簡易檢索 / 詳目顯示

研究生: Philip Nathaniel Immanuel
Philip Nathaniel Immanuel
論文名稱: 使用二硫化鎢奈米結構之高效光催化活性和其提高鹵化物鈣鈦礦太陽能電池的穩定性
Efficient Photocatalytic Activity and Improving the Stability of Halide Perovskite Solar Cells using Tungsten Disulfide Nanostructure
指導教授: 黃崧任
Isaac Song-Jeng Huang
口試委員: 丘群
Chun Chiu
李天錫
Lee, Benjamin Tien-Hsi
林景崎
Lin, Jing-Chie
顏毅廣
Yen Yi-Kuang
Lena Yadgarov
Lena Yadgarov
Albina Musin
Albina Musin
Raman Sankar
Raman Sankar
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 110
中文關鍵詞: Halide perovskitesTungsten disulfide nanostructuresPhotocatalysisDye degradationSolar cellsStability
外文關鍵詞: Halide perovskites, Tungsten disulfide nanostructures, Photocatalysis, Dye degradation, Solar cells, Stability
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當前環境問題需要解決的首要問題是綠色能源的採集和從污染物中淨化自然資源。 人類生命威脅的主要原因是有害污水排放帶來的污染。 減少有毒廢水污染的最有效方法之一是光催化反應。 光催化提供了一條潛在的途徑,並在這種情況下迅速發展。 鹵化物鈣鈦礦 (HP) 是極好的候選材料,因為它們的負導帶最小且光催化所需的低功。 令人驚訝的是,通過添加過渡金屬二硫化物作為助催化劑,可以減少電荷複合,HP 的性能會顯著提高。 在這裡,我們研究了 Cs4PbBr6/WS2 奈米複合材料在可見光下降解有機染料的光催化效率。 我們觀察到,與純 Cs4PbBr6 奈米晶體相比,Cs4PbBr6/WS2 奈米結構顯著改善了有機染料的降解。 瞬態吸收的測量揭示了從 Cs4PbBr6 到 WS2 的電荷轉移。 由於載流子復合減少,奈米複合材料表現出改善的光催化性能。
    其次,由於其高效率、多功能性和低生產成本,HPs 基太陽能電池引起了廣泛關注。 因此,HPs基太陽能電池具有巨大的商業化潛力。 然而,HP 在正常環境中並不穩定。 因此,HP 的不穩定性是需要解決的重要問題,以使其能夠快速商業化。 WS2 奈米粒子 (NPs) 在這項工作中成功地應用於基於甲基銨碘化鉛 (MAPbI3) 的 HPs 太陽能電池。 穩定劑是 HPs 太陽能電池中 WS2 NPs 的主要功能。 在這裡,WS2 NP 充當電荷轉移通道和散熱器,從而實現有效的電荷分離。 WS2 NPs 有效地從相鄰的 MAPbI3 中提取電子並因此增加了電流密度。 我們的研究結果表明穩定性和太陽能電池性能有了相當大的改善。 結合這兩項工作,WS2 奈米結構增強了光催化降解並提高了 HP 的穩定性。 這為實施 WS2 NPs 以長期穩定 HPs 太陽能電池和淨化資源中的有機污染物鋪平了道路。


    The primary problems that need to be resolved concerning the current environmental issues are green energy harvest and the purification of natural resources from pollutants. The main cause of human life threads is pollution brought on by the release of hazardous effluents. One of the most effective methods for reducing toxic effluent pollution is photocatalytic reactions. Photocatalysis offers a potential route and is rapidly evolving in this situation. Halide perovskites (HPs) are excellent candidates because of their negative conduction band minimum and the low work function are necessary for photocatalysis. Surprisingly, by adding transitional-metal dichalcogenides as a co-catalyst, which allows to reduced charge recombination, HPs performance improves dramatically. Here, we examine the photocatalytic efficiency of Cs4PbBr6/WS2 nanocomposites for the degradation of organic dyes under visible light. We observed that the Cs4PbBr6/WS2 nanostructures significantly improve the degradation of organic dye compared to pure Cs4PbBr6 nanocrystals. The measurements of transient absorption reveal a charge transfer from Cs4PbBr6 to WS2. Due to reduced carrier recombination, the nanocomposites exhibit improved photocatalytic performance.
    Second, due to their high efficiency, versatility, and low production costs, HPs-based solar cells attracted a lot of attention. Therefore, HPs- based solar cells have enormous commercialization potential. However, HPs are not stable in a normal environment. Thus, the instability of the HPs is an essential issue that needs to be solved to enable its rapid commercialization. The WS2 nanoparticles (NPs) were successfully implemented in this work on HPs-based solar cells that are methylammonium lead iodide (MAPbI3) based. The stabilizing agent is the major function of the WS2 NPs in the HPs-solar cells. Here, the WS2 NPs function as charge transfer pathways and heat dissipators, enabling an efficient charge separation. The WS2 NPs efficiently extract electrons from the adjacent MAPbI3 and increase the current density as a result. Our findings show a considerable improvement in the stability and solar cell properties. Combining these two works, the WS2 nanostructure enhances the photocatalytic degradation as well as improving the stability of the HPs. This pave a for the WS2 nanostructures to be implemented to stabilize HPs solar cells over the long term and to purify the resources from organic pollutants.

    Acknowledgement 1 List of Figure 6 List of Tables 9 Abstract(摘要) 10 Abstract 11 Chapter 1: Introduction 13 1.1 Motivation 13 1.2 Pollutants caused by dyes 13 1.3 Purification of polluted resources 15 1.4 Energy crises and Solar cells: 15 1.5 HPs 16 1.6 Research layout 17 Chapter 2: Background 18 2.1 Photocatalytic dye degradation. 18 2.2 HPs for dye degradation 18 2.3 All inorganic HPs 19 2.3.1 Effect of co-catalyst 20 2.3.2 Effect of TMDs as a co-catalyst 21 2.3.3 Photocatalytic Degradation of antibiotic 21 2.3.4 0D all inorganic HPs 22 2.4 HPs solar cell 22 2.4.2 Impact of Additive 24 2.4.3 Hole transport layer 24 2.4.4 Encapsulation with Polymers 25 2.5 Objectives 27 Chapter 3: Enhanced photocatalytic activity of Cs4PbBr6/WS2 hybrid nanocomposite 28 3.1 Introduction 28 3.2 Synthesis and characterization 31 3.2.1 Synthesis of Cs4PbBr6-NCs 31 3.2.2 Synthesis of WS2 NSs 31 3.2.3 Preparation of nanocomposites WS2-NT, WS2-NP, and WS2-bulk, with Cs4PbBr6-NCs 32 3.2.4 Cs4PbBr6 and WS2-NSs nanocomposites weight ratio 32 3.3 Material characterization 33 3.4 Photocatalytic measurement 35 3.4.1 Dye Preparation 35 3.4.2 Molar concentration 35 3.5 Results and Discussion 36 3.5.1 TEM and STEM 36 3.5.2 XRD 37 3.5.3 Raman analysis 39 3.5.4 Optical properties 40 3.5.5 Confocal microscope 43 3.5.6 Transient absorption (TA) 44 3.5.7 Degradation activity 47 3.5.8 EPR 55 3.6 Summary 57 Chapter 4: Improving the stability of halide perovskite solar cells using nanoparticles of tungsten disulfide 58 4.1 Introduction 58 4.2 Materials and Methods 61 4.2.1. Materials 61 4.2.3 Characterization 63 4.2.4 Simulation 63 4.2.5 Stability measurements 64 4.3 Results and Discussion 65 4.3.1 SEM, TEM, and absorption 65 4.3.2 SEM and XRD of MAPbI3 and WS2 NPs/MAPbI3 films 65 4.3.3 Simulation 70 4.3.4 Stability test 71 4.3.5 Solar cell characteristics 74 4.4 Summary 76 Chapter 5: Conclusions 77 Appendix – I 78 Future work: 85 Publication list: 86 References 88

    1. Das, A., Mahata, D., Kanti Adak, M.: Perovskite Based Photocatalyst for Wastewater Treatment: Green Approach of Environmental Sustainability. J Agric. Biol. Environ. Stat. 7, 1 (2021). https://doi.org/10.11648/j.ajbes.20210701.11
    2. Gao, G., Xi, Q., Zhou, H., Zhao, Y., Wu, C., Wang, L., Guo, P., Xu, J.: Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale. 9, 12032–12038 (2017). https://doi.org/10.1039/c7nr04421f
    3. Ju, H., Fang, T., Zhou, Y., Feng, X., Song, T., Lu, F., Liu, W.: CsPbBr3-MoS2-GO nanocomposites for boosting photocatalytic degradation performance. Appl Surf Sci. 551, (2021). https://doi.org/10.1016/j.apsusc.2021.149452
    4. Wang, X., He, J., Li, J., Lu, G., Dong, F., Majima, T., Zhu, M.: Immobilizing perovskite CsPbBr3 nanocrystals on Black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction. Appl. Catal. B. 277, (2020). https://doi.org/10.1016/j.apcatb.2020.11923
    5. Schünemann, S., Gastel, M. van, Tüysüz, H.: A CsPbBr3/Tio2 composite for visible-light-driven photocatalytic benzyl alcohol oxidation. Chem. Sus. Chem. 11, 2057–2061 (2018). https://doi.org/10.1002/cssc.201800679
    6. Varshney, S., Bar-Ziv, R., Zidki, T.: On the Remarkable Performance of Silver-based Alloy Nanoparticles in 4-Nitrophenol Catalytic Reduction. Chem Cat Chem. 12, 4680–4688 (2020). https://doi.org/10.1002/cctc.202000584
    7. Ikram M, Malik R, Raees R, Imran M, Wang F, Ali S, Khan M, Khan Q, Maqbool M. Recent advancements and future insight of lead-free non-toxic perovskite solar cells for sustainable and clean energy production: A review. Sustain. Energy Technol. Assess. 2022 Oct 1;53:102433.
    8. Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q. and Maqbool, M., 2021. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J Ind Eng Chem, 97, pp.111-128.
    9. Konstantinou, I.K. and Albanis, T.A., 2004. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl. Catal. B, 49(1), pp.1-14.
    10. Islam, S.: A Study on the Solutions of Environment Pollutions and Worker’s Health Problems Caused by Textile Manufacturing Operations. Biomed J Sci Tech Res. 28, (2020). https://doi.org/10.26717/bjstr.2020.28.004692
    11. Hasanpour M, Hatami M. Photocatalytic performance of aerogels for organic dyes removal from wastewaters: Review study. J. Mol. Liq. 2020 Jul 1; 309:113094.
    12. Sohrabnezhad, S.: Study of catalytic reduction and photodegradation of methylene blue by heterogeneous catalyst. Spectrochim Acta A Mol Biomol Spectrosc. 81, 228–235 (2011). https://doi.org/10.1016/j.saa.2011.05.109
    13. Devabhaktuni, V., Alam, M., Depuru, S.S.S.R., Green II, R.C., Nims, D. and Near, C., 2013. Solar energy: Trends and enabling technologies. Renew. Sustain. Energy Rev, 19, pp.555-564.
    14. Xu, Y.F., Wang, X.D., Liao, J.F., Chen, B.X., Chen, H.Y., Kuang, D. bin: Amorphous-TiO2-Encapsulated CsPbBr3 Nanocrystal Composite Photocatalyst with Enhanced Charge Separation and CO2 Fixation. Adv Mater Interfaces. 5, (2018). https://doi.org/10.1002/admi.201801015
    15. Chen, X., Chen, D., Li, J., Fang, G., Sheng, H., Zhong, J.: Tunable CsPbBr3/Cs4PbBr6 phase transformation and their optical spectroscopic properties. Dalton Transactions. 47, 5670–5678 (2018). https://doi.org/10.1039/c8dt00430g
    16. Su, Y., Zeng, Q., Chen, X., Ye, W., She, L., Gao, X., Ren, Z., Li, X.: Highly efficient CsPbBr3 perovskite nanocrystals induced by structure transformation between CsPbBr3 and Cs4PbBr6 phases. J Mater Chem C Mater. 7, 7548–7553 (2019). https://doi.org/10.1039/c9tc01763a
    17. Qian, X., Chen, Z., Yang, X., Zhao, W., Liu, C., Sun, T., Zhou, D., Yang, Q., Wei, G., Fan, M.: Perovskite cesium lead bromide quantum dots: A new efficient photocatalyst for degrading antibiotic residues in organic system. J Clean Prod. 249, (2020). https://doi.org/10.1016/j.jclepro.2019.119335
    18. Cardenas-Morcoso, D., Gualdrón-Reyes, A.F., Ferreira Vitoreti, A.B., García-Tecedor, M., Yoon, S.J., Solis De La Fuente, M., Mora-Seró, I., Gimenez, S.: Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots. J. Phys. Chem. Lett. 10, 630–636 (2019). https://doi.org/10.1021/acs.jpclett.8b03849
    19. Kong, Z.C., Liao, J.F., Dong, Y.J., Xu, Y.F., Chen, H.Y., Kuang, D. bin, Su, C.Y.: Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 3, 2656–2662 (2018). https://doi.org/10.1021/acsenergylett.8b01658
    20. Saidaminov, M.I., Almutlaq, J., Sarmah, S., Dursun, I., Zhumekenov, A.A., Begum, R., Pan, J., Cho, N., Mohammed, O.F., Bakr, O.M.: Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids. ACS Energy Lett. 1, 840–845 (2016). https://doi.org/10.1021/acsenergylett.6b00396
    21. Riaz, U., Ashraf, S.M. and Kashyap, J. Role of conducting polymers in enhancing TiO2-based photocatalytic dye degradation: a short review. Polym Plast Technol Eng, 2015.54(17), pp.1850-1870.
    22. Khalafi, T., Buazar, F., Ghanemi, K.: Phycosynthesis and Enhanced Photocatalytic Activity of Zinc Oxide Nanoparticles Toward Organosulfur Pollutants. Sci Rep. 9, (2019). https://doi.org/10.1038/s41598-019-43368-3
    23. Fagan, Rachel, Declan E. McCormack, Dionysios D. Dionysiou, and Suresh C. Pillai. "A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern." Mater Sci Semicond Process. 42 (2016): 2-14.
    24. Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol: Photochemistry Reviews. 2012 Sep 1;13(3):169-89.
    25. Wu, Y., Wang, P., Guan, Z., Liu, J., Wang, Z., Zheng, Z., Jin, S., Dai, Y., Whangbo, M.H., Huang, B.: Enhancing the Photocatalytic Hydrogen Evolution Activity of Mixed-Halide Perovskite CH3NH3PbBr3-xIx Achieved by Bandgap Funneling of Charge Carriers. ACS Catal. 8, 10349–10357 (2018). https://doi.org/10.1021/acscatal.8b02374
    26. Park, S., Chang, W.J., Lee, C.W., Park, S., Ahn, H.Y., Nam, K.T.: Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat Energy. 2, (2017). https://doi.org/10.1038/nenergy.2016.185
    27. Zhang, Z., Shu, M., Jiang, Y., Xu, J.: Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction. J. Chem. Eng. 414, (2021). https://doi.org/10.1016/j.cej.2021.128889
    28. Xu, Y.F., Yang, M.Z., Chen, B.X., Wang, X.D., Chen, H.Y., Kuang, D. bin, Su, C.Y.: A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J Am Chem Soc. 139, 5660–5663 (2017). https://doi.org/10.1021/jacs.7b00489
    29. Song, W., Wang, Y., Wang, C., Wang, B., Feng, J., Luo, W., Wu, C., Yao, Y., Zou, Z.: Photocatalytic Hydrogen Production by Stable CsPbBr3@PANI Nanoparticles in Aqueous Solution. Chem Cat Chem. 13, 1711–1716 (2021). https://doi.org/10.1002/cctc.202001955
    30. Xiao, M., Hao, M., Lyu, M., Moore, E.G., Zhang, C., Luo, B., Hou, J., Lipton-Duffin, J., Wang, L.: Surface Ligands Stabilized Lead Halide Perovskite Quantum Dot Photocatalyst for Visible Light-Driven Hydrogen Generation. Adv Funct Mater. 29, (2019). https://doi.org/10.1002/adfm.201905683
    31. Pellegrino, A.L., Malandrino, G.: Surfactant-Free Synthesis of the Full Inorganic Perovskite CsPbBr3: Evolution and Phase Stability of CsPbBr3 vs CsPb2Br5 and Their Photocatalytic Properties. ACS Appl Energy Mater. (2021). https://doi.org/10.1021/acsaem.1c01636
    32. Deshpande, S. v., Bhiungade, R.A., Deshpande, M.P., Pawar, K.K., Bhat, T.S., Kulkarni, S.K., Sheikh, A.D.: Rapid detoxification of polluted water using ultrastable TiO2 encapsulated CsPbBr3 QDs in collected sunlight. Mater Res Bull. 142, (2021). https://doi.org/10.1016/j.materresbull.2021.111433
    33. Zhao, Y., Wang, Y., Liang, X., Shi, H., Wang, C., Fan, J., Hu, X., Liu, E.: Enhanced photocatalytic activity of Ag-CsPbBr3/CN composite for broad spectrum photocatalytic degradation of cephalosporin antibiotics 7-ACA. Appl Catal B. 247, 57–69 (2019). https://doi.org/10.1016/j.apcatb.2019.01.090
    34. Kour, P., Mukherjee, S.P.: CsPbBr3/Cs4PbBr6 perovskite@COF nanocomposites for visible-light-driven photocatalytic applications in water. J Mater Chem A Mater. 9, 6819–6826 (2021). https://doi.org/10.1039/d1ta00201e
    35. Correa-Baena, J.P., Saliba, M., Buonassisi, T., Grätzel, M., Abate, A., Tress, W., Hagfeldt, A.: Promises and challenges of perovskite solar cells. Science (1979). 358, 739–744 (2017). https://doi.org/10.1126/science.aam6323
    36. Dewi, H.A., Li, J., Wang, H., Chaudhary, B., Mathews, N., Mhaisalkar, S., Bruno, A.: Excellent Intrinsic Long-Term Thermal Stability of Co-Evaporated MAPbI3 Solar Cells at 85 °C. Adv Funct Mater. 31, (2021). https://doi.org/10.1002/adfm.202100557
    37. Wu, Y., Xie, F., Chen, H., Yang, X., Su, H., Cai, M., Zhou, Z., Noda, T., Han, L.: Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 achieved by Additive Engineering. Adv Mater. 29, (2017). https://doi.org/10.1002/adma.201701073
    38. Islam, M.B., Yanagida, M., Shirai, Y., Nabetani, Y., Miyano, K.: Highly stable semi-transparent MAPbI3 perovskite solar cells with operational output for 4000 h. Sol. Energy Mater Sol. Cells. 195, 323–329 (2019). https://doi.org/10.1016/j.solmat.2019.03.004
    39. Kim, H., Lee, J., Kim, B., Byun, H.R., Kim, S.H., Oh, H.M., Baik, S., Jeong, M.S.: Enhanced Stability of MAPbI3 Perovskite Solar Cells using Poly(p-chloro-xylylene) Encapsulation. Sci Rep. 9, (2019). https://doi.org/10.1038/s41598-019-51945-9
    40. Qian, X., Chen, Z., Yang, X., Zhao, W., Liu, C., Sun, T., Zhou, D., Yang, Q., Wei, G., Fan, M.: Perovskite cesium lead bromide quantum dots: A new efficient photocatalyst for degrading antibiotic residues in organic system. J Clean Prod. 249, (2020). https://doi.org/10.1016/j.jclepro.2019.119335
    41. Yin J, Maity P, De Bastiani M, Dursun I, Bakr OM, Brédas JL, Mohammed OF. Molecular behavior of zero-dimensional perovskites. Sci. Adv. 2017 Dec 15;3(12): e1701793.
    42. Yang, L., Wang, T., Yang, X., Zhang, M., Pi, C., Yu, J., Zhou, D., Yu, X., Qiu, J., Xu, X.: Extrinsic photoluminescence properties of individual micro-particle of Cs4PbBr6 perovskite with “defect” structure. Opt Express. 27, 31207 (2019). https://doi.org/10.1364/oe.27.031207
    43. de Matteis, F., Vitale, F., Privitera, S., Ciotta, E., Pizzoferrato, R., Generosi, A., Paci, B., di Mario, L., Cresi, J.S.P., Martelli, F., Prosposito, P.: Optical characterization of cesium lead bromide perovskites. Crystals (Basel). 9, (2019). https://doi.org/10.3390/cryst9060280
    44. Akkerman, Q.A., Park, S., Radicchi, E., Nunzi, F., Mosconi, E., de Angelis, F., Brescia, R., Rastogi, P., Prato, M., Manna, L.: Nearly Monodisperse Insulator Cs4PbX6 (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX3 Nanocrystals. Nano Lett. 17, 1924–1930 (2017). https://doi.org/10.1021/acs.nanolett.6b05262
    45. Qin, Z., Dai, S., Hadjiev, V.G., Wang, C., Xie, L., Ni, Y., Wu, C., Yang, G., Chen, S., Deng, L., Yu, Q., Feng, G., Wang, Z.M., Bao, J.: Revealing the Origin of Luminescence Center in 0D Cs4PbBr6 Perovskite. Chem. Mater. (2019). https://doi.org/10.1021/acs.chemmater.9b03426
    46. Zhang, Z., Zhu, Y., Wang, W., Zheng, W., Lin, R., Li, X., Zhang, H., Zhong, D., Huang, F.: Aqueous Solution Growth of Millimeter-Sized Nongreen-Luminescent Wide Bandgap Cs4PbBr6 Bulk Crystal. Cryst Growth Des. 18, 6393–6398 (2018). https://doi.org/10.1021/acs.cgd.8b00817
    47. Sedova, A., Višić, B., Vega-Mayoral, V., Vella, D., Gadermaier, C., Dodiuk, H., Kenig, S., Tenne, R., Gvishi, R., Bar, G.: Silica aerogels as hosting matrices for WS2 nanotubes and their optical characterization. J Mater Sci. 55, 7612–7623 (2020). https://doi.org/10.1007/s10853-020-04562-1
    48. Brüser, V., Popovitz-Biro, R., Albu-Yaron, A., Lorenz, T., Seifert, G., Tenne, R., Zak, A.: Single- to triple-wall WS2 Nanotubes Obtained by High-Power Plasma Ablation of WS2 Multiwall Nanotubes. Inorganics (Basel). 2, 177–190 (2014). https://doi.org/10.3390/inorganics2020177
    49. Tenne, R., Redlich, M.: Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes. Chem Soc Rev. 39, 1423–1434 (2010). https://doi.org/10.1039/b901466g
    50. Zhu, Y.Q., Sekine, T., Brigatti, K.S., Firth, S., Tenne, R., Rosentsveig, R., Kroto, H.W., Walton, D.R.M.: Shock-wave resistance of WS2 nanotubes. J Am Chem Soc. 125, 1329–1333 (2003). https://doi.org/10.1021/ja021208i
    51. Perrozzi, F., Emamjomeh, S.M., Paolucci, V., Taglieri, G., Ottaviano, L., Cantalini, C.: Thermal stability of WS2 flakes and gas sensing properties of WS2/WO3 composite to H2, NH3 and NO2. Sens Actuators B Chem. 243, 812–822 (2017). https://doi.org/10.1016/j.snb.2016.12.069
    52. Wang, F., Kinloch, I.A., Wolverson, D., Tenne, R., Zak, A., O’Connell, E., Bangert, U., Young, R.J.: Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes. 2d Mater. 4, (2017). https://doi.org/10.1088/2053-1583/4/1/015007
    53. Yadgarov, L., Višić, B., Abir, T., Tenne, R., Polyakov, A.Y., Levi, R., Dolgova, T. v., Zubyuk, V. v., Fedyanin, A.A., Goodilin, E.A., Ellenbogen, T., Tenne, R., Oron, D.: Strong light-matter interaction in tungsten disulfide nanotubes. Phys. Chem. Chem. Phys. 20, 20812–20820 (2018). https://doi.org/10.1039/c8cp02245c
    54. Sinha, S.S., Višić, B., Byregowda, A., Yadgarov, L.: Dynamical Nature of Exciton-Polariton Coupling in WS2 Nanoparticles. Isr J Chem. (2022). https://doi.org/10.1002/ijch.202100128
    55. Sinha, S.S., Yadgarov, L., Aliev, S.B., Feldman, Y., Pinkas, I., Chithaiah, P., Ghosh, S., Idelevich, A., Zak, A., Tenne, R.: MoS2 and WS2 Nanotubes: Synthesis, Structural Elucidation, and Optical Characterization. J. Phys. Chem. C. 125, 6324–6340 (2021). https://doi.org/10.1021/acs.jpcc.0c10784
    56. Sabarinathan, M., Harish, S., Archana, J., Navaneethan, M., Ikeda, H., Hayakawa, Y.: Highly efficient visible-light photocatalytic activity of MoS2-TiO2 mixtures hybrid photocatalyst and functional properties. RSC Adv. 7, 24754–24763 (2017). https://doi.org/10.1039/c7ra03633g
    57. Akkerman, Q.A., Motti, S.G., Srimath Kandada, A.R., Mosconi, E., D’Innocenzo, V., Bertoni, G., Marras, S., Kamino, B.A., Miranda, L., de Angelis, F., Petrozza, A., Prato, M., Manna, L.: Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. J Am Chem Soc. 138, 1010–1016 (2016). https://doi.org/10.1021/jacs.5b12124
    58. Zhong, Q., Cao, M., Hu, H., Yang, D., Chen, M., Li, P., Wu, L., Zhang, Q.: One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles. ACS Nano. 12, 8579–8587 (2018). https://doi.org/10.1021/acsnano.8b04209
    59. Ding, Y., Lin, R., Liang, Y., Zheng, W., Chen, L., Ouyang, X., Ouyang, X., Huang, F.: High-Efficiency Down-Conversion Radiation Fluorescence and Ultrafast Photoluminescence (1.2 ns) at the Interface of Hybrid Cs4PbBr6-CsI Nanocrystals. J. Phys. Chem. Lett. 12, 7342–7349 (2021). https://doi.org/10.1021/acs.jpclett.1c01615
    60. Rothschild, A., Sloan, J., Tenne, R.: Growth of WS2 nanotubes phases. J Am Chem Soc. 122, 5169–5179 (2000). https://doi.org/10.1021/ja994118v
    61. Chithaiah, P., Ghosh, S., Idelevich, A., Rovinsky, L., Livneh, T., Zak, A.: Solving the “MoS2 Nanotubes” Synthetic Enigma and Elucidating the Route for Their Catalyst-Free and Scalable Production. ACS Nano. 14, 3004–3016 (2020). https://doi.org/10.1021/acsnano.9b07866
    62. Taank, P., Karmakar, R., Sharma, R., Yadav, R.K., Shrivastava, M., Maurya, N.C., Maji, T.K., Karmakar, D., Adarsh, K. V.: An Insightful Picture of Multi-Particle Recombination in Few-Layer MoS2 Nanosheets. J. Phys. Chem. C. 126, 416–422 (2022). https://doi.org/10.1021/acs.jpcc.1c09283
    63. Sheik-Bahae, M., Said, A.A., Wei, T.H., Hagan, D.J., van Stryland, E.W.: Sensitive Measurement of Optical Nonlinearities Using a Single Beam. IEEE J Quant. Elect. 26, 760–769 (1990). https://doi.org/10.1109/3.53394
    64. Sutherland, R.L., McLean, D.G., Kirkpatrick, Sean.: Handbook of nonlinear optics. Marcel Dekker (2003).
    65. Xuan, T., Lou, S., Huang, J., Cao, L., Yang, X., Li, H., Wang, J.: Monodisperse and brightly luminescent CsPbBr3/Cs4PbBr6 perovskite composite nanocrystals. Nanoscale. 10, 9840–9844 (2018). https://doi.org/10.1039/c8nr01266k
    66. Miyata K, Atallah TL, Zhu XY. Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 2017 Oct 13;3(10):e1701469.
    67. Velázquez, M., Ferrier, A., Péchev, S., Gravereau, P., Chaminade, J.P., Portier, X., Moncorgé, R.: Growth and characterization of pure and Pr3+-doped Cs4PbBr6 crystals. J Cryst Growth. 310, 5458–5463 (2008). https://doi.org/10.1016/j.jcrysgro.2008.10.003
    68. Shen, P., Ma, X., Pan, F., Wang, Y.N., Liu, B., Ye, H.: Extrinsic Photoluminescence and Resonant Raman Spectra of CsPb2Br5 Microspheres. J Phy. Chem. C. 125, 6767–6772 (2021). https://doi.org/10.1021/acs.jpcc.0c11301
    69. Zhao, Z., Zhong, M., Zhou, W., Peng, Y., Yin, Y., Tang, D., Zou, B.: Simultaneous Triplet Exciton-Phonon and Exciton-Photon Photoluminescence in the Individual Weak Confinement CsPbBr3 Micro/Nanowires. J Phy. Chem. C. 123, 25349–25358 (2019). https://doi.org/10.1021/acs.jpcc.9b06643
    70. Gao, L., Yadgarov, L., Sharma, R., Korobko, R., McCall, K.M., Fabini, D.H., Stoumpos, C.C., Kanatzidis, M.G., Rappe, A.M., Yaffe, O.: Metal cation s lone-pairs increase octahedral tilting instabilities in halide perovskites. Mater Adv. 2, 4610–4616 (2021). https://doi.org/10.1039/d1ma00288k
    71. Nguyen, L.A.T., Minh, D.N., Zhang, D., Wang, L., Kim, J., Kang, Y.: Pressure-Induced Selective Amorphization of CsPbBr3 for the Purification of Cs4PbBr6. J Phy. Chem. C. 124, 22291–22297 (2020). https://doi.org/10.1021/acs.jpcc.0c06405
    72. Yadgarov, L., Choi, C.L., Sedova, A., Cohen, A., Rosentsveig, R., Bar-Elli, O., Oron, D., Dai, H., Tenne, R.: Dependence of the absorption and optical surface plasmon scattering of MoS2 nanoparticles on aspect ratio, size, and media. ACS Nano. 8, 3575–3583 (2014). https://doi.org/10.1021/nn5000354
    73. Yadgarov, L., Višić, B., Abir, T., Tenne, R., Polyakov, A.Y., Levi, R., Dolgova, T. v., Zubyuk, V. v., Fedyanin, A.A., Goodilin, E.A., Ellenbogen, T., Tenne, R., Oron, D.: Strong light-matter interaction in tungsten disulfide nanotubes. Phy. Chem. Chem. Phy. 20, 20812–20820 (2018). https://doi.org/10.1039/c8cp02245c
    74. Taank, P., Karmakar, R., Sharma, R., Yadav, R.K., Shrivastava, M., Maurya, N.C., Maji, T.K., Karmakar, D., Adarsh, K. v.: An Insightful Picture of Multi-Particle Recombination in Few-Layer MoS2 Nanosheets. J. Phy. Chem. C. 126, 416–422 (2022). https://doi.org/10.1021/acs.jpcc.1c09283
    75. Sie, E.J., Frenzel, A.J., Lee, Y.H., Kong, J., Gedik, N.: Intervalley biexcitons and many-body effects in monolayer MoS2. Phys Rev B Condens Matter Mater Phys. 92, (2015). https://doi.org/10.1103/PhysRevB.92.125417
    76. Shrivastava, M., Bodnarchuk, M.I., Hazarika, A., Luther, J.M., Beard, M.C., Kovalenko, M. v., Adarsh, K. v.: Polaron and Spin Dynamics in Organic–Inorganic Lead Halide Perovskite Nanocrystals. Adv Opt Mater. 8, (2020). https://doi.org/10.1002/adom.202001016
    77. Aleithan, S.H., Livshits, M.Y., Khadka, S., Rack, J.J., Kordesch, M.E., Stinaff, E.: Broadband femtosecond transient absorption spectroscopy for a CVD MoS2 monolayer. Phys Rev B. 94, (2016). https://doi.org/10.1103/PhysRevB.94.035445
    78. Bera, S.K., Shrivastava, M., Bramhachari, K., Zhang, H., Poonia, A.K., Mandal, D., Miller, E.M., Beard, M.C., Agarwal, A., Adarsh, K. v.: Atomlike interaction and optically tunable giant band-gap renormalization in large-area atomically thin MoS2. Phys Rev B. 104, (2021). https://doi.org/10.1103/PhysRevB.104.L201404
    79. Shrivastava, M., Krieg, F., Mandal, D., Poonia, A.K., Bera, S.K., Kovalenko, M. v., Adarsh, K. v.: Room-Temperature Anomalous Coherent Excitonic Optical Stark Effect in Metal Halide Perovskite Quantum Dots. Nano Lett. 22, 808–814 (2022). https://doi.org/10.1021/acs.nanolett.1c04471
    80. Yadgarov, L., Višić, B., Abir, T., Tenne, R., Polyakov, A.Y., Levi, R., Dolgova, T. v., Zubyuk, V. v., Fedyanin, A.A., Goodilin, E.A., Ellenbogen, T., Tenne, R., Oron, D.: Strong light-matter interaction in tungsten disulfide nanotubes. J. Phys. Chem. Chem. Phys. 20, 20812–20820 (2018). https://doi.org/10.1039/c8cp02245c
    81. Sim, S., Park, J., Song, J.G., In, C., Lee, Y.S., Kim, H., Choi, H.: Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics. Phys Rev B Condens Matter Mater Phys. 88, (2013). https://doi.org/10.1103/PhysRevB.88.07543
    82. Taank, P., Adarsh, K. v.: Unveiling exciton many-body interactions in WS2 single crystal. In: AIP Conference Proceedings. A. Inst. of Phys. Inc. (2021).
    83. Li, H., Zheng, X., Liu, Y., Zhang, Z., Jiang, T.: Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure. Nanoscale. 10, 1650–1659 (2018). https://doi.org/10.1039/c7nr05542k
    84. Sharma, A., Khan, P., Mandal, D., Pathak, M., Rout, C.S., Adarsh, K. v.: Unveiling and engineering of third-order optical nonlinearities in NiCo2O4 nanoflowers. Opt Lett. 46, 5930 (2021). https://doi.org/10.1364/ol.443826
    85. Sharma, R., Aneesh, J., Yadav, R.K., Sanda, S., Barik, A.R., Mishra, A.K., Maji, T.K., Karmakar, D., Adarsh, K. v.: Strong interlayer coupling mediated giant two-photon absorption in MoSe2 /graphene oxide heterostructure: Quenching of exciton bands. Phys Rev B. 93, (2016). https://doi.org/10.1103/PhysRevB.93.155433
    86. Yadav, R.K., Sharma, R., Aneesh, J., Abhiramnath, P., Adarsh, K. v.: Saturable absorption in one-dimensional Sb_2Se_3 nanowires in the visible to near-infrared region. Opt Lett. 41, 2049 (2016). https://doi.org/10.1364/ol.41.002049
    87. Yadav, R.K., Aneesh, J., Sharma, R., Bera, S.K., Maji, T.K., Karmakar, D., Loh, K.P., Adarsh, K. v.: Ultrafast direct charge transfers mediated modification of third order nonlinear optical response in Sb2Se3-Au core shell nanorods. Appl Phys Lett. 117, (2020). https://doi.org/10.1063/5.0011168
    88. Mandal, D., Khan, P., Adarsh, K. v.: Near resonant nanosecond laser-driven nonlinear optical response in As50S50 thin films. J Phys D Appl Phys. 53, (2020). https://doi.org/10.1088/1361-6463/ab7cf9
    89. Zhang T, Oyama T, Aoshima A, Hidaka H, Zhao J, Serpone N. Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photo. Chem. Phot. Bio. A: Chem. 2001 May 10;140(2):163-72.
    90. Fassi, S., Bousnoubra, I., Sehili, T. and Djebbar, K., 2012. Degradation of" Bromocresol Green" by direct UV photolysis, Acetone/UV and advanced oxidation processes (AOP’s) in homogeneous solution (H2O2/UV, S2O82-/UV). Comparative study. J. Mater. Environ. Sci, 3(4), pp.732-743.
    91. National Renewable Energy Laboratory (NREL): accessed Nov. 29. 2022, https://www.nrel.gov/pv/cell-efficiency.html
    92. Jung, H.S., Park, N.G.: Perovskite solar cells: From materials to devices. Small. 11, 10–25 (2015). https://doi.org/10.1002/smll.201402767
    93. Zheng, J., Mehrvarz, H., Ma, F.J., Lau, C.F.J., Green, M.A., Huang, S., Ho-Baillie, A.W.Y.: 21.8% Efficient Monolithic Perovskite/Homo-Junction-Silicon Tandem Solar Cell on 16 cm2. ACS Energy Lett. 3, 2299–2300 (2018). https://doi.org/10.1021/acsenergylett.8b01382
    94. Snaith HJ. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. lett. 2013 Nov 7;4(21):3623-30.
    95. Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat Photonics. 8, 506–514 (2014)
    96. Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J.T.-W., Stranks, S.D., Snaith, H.J., Nicholas, R.J.: Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat Phys. 11, 582–587 (2015)
    97. Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science (1979). 342, 341–344 (2013)
    98. Amat, A., Mosconi, E., Ronca, E., Quarti, C., Umari, P., Nazeeruddin, M.K., Grätzel, M., de Angelis, F.: Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014). https://doi.org/10.1021/nl5012992
    99. Sadhukhan, P., Das, S.: Photo detector based on graded band gap perovskite crystal. Solar Energy. 194, 563–568 (2019). https://doi.org/10.1016/j.solener.2019.11.001
    100. Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat Photonics. 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134
    101. Miyata, A., Mitioglu, A., Plochocka, P., Portugall, O., Wang, J.T.W., Stranks, S.D., Snaith, H.J., Nicholas, R.J.: Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat Phys. 11, 582–587 (2015). https://doi.org/10.1038/nphys3357
    102. Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 501, 395–398 (2013)
    103. Jung, H.S., Park, N.: Perovskite solar cells: from materials to devices. small. 11, 10–25 (2015)
    104. Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep. 2, 1–7 (2012)
    105. Ovchinnikov, D., Allain, A., Huang, Y.S., Dumcenco, D., Kis, A.: Electrical transport properties of single-layer WS2. ACS Nano. 8, 8174–8181 (2014). https://doi.org/10.1021/nn502362b
    106. Zhang, Y., Ye, J., Matsuhashi, Y., Iwasa, Y.: Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136–1140 (2012). https://doi.org/10.1021/nl2021575
    107. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat Nanotech. 6, 147–150 (2011). https://doi.org/10.1038/nnano.2010.279
    108. Jiang, J.-W., Qi, Z., Park, H.S., Rabczuk, T.: Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect. Nanotech. 24, 435705 (2013)
    109. Allan, D.R., Kelsey, A.A., Clark, S.J., Angel, R.J., Ackland, G.J.: High-pressure semiconductor-semimetal transition in TiS2. Phys Rev B. 57, 5106 (1998)
    110. Ghosh, S., Brüser, V., Kaplan-Ashiri, I., Popovitz-Biro, R., Peglow, S., Martínez, J.I., Alonso, J.A., Zak, A.: Cathodoluminescence in single and multiwall WS2 nanotubes: Evidence for quantum confinement and strain effect. Appl Phys Rev. 7, 41401 (2020)
    111. Capasso, A., Matteocci, F., Najafi, L., Prato, M., Buha, J., Cinà, L., Pellegrini, V., Carlo, A. Di, Bonaccorso, F.: Few‐layer MoS2 flakes as active buffer layer for stable perovskite solar cells. Adv Energy Mater. 6, 1600920 (2016)
    112. Liu, Z., Liu, K., Zhang, F., Jain, S.M., He, T., Jiang, Y., Liu, P., Yang, J., Liu, H., Yuan, M.: CH3NH3PbI3: MoS2 heterostructure for stable and efficient inverted perovskite solar cell. Solar Ener. 195, 436–445 (2020)
    113. Ahmed, M.I., Hussain, Z., Khalid, A., Amin, H.M.N., Habib, A.: Absorption enhancement in CH3NH3PbI3 solar cell using a TiO2/MoS2 nanocomposite electron selective contact. Mater Res Express. 3, 45022 (2016)
    114. Sinha, S.S., Zak, A., Rosentsveig, R., Pinkas, I., Tenne, R., Yadgarov, L.: Size-Dependent Control of Exciton–Polariton Interactions in WS2 Nanotubes. Small. 16, 1–10 (2020). https://doi.org/10.1002/smll.201904390
    115. Višić, B., Yadgarov, L., Pogna, E.A.A., Dal Conte, S., Vega-Mayoral, V., Vella, D., Tenne, R., Cerullo, G., Gadermaier, C.: Ultrafast nonequilibrium dynamics of strongly coupled resonances in the intrinsic cavity of WS2 nanotubes. Phys Rev Res. 1, 1–7 (2019). https://doi.org/10.1103/PhysRevResearch.1.033046
    116. Verre, R., Baranov, D.G., Munkhbat, B., Cuadra, J., Käll, M., Shegai, T.: Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat Nanotechnol. 14, 679–683 (2019). https://doi.org/10.1038/s41565-019-0442-x
    117. Ferry, V.E., Munday, J.N., Atwater, H.A.: Design considerations for plasmonic photovoltaics. Adv. Mate. 22, 4794–4808 (2010). https://doi.org/10.1002/adma.201000488
    118. Jang YH, Jang YJ, Kim S, Quan LN, Chung K, Kim DH. Plasmonic solar cells: from rational design to mechanism overview. Chem. rev. 2016 Dec 28;116(24):14982-5034.
    119. Levi, R., Bitton, O., Leitus, G., Tenne, R., Joselevich, E.: Field-effect transistors based on WS2 nanotubes with high current-carrying capacity. Nano Lett. 13, 3736–3741 (2013). https://doi.org/10.1021/nl401675k
    120. Bella, F., Griffini, G., Correa-Baena, J.P., Saracco, G., Grätzel, M., Hagfeldt, A., Turri, S., Gerbaldi, C.: Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Sci (1979). 354, 203–206 (2016). https://doi.org/10.1126/science.aah4046
    121. Tauc, J., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Physica status solidi (b). 15, 627–637 (1966).
    122. Makuła P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J Phys. Chem. lett. 2018 Dec 6;9(23):6814-7.
    123. Das R, Chakraborty S, Peter SC. Systematic assessment of solvent selection in photocatalytic CO2 reduction. ACS Ene Lett. 2021 Aug 24;6(9):3270-4.
    124. Kato, M., Fujiseki, T., Miyadera, T., Sugita, T., Fujimoto, S., Tamakoshi, M., Chikamatsu, M., Fujiwara, H.: Universal rules for visible-light absorption in hybrid perovskite materials. J Appl Phys. 121, (2017). https://doi.org/10.1063/1.4978071
    125. Kischkat, J., Peters, S., Gruska, B., Semtsiv, M., Chashnikova, M., Klinkmüller, M., Fedosenko, O., Machulik, S., Aleksandrova, A., Monastyrskyi, G., Flores, Y., Masselink, W.T.: Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. App. Opt. 2012 Oct 1;51(28):6789-98.
    126. Li, Y., Chernikov, A., Zhang, X., Rigosi, A., Hill, H.M., van der Zande, A.M., Chenet, D.A., Shih, E.M., Hone, J., Heinz, T.F.: Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys Rev B Condens Matter Mater Phys. 90, (2014). https://doi.org/10.1103/PhysRevB.90.205422
    127. Liu, H.L., Yang, T., Chen, J.H., Chen, H.W., Guo, H., Saito, R., Li, M.Y., Li, L.J.: Temperature-dependent optical constants of monolayer MoS2, MoSe2, WS2, and WSe2: spectroscopic ellipsometry and first-principles calculations. Sci Rep. 10, (2020). https://doi.org/10.1038/s41598-020-71808-y
    128. Kim, H. do, Ohkita, H., Benten, H., Ito, S.: Photovoltaic Performance of Perovskite Solar Cells with Different Grain Sizes. Adv. Mat. 28, 917–922 (2016). https://doi.org/10.1002/adma.201504144
    129. Whitfield, P.S., Herron, N., Guise, W.E., Page, K., Cheng, Y.Q., Milas, I., Crawford, M.K.: Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Sci Rep. 6, 1–16 (2016)
    130. Oku, T.: Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells. Sol. Cel. App. and Rev. 1, (2015)
    131. Barrit, D., Cheng, P., Tang, M., Wang, K., Dang, H., Smilgies, D., Liu, S., Anthopoulos, T.D., Zhao, K., Amassian, A.: Impact of the Solvation State of Lead Iodide on Its Two‐Step Conversion to MAPbI3: An In Situ Investigation. Adv Funct Mater. 29, 1807544 (2019)
    132. de Quilettes, D.W., Vorpahl, S.M., Stranks, S.D., Nagaoka, H., Eperon, G.E., Ziffer, M.E., Snaith, H.J., Ginger, D.S.: Impact of microstructure on local carrier lifetime in perovskite solar cells. Science (1979). 348, 683–686 (2015).
    133. An, Q., Paulus, F., Becker-Koch, D., Cho, C., Sun, Q., Weu, A., Bitton, S., Tessler, N., Vaynzof, Y.: Small grains as recombination hot spots in perovskite solar cells. Matter. 4, 1683–1701 (2021)
    134. van de Hulst, H.C.: LIGHT SCATTERING. (1957)
    135. Luidold S, Antrekowitsch H. Hydrogen as a reducing agent: Thermodynamic possibilities. Jom. 2007 Oct; 59:58-62.
    136. Qin, F., Shi, W., Ideue, T., Yoshida, M., Zak, A., Tenne, R., Kikitsu, T., Inoue, D., Hashizume, D., Iwasa, Y.: Superconductivity in a chiral nanotube. Nat Commun. 8, 1–6 (2017). https://doi.org/10.1038/ncomms14465
    137. Peimyoo, N., Shang, J., Yang, W., Wang, Y., Cong, C., Yu, T.: Thermal conductivity determination of suspended mono- and bilayer WS2 by Raman spectroscopy. Nano Res. 8, 1210–1221 (2015). https://doi.org/10.1007/s12274-014-0602-0
    138. Nathaniel Immanuel, P., Huang, S.-J., Taank, P., Goldreich, A., Prilusky, J., Byregowda, A., Carmiel, R., Zak, A., Aggarwal, N., Adarsh, K. v, Yadgarov, L.: Enhanced photocatalytic activity of Cs4PbBr6/WS2 hybrid nanocomposite.
    139. Fang, Q., Shang, Q., Zhao, L., Wang, R., Zhang, Z., Yang, P., Sui, X., Qiu, X., Liu, X., Zhang, Q., Zhang, Y.: Ultrafast Charge Transfer in Perovskite Nanowire/2D Transition Metal Dichalcogenide Heterostructures. J. of Phys. Chem. Lett. 9, 1655–1662 (2018). https://doi.org/10.1021/acs.jpclett.8b00260

    140. Levi, R., Bitton, O., Leitus, G., Tenne, R., Joselevich, E.: Field-effect transistors based on WS2 nanotubes with high current-carrying capacity. Nano Lett. 13, 3736–3741 (2013)
    141. Macchia, E., Zak, A., Picca, R.A., Manoli, K., Di Franco, C., Cioffi, N., Scamarcio, G., Tenne, R., Torsi, L.: improved performance p-type polymer (P3HT)/n-type nanotubes (WS2) electrolyte gated thin-film transistor. MRS Adv. 3, 1525–1533 (2018)
    142. Kang, J., Tongay, S., Zhou, J., Li, J., Wu, J.: Band offsets and heterostructures of two-dimensional semiconductors. Appl Phys Lett. 102, 12111 (2013)
    143. Joe, J., Yang, H., Bae, C., Shin, H.: Metal chalcogenides on silicon photocathodes for efficient water splitting: A mini overview. Catalysts. 9, 149 (2019)
    144. Bahadur, J., Ghahremani, A.H., Gupta, S., Druffel, T., Sunkara, M.K., Pal, K.: Enhanced moisture stability of MAPbI3 perovskite solar cells through Barium doping. Solar Energy. 190, 396–404 (2019). https://doi.org/10.1016/j.solener.2019.08.033
    145. Liu, Z., Liu, K., Zhang, F., Jain, S.M., He, T., Jiang, Y., Liu, P., Yang, J., Liu, H., Yuan, M.: CH3NH3PbI3:MoS2 heterostructure for stable and efficient inverted perovskite solar cell. Sol. Ener. 195, 436–445 (2020). https://doi.org/10.1016/j.solener.2019.11.030
    146. Behrouznejad, F., Shahbazi, S., Taghavinia, N., Wu, H.-P., Diau, E.W.-G.: A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells. J Mater Chem A Mater. 4, 13488–13498 (2016).

    無法下載圖示 全文公開日期 2025/02/10 (校內網路)
    全文公開日期 2025/02/10 (校外網路)
    全文公開日期 2025/02/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE