials 1 (6), 2576-2581 (2018).
    59. X. Li, S. M. Dai, P. Zhu, L. L. Deng, S. Y. Xie, Q. Cui, H. Chen, N. Wang and H. Lin.Efficient perovskite solar cells depending on TiO2 nanorod arrays. ACS Appl Mater Interfaces 8 (33), 21358-21365 (2016).
    60. K. Mahmood, B. S. Swain and A. Amassian.16.1% efficient hysteresis-free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays. Advanced Energy Materials 5 (17), 1-11 (2015).
    61. S. Li, P. Zhang, H. Chen, Y. Wang, D. Liu, J. Wu, H. Sarvari and Z. D. Chen.Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. Journal of Power Sources 342, 990-997 (2017).
    62. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith.Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342 (6156), 341-344 (2013).
    63. J. Huang, M. Wang, J. Li, Z. Yang and X. Yao.BCP influenced crystallization of MAPbI3-xClx for enhanced power conversion efficiency and stability in perovskite solar cell. Organic Electronics 52, 130-137 (2018).
    64. L. Huang, Z. Hu, J. Xu, K. Zhang, J. Zhang and Y. Zhu.Multi-step slow annealing perovskite films for high performance planar perovskite solar cells. Solar Energy Materials and Solar Cells 141, 377-382 (2015).
    65. L. Huang, Z. Hu, G. Yue, J. Liu, X. Cui, J. Zhang and Y. Zhu.CH3NH3PbI(3-x)Cl(x) films with coverage approaching 100% and with highly oriented crystal domains for reproducible and efficient planar heterojunction perovskite solar cells. Phys Chem Chem Phys 17 (34), 22015-22022 (2015).
    66. D. Liu, L. Wu, C. Li, S. Ren, J. Zhang, W. Li and L. Feng.Controlling CH3NH3PbI(3-x)Cl(x) film morphology with two-step annealing method for efficient hybrid perovskite solar cells. ACS Appl Mater Interfaces 7 (30), 16330-16337 (2015).
    67. D. Wang, Z. Liu, Z. Zhou, H. Zhu, Y. Zhou, C. Huang, Z. Wang, H. Xu, Y. Jin, B. Fan, S. Pang and G. Cui.Reproducible one-step fabrication of compact MAPbI3–xClx thin films derived from mixed-lead-halide precursors. Chemistry of Materials 26 (24), 7145-7150 (2014).
    68. K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M. T. Horantner, J. T. Wang, C. Z. Li, A. K. Jen, T. L. Lee and H. J. Snaith.C60 as an efficient n-type compact layer in perovskite solar cells. Journal of Physical Chemistry Letters 6 (12), 2399-2405 (2015).
    69. K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R. H. Friend and A. K.-Y. Jen.Heterojunction modification for highly efficient organic–inorganic perovskite solar cells. ACS Nano 8 (12), 12701-12709 (2014).
    70. J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. Srimath Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel and A. Hagfeldt.Highly efficient planar perovskite solar cells through band alignment engineering. Energy & Environmental Science 8 (10), 2928-2934 (2015).
    71. E. H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Grätzel, A. Hagfeldt and J.-P. Correa-Baena.Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy & Environmental Science 9 (10), 3128-3134 (2016).
    72. Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang and J. You.Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nature Energy 2 (1), 1-7 (2016).
    73. Q. Dong, Y. Shi, C. Zhang, Y. Wu and L. Wang.Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy 40, 336-344 (2017).
    74. Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang and J. You.Planar-structure perovskite solar cells with efficiency beyond 21. Advanced Materials 29 (46), 1-7 (2017).
    75. M. F. Ayguler, A. G. Hufnagel, P. Rieder, M. Wussler, W. Jaegermann, T. Bein, V. Dyakonov, M. L. Petrus, A. Baumann and P. Docampo.Influence of fermi level alignment with tin oxide on the hysteresis of perovskite solar cells. ACS Appl Mater Interfaces 10 (14), 11414-11419 (2018).
    76. J. Li, T. Bu, Y. Liu, J. Zhou, J. Shi, Z. Ku, Y. Peng, J. Zhong, Y. B. Cheng and F. Huang.Enhanced crystallinity of low-temperature solution-processed SnO2 for highly reproducible planar perovskite solar cells. ChemSusChem 11 (17), 2898-2903 (2018).
    77. W. Ke, D. Zhao, A. J. Cimaroli, C. R. Grice, P. Qin, Q. Liu, L. Xiong, Y. Yan and G. Fang.Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. Journal of Materials Chemistry A 3 (47), 24163-24168 (2015).
    78. G. Yang, C. Chen, F. Yao, Z. Chen, Q. Zhang, X. Zheng, J. Ma, H. Lei, P. Qin, L. Xiong, W. Ke, G. Li, Y. Yan and G. Fang.Effective carrier-concentration tuning of SnO2 quantum dot electron-selective layers for high-performance planar perovskite solar cells. Advanced Materials 30 (14), 1-9 (2018).
    79. J.-P. Correa-Baena, W. Tress, K. Domanski, E. H. Anaraki, S.-H. Turren-Cruz, B. Roose, P. P. Boix, M. Grätzel, M. Saliba, A. Abate and A. Hagfeldt.Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy & Environmental Science 10 (5), 1207-1212 (2017).
    80. J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen.CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials 25 (27), 3727-3732 (2013).
    81. C.-H. Chiang, M. K. Nazeeruddin, M. Grätzel and C.-G. Wu.The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy & Environmental Science 10 (3), 808-817 (2017).
    82. W. Chen, Y. Zhou, L. Wang, Y. Wu, B. Tu, B. Yu, F. Liu, H. W. Tam, G. Wang, A. B. Djurisic, L. Huang and Z. He.Molecule-doped nickel oxide: Verified charge transfer and planar inverted mixed cation perovskite solar cell. Advanced Materials 30 (20), 1-9 (2018).
    83. X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng and J. Huang.Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nature Energy 2 (7), 1-9 (2017).
    84. D. Yang, T. Sano, Y. Yaguchi, H. Sun, H. Sasabe and J. Kido.Achieving 20% efficiency for low‐temperature‐processed inverted perovskite solar cells. Advanced Functional Materials 29 (12), 1-6 (2018).
    85. X. Hu, Z. Huang, X. Zhou, P. Li, Y. Wang, Z. Huang, M. Su, W. Ren, F. Li, M. Li, Y. Chen and Y. Song.Wearable large-scale perovskite solar-power source via nanocellular scaffold. Advanced Materials 29 (42), 1-8 (2017).
    86. M. Najafi, F. Di Giacomo, D. Zhang, S. Shanmugam, A. Senes, W. Verhees, A. Hadipour, Y. Galagan, T. Aernouts, S. Veenstra and R. Andriessen.Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers. Small 14 (12), 1-10 (2018).
    87. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn and S. H. Im.Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science 8 (5), 1602-1608 (2015).
    88. H. S. Kim, I. H. Jang, N. Ahn, M. Choi, A. Guerrero, J. Bisquert and N. G. Park.Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. Journal of Physical Chemistry Letters 6 (22), 4633-4639 (2015).
    89. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng and L. Spiccia.A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angewandte Chemie International Edition 53 (37), 9898-9903 (2014).
    90. Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan and J. Huang.Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy & Environmental Science 7 (7), 2359-2365 (2014).
    91. Y. Zhao and K. Zhu.CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: Structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. The Journal of Physical Chemistry C 118 (18), 9412-9418 (2014).
    92. C. Zuo and L. Ding.An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. Nanoscale 6 (17), 9935-9938 (2014).
    93. Y. Tu, J. Wu, X. He, P. Guo, H. Luo, Q. Liu, J. Lin, M. Huang, Y. Huang, L. Fan and Z. Lan.Controlled growth of CH3NH3PbI3 films towards efficient perovskite solar cells by varied-stoichiometric intermediate adduct. Applied Surface Science 403, 572-577 (2017).
    94. S. Paek, P. Schouwink, E. N. Athanasopoulou, K. T. Cho, G. Grancini, Y. Lee, Y. Zhang, F. Stellacci, M. K. Nazeeruddin and P. Gao.From nano- to micrometer scale: The role of antisolvent treatment on high performance perovskite solar cells. Chemistry of Materials 29 (8), 3490-3498 (2017).
    95. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok.Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials 13 (9), 897-903 (2014).
    96. K.-M. Lee, C.-J. Lin, B.-Y. Liou, S.-M. Yu, C.-C. Hsu, V. Suryanarayanan and M.-C. Wu.Selection of anti-solvent and optimization of dropping volume for the preparation of large area sub-module perovskite solar cells. Solar Energy Materials and Solar Cells 172, 368-375 (2017).
    97. N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi and N. G. Park.Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. Journal of the American Chemical Society 137 (27), 8696-8699 (2015).
    98. T. Bu, L. Wu, X. Liu, X. Yang, P. Zhou, X. Yu, T. Qin, J. Shi, S. Wang, S. Li, Z. Ku, Y. Peng, F. Huang, Q. Meng, Y.-B. Cheng and J. Zhong.Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Advanced Energy Materials 7 (20), 1-10 (2017).
    99. K.-M. Lee, C.-J. Lin, B.-Y. Liou, S.-M. Yu, C.-C. Hsu and V. Suryanarayanan.Effect of anti-solvent mixture on the performance of perovskite solar cells and suppression hysteresis behavior. Organic Electronics 65, 266-274 (2019).
    100. L. Yang, X. Wang, X. Mai, T. Wang, C. Wang, X. Li, V. Murugadoss, Q. Shao, S. Angaiah and Z. Guo.Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array. Journal of Colloid and Interface Science 534, 459-468 (2019).
    101. Y. Li, J. Wang, Y. Yuan, X. Dong and P. Wang.Anti-solvent dependent device performance in CH3NH3PbI3 solar cells: the role of intermediate phase content in the as-prepared thin films. Sustainable Energy & Fuels 1 (5), 1041-1048 (2017).
    102. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate and A. Hagfeldt.Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354 (6309), 206-209 (2016).
    103. J.-H. Im, H.-S. Kim and N.-G. Park.Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials 2 (8), 1-8 (2014).
    104. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel.Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499 (7458), 316-319 (2013).
    105. Y. Tu, J. Wu, X. He, P. Guo, T. Wu, H. Luo, Q. Liu, K. Wang, J. Lin, M. Huang, Y. Huang, Z. Lan and S. Li.Solvent engineering for forming stonehenge-like PbI2 nano-structures towards efficient perovskite solar cells. Journal of Materials Chemistry A 5 (9), 4376-4383 (2017).
    106. J. Zhang, G. Zhai, W. Gao, C. Zhang, Z. Shao, F. Mei, J. Zhang, Y. Yang, X. Liu and B. Xu.Accelerated formation and improved performance of CH3NH3PbI3-based perovskite solar cells via solvent coordination and anti-solvent extraction. Journal of Materials Chemistry A 5 (8), 4190-4198 (2017).
    107. M. Li, X. Yan, Z. Kang, X. Liao, Y. Li, X. Zheng, P. Lin, J. Meng and Y. Zhang.Enhanced efficiency and stability of perovskite solar cells via anti-solvent treatment in two-step deposition method. ACS Appl Mater Interfaces 9 (8), 7224-7231 (2017).
    108. W. T. Wang, S. K. Das and Y. Tai.Fully ambient-processed perovskite film for perovskite solar cells: Effect of solvent polarity on lead iodide. ACS Appl Mater Interfaces 9 (12), 10743-10751 (2017).
    109. Y. Wang, S. Li, P. Zhang, D. Liu, X. Gu, H. Sarvari, Z. Ye, J. Wu, Z. Wang and Z. D. Chen.Solvent annealing of PbI2 for the high-quality crystallization of perovskite films for solar cells with efficiencies exceeding 18. Nanoscale 8 (47), 19654-19661 (2016).
    110. Y. H. Lee, J. Luo, R. Humphry‐Baker, P. Gao, M. Grätzel and M. K. Nazeeruddin.Unraveling the reasons for efficiency loss in perovskite solar cells. Advanced Functional Materials 25 (25), 3925-3933 (2015).
    111. M. Liu, M. B. Johnston and H. J. Snaith.Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501 (7467), 395-399 (2013).
    112. C. W. Chen, H. W. Kang, S. Y. Hsiao, P. F. Yang, K. M. Chiang and H. W. Lin.Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Advanced Materials 26 (38), 6647-6652 (2014).
    113. W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, G. Fang and Y. Yan.Efficient fully-vacuum-processed perovskite solar cells using copper phthalocyanine as hole selective layers. Journal of Materials Chemistry A 3 (47), 23888-23894 (2015).
    114. D. Yang, Z. Yang, W. Qin, Y. Zhang, S. Liu and C. Li.Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition. Journal of Materials Chemistry A 3 (18), 9401-9405 (2015).
    115. C. Momblona, L. Gil-Escrig, E. Bandiello, E. M. Hutter, M. Sessolo, K. Lederer, J. Blochwitz-Nimoth and H. J. Bolink.Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy & Environmental Science 9 (11), 3456-3463 (2016).
    116. P. S. Shen, J. S. Chen, Y. H. Chiang, M. H. Li, T. F. Guo and P. Chen.Low‐pressure hybrid chemical vapor growth for efficient perovskite solar cells and large‐area module. Advanced Materials Interfaces 3 (8), 1-8 (2016).
    117. Y. Jiang, M. R. Leyden, L. Qiu, S. Wang, L. K. Ono, Z. Wu, E. J. Juarez-Perez and Y. Qi.Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability. Advanced Functional Materials 28 (1), 1-13 (2018).
    118. Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li and Y. Yang.Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society 136 (2), 622-625 (2014).
    119. X. Wang, L.-L. Deng, L.-Y. Wang, S.-M. Dai, Z. Xing, X.-X. Zhan, X.-Z. Lu, S.-Y. Xie, R.-B. Huang and L.-S. Zheng.Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature. Journal of Materials Chemistry A 5 (4), 1706-1712 (2017).
    120. F. Hao, C. C. Stoumpos, Z. Liu, R. P. Chang and M. G. Kanatzidis.Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. Journal of the American Chemical Society 136 (46), 16411-16419 (2014).
    121. M. R. Leyden, M. V. Lee, S. R. Raga and Y. Qi.Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations. Journal of Materials Chemistry A 3 (31), 16097-16103 (2015).
    122. Q. Chen, H. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, L. Dou, Y. Liu and Y. Yang.Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett 14 (7), 4158-4163 (2014).
    123. Z. Liu, L. Qiu, E. J. Juarez-Perez, Z. Hawash, T. Kim, Y. Jiang, Z. Wu, S. R. Raga, L. K. Ono and S. F. Liu.Gas-solid reaction based over one-micrometer thick stable perovskite films for efficient solar cells and modules. Nature communications 9 (1), 1-11 (2018).
    124. H. S. Kim and N. G. Park.Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: Effects of perovskite crystal size and mesoporous TiO2 layer. Journal of Physical Chemistry Letters 5 (17), 2927-2934 (2014).
    125. M. Li, Y. Huan, X. Yan, Z. Kang, Y. Guo, Y. Li, X. Liao, R. Zhang and Y. Zhang.Efficient Yttrium(III) Chloride-treated TiO2 electron transfer layers for performance-improved and hysteresis-less perovskite solar cells. ChemSusChem 11 (1), 171-177 (2018).
    126. S. Wang, Y. Zhu, B. Liu, C. Wang and R. Ma.Introduction of carbon nanodots into SnO2 electron transport layer for efficient and UV stable planar perovskite solar cells. Journal of Materials Chemistry A 7 (10), 5353-5362 (2019).
    127. B. Chen, M. Yang, X. Zheng, C. Wu, W. Li, Y. Yan, J. Bisquert, G. Garcia-Belmonte, K. Zhu and S. Priya.Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. Journal of Physical Chemistry Letters 6 (23), 4693-4700 (2015).
    128. Y. Shao, Z. Xiao, C. Bi, Y. Yuan and J. Huang.Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications 5, 1-7 (2014).
    129. J. Xu, A. Buin, A. H. Ip, W. Li, O. Voznyy, R. Comin, M. Yuan, S. Jeon, Z. Ning, J. J. McDowell, P. Kanjanaboos, J. P. Sun, X. Lan, L. N. Quan, D. H. Kim, I. G. Hill, P. Maksymovych and E. H. Sargent.Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nature Communications 6, 1-8 (2015).
    130. J. Wei, Y. Zhao, H. Li, G. Li, J. Pan, D. Xu, Q. Zhao and D. Yu.Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. Journal of Physical Chemistry Letters 5 (21), 3937-3945 (2014).
    131. D. A. Jacobs, Y. Wu, H. Shen, C. Barugkin, F. J. Beck, T. P. White, K. Weber and K. R. Catchpole.Hysteresis phenomena in perovskite solar cells: The many and varied effects of ionic accumulation. Phys Chem Chem Phys 19 (4), 3094-3103 (2017).
    132. C. Li, S. Tscheuschner, F. Paulus, P. E. Hopkinson, J. Kiessling, A. Kohler, Y. Vaynzof and S. Huettner.Iodine migration and its effect on hysteresis in perovskite solar cells. Advanced Materials 28 (12), 2446-2454 (2016).
    133. S. A. L. Weber, I. M. Hermes, S.-H. Turren-Cruz, C. Gort, V. W. Bergmann, L. Gilson, A. Hagfeldt, M. Graetzel, W. Tress and R. Berger.How the formation of interfacial charge causes hysteresis in perovskite solar cells. Energy & Environmental Science 11 (9), 2404-2413 (2018).
    134. D. Seol, A. Jeong, M. H. Han, S. Seo, T. S. Yoo, W. S. Choi, H. S. Jung, H. Shin and Y. Kim.Origin of hysteresis in CH3NH3PbI3 perovskite thin Films. Advanced Functional Materials 27 (37), 1-8 (2017).
    135. T. S. Sherkar, C. Momblona, L. Gil-Escrig, J. Avila, M. Sessolo, H. J. Bolink and L. J. A. Koster.Recombination in perovskite solar cells: Significance of grain boundaries, interface traps, and defect ions. ACS Energy Letters 2 (5), 1214-1222 (2017).
    136. Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield and J. Huang.Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy & Environmental Science 9 (5), 1752-1759 (2016).
    137. S. Ravishankar, O. Almora, C. Echeverria-Arrondo, E. Ghahremanirad, C. Aranda, A. Guerrero, F. Fabregat-Santiago, A. Zaban, G. Garcia-Belmonte and J. Bisquert.Surface polarization model for the dynamic hysteresis of perovskite solar cells. Journal of Physical Chemistry Letters 8 (5), 915-921 (2017).
    138. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang.Interface engineering of highly efficient perovskite solar cells. Science 345 (6196), 542-546 (2014).
    139. T. Bu, M. Wen, H. Zou, J. Wu, P. Zhou, W. Li, Z. Ku, Y. Peng, Q. Li, F. Huang, Y.-B. Cheng and J. Zhong.Humidity controlled sol-gel Zr/TiO2 with optimized band alignment for efficient planar perovskite solar cells. Solar Energy 139, 290-296 (2016).
    140. G. Yin, J. Ma, H. Jiang, J. Li, D. Yang, F. Gao, J. Zeng, Z. Liu and S. F. Liu.Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature. ACS Appl Mater Interfaces 9 (12), 10752-10758 (2017).
    141. E. Halvani Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T. Ahmed, S.-H. Turren-Cruz, J. Seo, J. Luo, S. M. Zakeeruddin, W. R. Tress, T. Edvinsson, M. Grätzel, A. Hagfeldt and J.-P. Correa-Baena.Low-temperature Nb-doped SnO2 electron-selective contact yields over 20% efficiency in planar perovskite solar cells. ACS Energy Letters 3 (4), 773-778 (2018).
    142. H. Luo, J. Wu, X. Liu, Y. Yang, Q. Liu, M. Zhang, P. Yuan, W. Sun, Z. Lan and J. Lin.Thiourea interfacial modification for highly efficient planar perovskite solar cells. ACS Applied Energy Materials 1 (12), 6700-6706 (2018).
    143. J. Ryu, J. W. Lee, H. Yu, J. Yun, K. Lee, J. Lee, D. Hwang, J. Kang, S. K. Kim and J. Jang.Size effects of a graphene quantum dot modified-blocking TiO2 layer for efficient planar perovskite solar cells. Journal of Materials Chemistry A 5 (32), 16834-16842 (2017).
    144. G. S. Han, Y. H. Song, Y. U. Jin, J. W. Lee, N. G. Park, B. K. Kang, J. K. Lee, I. S. Cho, D. H. Yoon and H. S. Jung.Reduced graphene oxide/mesoporous TiO2 nanocomposite based perovskite solar cells. ACS Appl Mater Interfaces 7 (42), 23521-23526 (2015).
    145. L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li and H. Chen.Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. Journal of the American Chemical Society 137 (7), 2674-2679 (2015).
    146. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma and S. Hayase.All-solid perovskite solar cells with HOCO-R-NH3+I– anchor-group Inserted between porous Titania and perovskite. The Journal of Physical Chemistry C 118 (30), 16651-16659 (2014).
    147. A. Agresti, S. Pescetelli, A. L. Palma, A. E. Del Rio Castillo, D. Konios, G. Kakavelakis, S. Razza, L. Cinà, E. Kymakis, F. Bonaccorso and A. Di Carlo.Graphene interface engineering for perovskite solar modules: 12.6% power conversion efficiency over 50 cm2 active area. ACS Energy Letters 2 (1), 279-287 (2017).
    148. H. Li, W. Shi, W. Huang, E. P. Yao, J. Han, Z. Chen, S. Liu, Y. Shen, M. Wang and Y. Yang.Carbon quantum dots/TiOx electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19. Nano Letters 17 (4), 2328-2335 (2017).
    149. H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. De Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao and E. H. Sargent.Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355 (6326), 722-726 (2017).
    150. D. Liu, S. Li, P. Zhang, Y. Wang, R. Zhang, H. Sarvari, F. Wang, J. Wu, Z. Wang and Z. D. Chen.Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy 31, 462-468 (2017).
    151. F. Giordano, A. Abate, J. P. Correa Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt and M. Graetzel.Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nature Communications 7, 1-6 (2016).
    152. J. H. Heo, M. S. You, M. H. Chang, W. Yin, T. K. Ahn, S.-J. Lee, S.-J. Sung, D. H. Kim and S. H. Im.Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy 15, 530-539 (2015).
    153. N. Arora, M. I. Dar, M. Abdi-Jalebi, F. Giordano, N. Pellet, G. Jacopin, R. H. Friend, S. M. Zakeeruddin and M. Gratzel.Intrinsic and extrinsic stability of formamidinium lead bromide perovskite solar cells yielding high photovoltage. Nano Letters 16 (11), 7155-7162 (2016).
    154. X. Gu, Y. Wang, T. Zhang, D. Liu, R. Zhang, P. Zhang, J. Wu, Z. D. Chen and S. Li.Enhanced electronic transport in Fe3+-doped TiO2 for high efficiency perovskite solar cells. Journal of Materials Chemistry C 5 (41), 10754-10760 (2017).
    155. M. Park, J.-Y. Kim, H. J. Son, C.-H. Lee, S. S. Jang and M. J. Ko.Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells. Nano Energy 26, 208-215 (2016).
    156. M. A. Mahmud, N. K. Elumalai, M. B. Upama, D. Wang, A. M. Soufiani, M. Wright, C. Xu, F. Haque and A. Uddin.Solution-processed lithium-doped ZnO electron transport layer for efficient triple cation (Rb, MA, FA) perovskite solar cells. ACS Appl Mater Interfaces 9 (39), 33841-33854 (2017).
    157. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith.Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 7 (3), 982-988 (2014).
    158. T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix and T. Baikie.Formamidinium-containing metal-halide: An alternative material for near-IR absorption perovskite solar cells. The Journal of Physical Chemistry C 118 (30), 16458-16462 (2013).
    159. J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel and A. Hagfeldt.The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science 10 (3), 710-727 (2017).
    160. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Gratzel and F. De Angelis.Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Letters 14 (6), 3608-3616 (2014).
    161. Y. Deng, Q. Dong, C. Bi, Y. Yuan and J. Huang.Air-stable, efficient mixed-cation perovskite solar cells with Cu electrode by scalable fabrication of active layer. Advanced Energy Materials 6 (11), 1-6 (2016).
    162. Y. Zhang, G. Grancini, Y. Feng, A. M. Asiri and M. K. Nazeeruddin.Optimization of stable quasi-cubic FAxMA1–xPbI3 perovskite structure for solar cells with efficiency beyond 20%. ACS Energy Letters 2 (4), 802-806 (2017).
    163. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok.Compositional engineering of perovskite materials for high-performance solar cells. Nature 517 (7535), 1-4 (2015).
    164. X. Zheng, C. Wu, S. K. Jha, Z. Li, K. Zhu and S. Priya.Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation. ACS Energy Letters 1 (5), 1014-1020 (2016).
    165. T. M. Koh, V. Shanmugam, J. Schlipf, L. Oesinghaus, P. Muller-Buschbaum, N. Ramakrishnan, V. Swamy, N. Mathews, P. P. Boix and S. G. Mhaisalkar.Nanostructuring mixed-dimensional perovskites: A route toward tunable, efficient photovoltaics. Advanced Materials 28 (19), 3653-3661 (2016).
    166. D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp and M. G. Kanatzidis.2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society 137 (24), 7843-7850 (2015).
    167. G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis and M. Graetzel.One-Year stable perovskite solar cells by 2D/3D interface engineering. Nature communications 8, 15684 (2017).
    168. T. J. Jacobsson, J. P. Correa-Baena, E. Halvani Anaraki, B. Philippe, S. D. Stranks, M. E. Bouduban, W. Tress, K. Schenk, J. Teuscher, J. E. Moser, H. Rensmo and A. Hagfeldt.Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. Journal of the American Chemical Society 138 (32), 10331-10343 (2016).
    169. C. Roldán-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel and M. K. Nazeeruddin.High efficiency methylammonium lead triiodide perovskite solar cells: The relevance of non-stoichiometric precursors. Energy & Environmental Science 8 (12), 3550-3556 (2015).
    170. J. Emara, T. Schnier, N. Pourdavoud, T. Riedl, K. Meerholz and S. Olthof.Impact of film stoichiometry on the ionization energy and electronic structure of CH3NH3PbI3 perovskites. Advanced Materials 28 (3), 553-559 (2016).
    171. B. W. Park, N. Kedem, M. Kulbak, D. Y. Lee, W. S. Yang, N. J. Jeon, J. Seo, G. Kim, K. J. Kim, T. J. Shin, G. Hodes, D. Cahen and S. I. Seok.Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nature Communications 9 (1), 3301 (2018).
    172. Y. C. Kim, N. J. Jeon, J. H. Noh, W. S. Yang, J. Seo, J. S. Yun, A. Ho-Baillie, S. Huang, M. A. Green, J. Seidel, T. K. Ahn and S. I. Seok.Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Advanced Energy Materials 6 (4), 1-8 (2016).
    173. M. C. Shih, S. S. Li, C. H. Hsieh, Y. C. Wang, H. D. Yang, Y. P. Chiu, C. S. Chang and C. W. Chen.Spatially resolved imaging on photocarrier generations and band alignments at perovskite/PbI2 heterointerfaces of perovskite solar cells by light-modulated scanning tunneling microscopy. Nano Letters 17 (2), 1154-1160 (2017).
    174. W. Ke, C. Xiao, C. Wang, B. Saparov, H. S. Duan, D. Zhao, Z. Xiao, P. Schulz, S. P. Harvey, W. Liao, W. Meng, Y. Yu, A. J. Cimaroli, C. S. Jiang, K. Zhu, M. Al-Jassim, G. Fang, D. B. Mitzi and Y. Yan.Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells. Advanced Materials 28 (26), 5214-5221 (2016).
    175. X. Li, M. I. Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han and M. Gratzel.Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid omega-ammonium chlorides. Nature Chemistry 7 (9), 703-711 (2015).
    176. D. S. Lee, J. S. Yun, J. Kim, A. M. Soufiani, S. Chen, Y. Cho, X. Deng, J. Seidel, S. Lim, S. Huang and A. W. Y. Ho-Baillie.Passivation of grain boundaries by phenethylammonium in formamidinium-methylammonium lead halide perovskite solar cells. ACS Energy Letters 3 (3), 647-654 (2018).
    177. X. Hou, S. Huang, W. Ou-Yang, L. Pan, Z. Sun and X. Chen.Constructing efficient and stable perovskite solar cells via interconnecting perovskite grains. ACS Appl Mater Interfaces 9 (40), 35200-35208 (2017).
    178. W. Zhu, C. Bao, Y. Wang, F. Li, X. Zhou, J. Yang, B. Lv, X. Wang, T. Yu and Z. Zou.Coarsening of one-step deposited organolead triiodide perovskite films via Ostwald ripening for high efficiency planar-heterojunction solar cells. Dalton Trans 45 (18), 7856-7865 (2016).
    179. G. Han, T. M. Koh, S. S. Lim, T. W. Goh, X. Guo, S. W. Leow, R. Begum, T. C. Sum, N. Mathews and S. Mhaisalkar.Facile method to reduce surface defects and trap densities in perovskite photovoltaics. ACS Appl Mater Interfaces 9 (25), 21292-21297 (2017).
    180. M. Yang, T. Zhang, P. Schulz, Z. Li, G. Li, D. H. Kim, N. Guo, J. J. Berry, K. Zhu and Y. Zhao.Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening. Nature Communications 7, 1-9 (2016).
    181. K. T. Cho, S. Paek, G. Grancini, C. Roldán-Carmona, P. Gao, Y. Lee and M. K. Nazeeruddin.Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface. Energy & Environmental Science 10 (2), 621-627 (2017).
    182. Y. Cho, A. M. Soufiani, J. S. Yun, J. Kim, D. S. Lee, J. Seidel, X. Deng, M. A. Green, S. Huang and A. W. Y. Ho-Baillie.Mixed 3D-2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability. Advanced Energy Materials 8 (20), 1-10 (2018).
    183. H.-S. Yoo and N.-G. Park.Post-treatment of perovskite film with phenylalkylammonium iodide for hysteresis-less perovskite solar cells. Solar Energy Materials and Solar Cells 179, 57-65 (2018).
    184. Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture and G. Cui.Methylamine-Gas-Induced defect-healing behavior of CH3NH3PbI3 thin Films for perovskite solar cells. Angewandte Chemie International Edition 54 (33), 9705-9709 (2015).
    185. B. Conings, S. A. Bretschneider, A. Babayigit, N. Gauquelin, I. Cardinaletti, J. Manca, J. Verbeeck, H. J. Snaith and H. G. Boyen.Structure-Property relations of methylamine vapor treated hybrid perovskite CH3NH3PbI3 films and solar cells. ACS Appl Mater Interfaces 9 (9), 8092-8099 (2017).
    186. Y. Zhang, S.-G. Kim, D. Lee, H. Shin and N.-G. Park.Bifacial stamping for high efficiency perovskite solar cells. Energy & Environmental Science 12 (1), 308-321 (2019).
    187. J. Zhao, Y. Zhang, X. Zhao, J. Zhang, H. Wang, Z. Zhu and Q. Liu.Band alignment strategy for printable triple mesoscopic perovskite solar cells with enhanced photovoltage. ACS Applied Energy Materials 2 (3), 2034-2042 (2019).
    188. M. Thambidurai, S. Foo, K. M. Muhammed Salim, P. C. Harikesh, A. Bruno, N. F. Jamaludin, S. Lie, N. Mathews and C. Dang.Improved photovoltaic performance of triple-cation mixed-halide perovskite solar cells with binary trivalent metals incorporated into the titanium dioxide electron transport layer. Journal of Materials Chemistry C 7 (17), 5028-5036 (2019).
    189. M. Wang, Z. Zang, B. Yang, X. Hu, K. Sun and L. Sun.Performance improvement of perovskite solar cells through enhanced hole extraction: The role of iodide concentration gradient. Solar Energy Materials and Solar Cells 185, 117-123 (2018).
    190. P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin and A. K. Jen.Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater 26 (22), 3748-3754 (2014).
    191. J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung, C.-L. Lee, D.-Y. Kim, J.-M. Yun, Y.-H. Seo, S.-S. Kim and S.-I. Na.Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12, 96-104 (2015).
    192. Z. Zhang, J. Qin, W. Shi, Y. Liu, Y. Zhang, Y. Liu, H. Gao and Y. Mao.Enhanced power conversion efficiency of perovskite solar cells with an up-conversion material of Er(3+)-Yb(3+)-Li(+) tri-doped TiO2. Nanoscale Res Lett 13 (1), 1-8 (2018).
    193. M. Xiao, L. Zhao, M. Geng, Y. Li, B. Dong, Z. Xu, L. Wan, W. Li and S. Wang.Selection of an anti-solvent for efficient and stable cesium-containing triple cation planar perovskite solar cells. Nanoscale 10 (25), 12141-12148 (2018).
    194. Y. Yang, K. Ri, A. Mei, L. Liu, M. Hu, T. Liu, X. Li and H. Han.The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell. Journal of Materials Chemistry A 3 (17), 9103-9107 (2015).
    195. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan and J. Huang.Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater 26 (37), 6503-6509 (2014).
    196. J. Liu, C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei and W. Lau.Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell. ACS Appl Mater Interfaces 7 (43), 24008-24015 (2015).
    197. https://srdata.nist.gov/xps/Default.aspx, NIST X-ray Photoelectron Spectroscopy Database.
    198. M. Kuznetsov, J. F. Zhuravlev, V. Zhilyaev and V. Gubanov.XPS study of the nitrides, oxides and oxynitrides of titanium. Journal of electron spectroscopy and related phenomena 58 (1-2), 1-9 (1992).
    199. P. Namkhang, W.-J. An, W.-N. Wang, K. S. Rane, P. Kongkachuichay and P. Biswas.Low temperature synthesis of N-doped TiO2 nanocatalysts for photodegradation of methyl orange. Journal of Nanoscience and Nanotechnology 13 (3), 2376-2381 (2013).
    200. C. Di Valentin and G. Pacchioni.Trends in non-metal doping of anatase TiO2: B, C, N and F. Catalysis Today 206, 12-18 (2013).
    201. L. Liu, V. E. Henrich, W. Ellis and I. Shindo.Bulk and surface electronic structure of Li2O. Physical Review B 54 (3), 2236-2239 (1996).
    202. M. Moakafi, R. Khenata, A. Bouhemadou, H. Khachai, B. Amrani, D. Rached and M. Rérat.Electronic and optical properties under pressure effect of alkali metal oxides. The European Physical Journal B 64 (1), 35-42 (2008).
    203. R. D. Eithiraj, G. Jaiganesh and G. Kalpana.Electronic structure and ground-state properties of alkali-metal oxides–Li2O, Na2O, K2O and Rb2O: A first-principles study. Physica B: Condensed Matter 396 (1-2), 124-131 (2007).

    無法下載圖示 全文公開日期 2024/08/13 (校內網路)
    全文公開日期 2024/08/13 (校外網路)
    全文公開日期 2024/08/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE