簡易檢索 / 詳目顯示

研究生: Marita Afiandika
Marita Afiandika
論文名稱: 離子液體和納米二氧化鈦對固態聚合物電解質和鋰離子電池電化學性能的影響
Effects of Ionic Liquid and TiO2 Nanoparticles on Solid-State Polymer Electrolyte and Electrochemical Performance of Li-ion Battery
指導教授: 陳崇賢
Chorng-Shyan Chern
Quoc-Thai Pham
Quoc-Thai Pham
口試委員: 許榮木
Jung-Mu Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 61
中文關鍵詞: 固態高分子電解質鋰離子電池鋰離子導電率介面安定性長期充放電循 環性能
外文關鍵詞: Solid polymer electrolyte, Li-ion batteries, ion conductivity, interfacial stability, long-term cycling performance
相關次數: 點閱:340下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • TABLE OF CONTENTS ABSTRACT i 摘要 ii ACKNOWLEDGMENTS iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES ix CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives 4 CHAPTER 2 LITERATURE REVIEW 5 2.1 Fundamental structure and working principle of SSLIB 5 2.1.1 Basic structure of SSLIB 5 2.1.2 The working operation of SSLIB 6 2.2 Ideal features of SPE 7 2.3 Ion transport mechanism of SPE 8 2.4 Design strategy for SPE based on PVDF homopolymer and copolymer 10 2.4.1 Incorporation of inorganic fillers 10 2.4.2 Polymer blending 11 2.4.3 Adding plasticizer 12 CHAPTER 3 EXPERIMENTAL 15 3.1 Materials 15 3.2 Preparation of the solid polymer electrolyte 15 3.3 Fabrication of LFP electrode 15 3.4 Sample characterization 17 3.5 Electrochemical measurements 18 CHAPTER 4 RESULTS AND DISCUSSION 20 4.1 Preparation and optimization of SPE with various IL content 20 4.2 Preparation and optimization of SPE with various TiO2 content 22 4.3 Characterizations 24 4.3.1 SEM 25 4.3.2 FTIR 25 4.3.3 Raman 26 4.3.4 XRD 27 4.3.5 DSC 28 4.4 Electrochemical characterizations 29 4.4.1 Electrochemical stability window (ESW) 29 4.4.2 Ion transference number (t+) 30 4.4.3 Interfacial stability 32 4.4.4 CV 33 4.5 SSLIBs performance 35 4.5.1 Rate capability at different C-rates 35 4.5.2 Long-term cycling performance 36 4.6 EIS battery and capacity fade analysis 39 4.7 Postmortem analysis 41 4.8 Suggestion for improving the battery cycling performance 45 CHAPTER 5 CONCLUSION 47 5.1 Summary 47 5.2 Outlook 48 REFERENCES 50 APPENDIX A 55 Supplementary material for the SPE fabrication and ionic conductivity in chapter 4 sections 4.1 and 4.2 55 APPENDIX B 57 Supplementary material for characterization chapter 4 section 4.3 57 APPENDIX C 59 Supplementary material for electrochemical characterization chapter 4 section 4.4 59 APPENDIX D 60 Supplementary material for electrochemical characterization chapter 4 sections 4.5 and 4.6 60 APPENDIX E 61 Supplementary material for characterization chapter 4 section 4.6 61

    REFERENCES
    1. Chen R, Li Q, Yu X, Chen L, Li H. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chem Rev. 2020 Jul 22;120(14):6820–77.
    2. Liu H, Cheng XB, Huang JQ, Yuan H, Lu Y, Yan C, et al. Controlling Dendrite Growth in Solid-State Electrolytes. ACS Energy Lett. 2020 Mar 13;5(3):833–43.
    3. Tong RA, Chen L, Fan B, Shao G, Liu R, Wang CA. Solvent-Free Process for Blended PVDF-HFP/PEO and LLZTO Composite Solid Electrolytes with Enhanced Mechanical and Electrochemical Properties for Lithium Metal Batteries. ACS Appl Energy Mater. 2021 Oct 25;4(10):11802–12.
    4. Caimi S, Wu H, Morbidelli M. PVdF-HFP and Ionic-Liquid-Based, Freestanding Thin Separator for Lithium-Ion Batteries. ACS Appl Energy Mater. 2018 Sep 17;acsaem.8b00860.
    5. Li X, Zheng Y, Pan Q, Li CY. Polymerized Ionic Liquid-Containing Interpenetrating Network Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. ACS Appl Mater Interfaces. 2019 Sep 25;11(38):34904–12.
    6. Kim S, Le Mong A, Kim D. Accelerated ion conduction by co-grafting of poly(ethylene glycol) and nitrile-terminated ionic liquid on poly(arylene ether sulfone) for solid electrolyte membranes for lithium ion battery. J Power Sources. 2022 May;529:231255.
    7. Zhang W, Weber DA, Weigand H, Arlt T, Manke I, Schröder D, et al. Interfacial Processes and Influence of Composite Cathode Microstructure Controlling the Performance of All-Solid-State Lithium Batteries. ACS Appl Mater Interfaces. 2017 May 31;9(21):17835–45.
    8. Wei T, Zhang ZH, Wang ZM, Zhang Q, Ye Y sheng, Lu JH, et al. Ultrathin Solid Composite Electrolyte Based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/Succinonitrile for High-Performance Solid-State Lithium Metal Batteries. ACS Appl Energy Mater. 2020 Sep 28;3(9):9428–35.
    9. Zhang X, Liu T, Zhang S, Huang X, Xu B, Lin Y, et al. Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. J Am Chem Soc. 2017 Oct 4;139(39):13779–85.
    10. Honda Motor Co., Ltd. All solid state battery technology [Internet]. 2022. Available from: https://global.honda/innovation/advanced-technology/all-solid-state-battery.html
    11. Heimes HH. Production of all-solid-state battery cells. Aachen, Frankfurt am Main: PEM der RWTH Aachen University VDMA; 2018.
    12. Brightvolt. BrightVolt PMETM [Internet]. 2022. Available from: https://www.brightvolt.com/our-technology/
    13. Yu X, Liu Y, Goodenough JB, Manthiram A. Rationally Designed PEGDA–LLZTO Composite Electrolyte for Solid-State Lithium Batteries. ACS Appl Mater Interfaces. 2021 Jul 7;13(26):30703–11.
    14. Wu Y, Li Y, Wang Y, Liu Q, Chen Q, Chen M. Advances and prospects of PVDF based polymer electrolytes. J Energy Chem. 2022 Jan;64:62–84.
    15. Li B, Su Q, Yu L, Wang D, Ding S, Zhang M, et al. Li0.35La0.55TiO3 Nanofibers Enhanced Poly(vinylidene fluoride)-Based Composite Polymer Electrolytes for All-Solid-State Batteries. ACS Appl Mater Interfaces. 2019 Nov 13;11(45):42206–13.
    16. Li Q, Ardebili H. Flexible thin-film battery based on solid-like ionic liquid-polymer electrolyte. J Power Sources. 2016 Jan;303:17–21.
    17. Liang L, Yuan W, Chen X, Liao H. Flexible, nonflammable, highly conductive and high-safety double cross-linked poly(ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries. Chem Eng J. 2021 Oct;421:130000.
    18. Ma F, Zhang Z, Yan W, Ma X, Sun D, Jin Y, et al. Solid Polymer Electrolyte Based on Polymerized Ionic Liquid for High Performance All-Solid-State Lithium-Ion Batteries. ACS Sustain Chem Eng. 2019 Mar 4;7(5):4675–83.
    19. Barbosa JC, Correia DM, Fernández EM, Fidalgo-Marijuan A, Barandika G, Gonçalves R, et al. High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride-co-hexafluoropropylene) Combining Ionic Liquid and Zeolite. ACS Appl Mater Interfaces. 2021 Oct 20;13(41):48889–900.
    20. Safa M, Chamaani A, Chawla N, El-Zahab B. Polymeric Ionic Liquid Gel Electrolyte for Room Temperature Lithium Battery Applications. Electrochimica Acta. 2016 Sep;213:587–93.
    21. Xu X, Hui KS, Hui KN, Wang H, Liu J. Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices. Mater Horiz. 2020;7(5):1246–78.
    22. Tripathi AK. Ionic liquid–based solid electrolytes (ionogels) for application in rechargeable lithium battery. Mater Today Energy. 2021 Jun;20:100643.
    23. Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US. Polymer-Based Organic Batteries. Chem Rev. 2016 Aug 24;116(16):9438–84.
    24. Baskoro F, Wong HQ, Yen HJ. Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery. ACS Appl Energy Mater. 2019 Jun 24;2(6):3937–71.
    25. Long L, Wang S, Xiao M, Meng Y. Polymer electrolytes for lithium polymer batteries. J Mater Chem A. 2016;4(26):10038–69.
    26. Zheng Y, Yao Y, Ou J, Li M, Luo D, Dou H, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev. 2020;49(23):8790–839.
    27. Chen X, Xie J, Zhao X, Zhu T. Electrochemical Compatibility of Solid-State Electrolytes with Cathodes and Anodes for All-Solid-State Lithium Batteries: A Review. Adv Energy Sustain Res. 2021 May;2(5):2000101.
    28. Chen L, Venkatram S, Kim C, Batra R, Chandrasekaran A, Ramprasad R. Electrochemical Stability Window of Polymeric Electrolytes. Chem Mater. 2019 Jun 25;31(12):4598–604.
    29. Wang H, Sheng L, Yasin G, Wang L, Xu H, He X. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 2020 Dec;33:188–215.
    30. An Y, Han X, Liu Y, Azhar A, Na J, Nanjundan AK, et al. Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond. Small. 2022 Jan;18(3):2103617.
    31. Chen L, Huang YF, Ma J, Ling H, Kang F, He YB. Progress and Perspective of All-Solid-State Lithium Batteries with High Performance at Room Temperature. Energy Fuels. 2020 Nov 19;34(11):13456–72.
    32. Chen J, Wu J, Wang X, Zhou A, Yang Z. Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries. Energy Storage Mater. 2021 Mar;35:70–87.
    33. Fan L, Wei S, Li S, Li Q, Lu Y. Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Adv Energy Mater. 2018 Apr;8(11):1702657.
    34. Li C, Wang Z yu, He Z jiang, Li Y jiao, Mao J, Dai K hua, et al. An advance review of solid-state battery: Challenges, progress and prospects. Sustain Mater Technol. 2021 Sep;29:e00297.
    35. Dirican M, Yan C, Zhu P, Zhang X. Composite solid electrolytes for all-solid-state lithium batteries. Mater Sci Eng R Rep. 2019 Apr;136:27–46.
    36. Zhou L, Wu N, Cao Q, Jing B, Wang X, Wang Q, et al. A novel electrospun PVDF/PMMA gel polymer electrolyte with in situ TiO2 for Li-ion batteries. Solid State Ion. 2013 Nov;249–250:93–7.
    37. Chen N, Xing Y, Wang L, Liu F, Li L, Chen R, et al. “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery. Nano Energy. 2018 May;47:35–42.
    38. Liang YF, Deng SJ, Xia Y, Wang XL, Xia XH, Wu JB, et al. A superior composite gel polymer electrolyte of Li7La3Zr2O12-poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries. Mater Res Bull. 2018 Jun;102:412–7.
    39. Lu J, Li Y, Huang W. Study on structure and electrical properties of PVDF/Li3/8Sr7/16Zr1/4Ta3/4O3 composite solid polymer electrolytes for quasi-solid-state Li battery. Mater Res Bull. 2022 Sep;153:111880.
    40. Yu J, Kwok SCT, Lu Z, Effat MB, Lyu YQ, Yuen MMF, et al. A Ceramic-PVDF Composite Membrane with Modified Interfaces as an Ion-Conducting Electrolyte for Solid-State Lithium-Ion Batteries Operating at Room Temperature. ChemElectroChem. 2018 Oct 1;5(19):2873–81.
    41. Liu R, Yuan B, Zhong S, Liu J, Dong L, Ji Y, et al. Poly(vinylidene fluoride) separators for next-generation lithium based batteries. Nano Sel. 2021 Dec;2(12):2308–45.
    42. Xi G, Xiao M, Wang S, Han D, Li Y, Meng Y. Polymer-Based Solid Electrolytes: Material Selection, Design, and Application. Adv Funct Mater. 2021 Feb;31(9):2007598.
    43. Liang YF, Xia Y, Zhang SZ, Wang XL, Xia XH, Gu CD, et al. A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride-hexafluoropropylene)-poly(propylene carbonate) for solid-state lithium ion batteries. Electrochimica Acta. 2019 Feb;296:1064–9.
    44. Huang X, Zeng S, Liu J, He T, Sun L, Xu D, et al. High-Performance Electrospun Poly(vinylidene fluoride)/Poly(propylene carbonate) Gel Polymer Electrolyte for Lithium-Ion Batteries. J Phys Chem C. 2015 Dec 17;119(50):27882–91.
    45. Giffin GA. Ionic liquid-based electrolytes for “beyond lithium” battery technologies. J Mater Chem A. 2016;4(35):13378–89.
    46. Chen T, Kong W, Zhang Z, Wang L, Hu Y, Zhu G, et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy. 2018 Dec;54:17–25.
    47. Yang Y, Wu Q, Wang D, Ma C, Chen Z, Zhu C, et al. Decoupling the mechanical strength and ionic conductivity of an ionogel polymer electrolyte for realizing thermally stable lithium-ion batteries. J Membr Sci. 2020 Feb;595:117549.
    48. Yang Y, Wu Q, Wang D, Ma C, Chen Z, Su Q, et al. Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries. J Membr Sci. 2020 Oct;612:118424.
    49. Li J, Li F, Zhang L, Zhang H, Lassi U, Ji X. Recent applications of ionic liquids in quasi-solid-state lithium metal batteries. Green Chem Eng. 2021 Sep;2(3):253–65.
    50. Pickford T, Gu X, Heeley EL, Wan C. Effects of an ionic liquid and processing conditions on the β-polymorph crystal formation in poly(vinylidene fluoride). CrystEngComm. 2019;21(36):5418–28.
    51. Barbosa JC, Correia DM, Gonçalves R, de Zea Bermudez V, Silva MM, Lanceros-Mendez S, et al. Enhanced ionic conductivity in poly(vinylidene fluoride) electrospun separator membranes blended with different ionic liquids for lithium ion batteries. J Colloid Interface Sci. 2021 Jan;582:376–86.
    52. Sahu G, Rangasamy E, Li J, Chen Y, An K, Dudney N, et al. A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy. J Mater Chem A. 2014;2(27):10396–403.
    53. Mejri R, Dias JC, Hentati SB, Martins MS, Costa CM, Lanceros-Mendez S. Effect of anion type in the performance of ionic liquid/poly(vinylidene fluoride) electromechanical actuators. J Non-Cryst Solids. 2016 Dec;453:8–15.
    54. Tseng YC, Ramdhani FI, Hsiang SH, Lee TY, Teng H, Jan JS. Lithium battery enhanced by the combination of in-situ generated poly(ionic liquid) systems and TiO2 nanoparticles. J Membr Sci. 2022 Jan;641:119891.
    55. Wu J, Rao Z, Cheng Z, Yuan L, Li Z, Huang Y. Ultrathin, Flexible Polymer Electrolyte for Cost-Effective Fabrication of All-Solid-State Lithium Metal Batteries. Adv Energy Mater. 2019 Dec;9(46):1902767.
    56. Tang J, Muchakayala R, Song S, Wang M, Kumar KN. Effect of EMIMBF4 ionic liquid addition on the structure and ionic conductivity of LiBF4-complexed PVdF-HFP polymer electrolyte films. Polym Test. 2016 Apr;50:247–54.
    57. Cai X, Lei T, Sun D, Lin L. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7(25):15382–9.
    58. Bag S, Zhou C, Kim PJ, Pol VG, Thangadurai V. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries. Energy Storage Mater. 2020 Jan;24:198–207.
    59. Liu L, Zhang D, Zhao J, Shen J, Li F, Yang Y, et al. Synergistic Effect of Lithium Salts with Fillers and Solvents in Composite Electrolytes for Superior Room-Temperature Solid-State Lithium Batteries. ACS Appl Energy Mater. 2022 Feb 28;5(2):2484–94.
    60. Vitucci FM, Trequattrini F, Palumbo O, Brubach JB, Roy P, Paolone A. Infrared spectra of bis(trifluoromethanesulfonyl)imide based ionic liquids: Experiments and DFT simulations. Vib Spectrosc. 2014 Sep;74:81–7.
    61. Markevich E, Sharabi R, Borgel V, Gottlieb H, Salitra G, Aurbach D, et al. In situ FTIR study of the decomposition of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ionic liquid during cathodic polarization of lithium and graphite electrodes. Electrochimica Acta. 2010 Mar;55(8):2687–96.
    62. Balachandran U, Eror NG. Raman spectra of titanium dioxide. J Solid State Chem. 1982 May;42(3):276–82.
    63. Fang L, Sun W, Hou W, Mao Y, Wang Z, Sun K. Quasi-Solid-State Polymer Electrolyte Based on Highly Concentrated LiTFSI Complexing DMF for Ambient-Temperature Rechargeable Lithium Batteries. Ind Eng Chem Res. 2022 Jun 15;61(23):7971–81.
    64. Hsu ST, Tran BT, Subramani R, Nguyen HTT, Rajamani A, Lee MY, et al. Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature. J Power Sources. 2020 Feb;449:227518.
    65. Vorontsov AV, Tsybulya SV. Influence of Nanoparticles Size on XRD Patterns for Small Monodisperse Nanoparticles of Cu0 and TiO2 Anatase. Ind Eng Chem Res. 2018 Feb 21;57(7):2526–36.
    66. Correia DM, Sabater i Serra R, Gómez Tejedor JA, de Zea Bermudez V, Andrio Balado A, Meseguer-Dueñas JM, et al. Ionic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: Dielectric and electrical conductivity behavior. Polymer. 2018 May;143:164–72.
    67. Nair JR, Porcarelli L, Bella F, Gerbaldi C. Newly Elaborated Multipurpose Polymer Electrolyte Encompassing RTILs for Smart Energy-Efficient Devices. ACS Appl Mater Interfaces. 2015 Jun 17;7(23):12961–71.
    68. Chiappone A, Nair JR, Gerbaldi C, Jabbour L, Bongiovanni R, Zeno E, et al. Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. J Power Sources. 2011 Dec;196(23):10280–8.
    69. Shin JH, Henderson WA, Passerini S. PEO-Based Polymer Electrolytes with Ionic Liquids and Their Use in Lithium Metal-Polymer Electrolyte Batteries. J Electrochem Soc. 2005;152(5):A978.
    70. Zugmann S, Fleischmann M, Amereller M, Gschwind RM, Wiemhöfer HD, Gores HJ. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta. 2011 Apr;56(11):3926–33.
    71. Xie M, Li L, Zhang Y, Du J, Li Y, Shan Y, et al. Mastering high ion conducting of room-temperature all-solid-state lithium-ion batteries via safe phthaloyl starch-poly(vinylidene fluoride)–based polymer electrolyte. Ionics. 2020 Mar;26(3):1109–17.
    72. Frömling T, Kunze M, Schönhoff M, Sundermeyer J, Roling B. Enhanced Lithium Transference Numbers in Ionic Liquid Electrolytes. J Phys Chem B. 2008 Oct 16;112(41):12985–90.
    73. Diederichsen KM, McShane EJ, McCloskey BD. Promising Routes to a High Li + Transference Number Electrolyte for Lithium Ion Batteries. ACS Energy Lett. 2017 Nov 10;2(11):2563–75.
    74. Yu X, Manthiram A. A Long Cycle Life, All-Solid-State Lithium Battery with a Ceramic–Polymer Composite Electrolyte. ACS Appl Energy Mater. 2020 Mar 23;3(3):2916–24.
    75. Gao X, Sheng L, Li M, Xie X, Yang L, Gong Y, et al. Flame-Retardant Nano-TiO2 /Polyimide Composite Separator for the Safety of a Lithium-Ion Battery. ACS Appl Polym Mater. 2022 Jul 8;4(7):5125–33.
    76. Lin Y, Li J, Lai Y, Yuan C, Cheng Y, Liu J. A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries. RSC Adv. 2013;3(27):10722.
    77. Mi CH, Zhang XG, Li HL. Electrochemical behaviors of solid LiFePO4 and Li0.99Nb0.01FePO4 in Li2SO4 aqueous electrolyte. J Electroanal Chem. 2007 Apr;602(2):245–54.
    78. Zhai L, Zhang W, Gong H, Li Y, Gao M, Zhang X, et al. Quasi-solid polymer electrolytes with fast interfacial transport for lithium metal batteries. Surf Interfaces. 2022 Nov;34:102299.
    79. Li Y, Wang L, Zhang K, Yao Y, Kong L. Optimized synthesis of LiFePO4 cathode material and its reaction mechanism during solvothermal. Adv Powder Technol. 2021 Jun;32(6):2097–105.
    80. An SJ, Li J, Du Z, Daniel C, Wood DL. Fast formation cycling for lithium ion batteries. J Power Sources. 2017 Feb;342:846–52.
    81. Steinhauer M, Risse S, Wagner N, Friedrich KA. Investigation of the Solid Electrolyte Interphase Formation at Graphite Anodes in Lithium-Ion Batteries with Electrochemical Impedance Spectroscopy. Electrochimica Acta. 2017 Feb;228:652–8.
    82. Han X, Lu L, Zheng Y, Feng X, Li Z, Li J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation. 2019 Aug;1:100005.
    83. Edge JS, O’Kane S, Prosser R, Kirkaldy ND, Patel AN, Hales A, et al. Lithium ion battery degradation: what you need to know. Phys Chem Chem Phys. 2021;23(14):8200–21.
    84. Liu P, Zhang W, Liu X, Zhang Y, Wu F. Electrochemical Impedance Analysis of C/LiFePO4 Batteries in Cycling Process. IOP Conf Ser Mater Sci Eng. 2018 Dec 13;452:032088.
    85. Liu H, Cheng X, Xu R, Zhang X, Yan C, Huang J, et al. Plating/Stripping Behavior of Actual Lithium Metal Anode. Adv Energy Mater. 2019 Nov;9(44):1902254.
    86. Wang Q, Liu B, Shen Y, Wu J, Zhao Z, Zhong C, et al. Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. Adv Sci. 2021 Sep;8(17):2101111.
    87. Chen L, Fan X, Ji X, Chen J, Hou S, Wang C. High-Energy Li Metal Battery with Lithiated Host. Joule. 2019 Mar;3(3):732–44.

    無法下載圖示 全文公開日期 2025/01/10 (校內網路)
    全文公開日期 2025/01/10 (校外網路)
    全文公開日期 2025/01/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE