簡易檢索 / 詳目顯示

研究生: 官東毅
Dung-Yi Guan
論文名稱: 第一原理分子動力學於鋰鹽在鋰離子電池中電解液之反應性與Li1.2Ni0.2Mn0.6O2(003)表面塗佈ZrO2的穩定性研究
First Principles Molecular Dynamic Study on Reactivity of Electrolyte with Additive and Stability of Li1.2Ni0.2Mn0.6O2 (003) Surface with ZrO2 Coating for Lithium-ion Batteries
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 江志強
Jyh-Chiang Jiang
郭哲來
Jer-Lai Kuo
宮崎剛
Tsuyoshi Miyazaki
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: 密度泛函理論分子動力學鋰電池過量鋰陰極二氧化鋯塗佈
外文關鍵詞: LIB, Li1.2Ni0.2Mn0.6O2, LiZrO2, LiBTNTB, Electrolyte additives
相關次數: 點閱:240下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰電池行業迅速擴張,主導了便攜式消費電子設備的電力行業。自從開發第一個鋰離子電池以來,對各種陽極,陰極和電解質材料進行了廣泛的研究。在鋰離子電池的負極和正極中,固體電解質相(SEI)的形成與可逆鋰嵌入/脫嵌相互競爭,影響電池在幾個週期內的容量。在這項工作中,我們專注於電解質/陰極部分的穩定性和電解液與陰極之間的反應性。我們已經研究了使用分子動力學和量子化學計算的設計鹽LiBTNBT(bis(trifluoroborane)-5-nitro-2-(trifluoromethyl)-benzimidazolide )在碳酸亞乙酯(EC)與碳酸二乙酯(DEC)中的穩定性和反應性。我們建立了一個系統為1個LiBTNTB,7個碳酸亞乙酯和4個碳酸二乙酯分子的11.8A立方體,並且在所有三個方向上施加了周期性邊界條件。在陽極部分,我們發現EC與Li離子強度相關,並分解成碳酸根離子和乙烯。此外,我們使用量子化學計算討論了碳酸亞乙酯與設計的鋰鹽的雙電子還原分解機理。在陰極部分,除上述電解質系統外,系統地討論了新型陰極材料L1L0.2N0.2M0.6O2對電解質分解性質的影響。對於這部分,我們考慮了陰極系統的80%脫鋰狀態和完全鋰化狀態。在80%脫鋰狀態下,我們發現陰極表面變得不穩定,並顯示出擴散到電解質中的氧氣析出。用ZrO2塗佈陰極材料可以解決表面氧的產生和從L1L0.2N0.2M0.6O2擴散到電解質中。


    The lithium battery industry has expanded rapidly and dominates the power industry of portable consumer electronic equipment. Extensive research has been conducted on various anode, cathode and electrolyte materials since the development of the first lithium ion battery. The formation of solid-electrolyte interphase (SEI) in the negative and positive electrodes of lithium ion batteries competes with reversible lithium intercalation/deintercalation affecting the capacity of the battery over several cycles. In this work, we focus on the stability of electrolyte/cathode part and reactivity between electrolyte and cathode. We have investigated the stability and reactivity of designed salt LiBTNBT ( bis(trifluoroborane)-5-nitro-2-(trifluoromethyl)-benzimidazolide ) in Ethylene carbonate (EC) : Diethyl carbonate (DEC) using molecular dynamics and quantum chemical calculations. The cubic box of 11.8 Å with a total number of 1 LiBTNTB, 7EC and 4DEC molecules was built and periodic boundary conditions were applied in all three directions. In anode part, we found that EC coordinates with the Li ion strongly and decomposes into CO32- and C2H4. Furthermore, the two-electron reductive decomposition mechanism of EC with the designed Li salt have been discussed using quantum chemical calculations. In the cathode part, in addition to the electrolyte system outlined above, the influence of new cathode material, L1L0.2N0.2M0.6O2, on the decomposition nature of the electrolytes have been discussed systematically. For this part, we have considered 80% delithiation state and fully lithiation state of the cathode system. In 80% delithiation state, we found that the cathode surface became unstable and showed oxygen evolution whcih diffused into the electrolyte. Coating the cathode material with ZrO2 could solve the surface oxygen generation and diffusion to the electrolyte from L1L0.2N0.2M0.6O2.

    Asbstract I 摘要 IV 致謝 V Contents VI List of Figures VII List of Tables X Chapter 1 Chapter 1 Introduction 1 1.1 Lithium Ion Battery: Development and Application. 1 1.2 Working Principle of Li Ion Battery 3 1.3 Main Components of Li Ion Battery 4 1.3.1 Anode 4 1.3.2 Cathode 1 1.3.3 Electrolyte 7 1.4 Interface between Electrode and Electrolyte 12 1.4.1 Anode electrolyte interphase 13 1.4.2 Cathode electrolyte interphase 14 1.5 Present Study 16 Chapter 2 Computational Details 18 2.1 DFT calculations 18 2.2 Molecular dynamic simulation 18 2.2.1 Classical Molecular dynamic simulation 18 2.2.2 Ab initio molecular dynamics simulations 19 Chapter 3 Results and Discussion 22 3.1 Initial structure of LiBTNTB/EC/DEC electrolyte system 22 3.1.1 Oxidation system of LiBTNTB/EC/DEC electrolyte system 25 3.1.2 Reduction system of LiBTNTB/EC/DEC electrolyte system 27 3.2 Initial structure of LiPF6/EC/DEC electrolyte system 31 3.2.1 Oxidation system of LiPF6/EC/DEC electrolyte system 33 3.2.2 Reduction system of LiPF6/EC/DEC electrolyte system 37 3.3 cathode part system of LiBTNTB/L1L0.2N0.2M0.6O2 /EC/DEC 42 3.3.1 80% delithiation of cathode part system 44 3.3.2 80% delithiation of cathode part system with coating ZrO2 52 Chapter 4 Conclusion 54 Reference 56

    1. Shimotake, H., Progress in batteries and solar cells. 1990: JEC Press.
    2. Marom, R., et al., A review of advanced and practical lithium battery materials. Journal of Materials Chemistry, 2011. 21(27): p. 9938-9954.
    3. Diaz-Gonzalez, F., et al., A review of energy storage technologies for wind power applications. Renewable & Sustainable Energy Reviews, 2012. 16(4): p. 2154-2171.
    4. Lu, L.G., et al., A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013. 226: p. 272-288.
    5. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 2001. 414: p. 359-367.
    6. Liu, D. and G. Cao, Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. Energy & Environmental Science, 2010. 3(9): p. 1218.
    7. LINDEN, D. and T.B. REDDY, HANDBOOK OF BATTERYS, ed. T. EDITION. 2002, New York: McGraw-Hill.
    8. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev., 2004. 104: p. 4303-4417.
    9. Besenhard, J.O. and M. Winter, Advances in Battery Technology : Rechargeable Magnesium Batteries and Novel Negative- Electrode Materials for Lithium Ion Batteries. Chemphyschem : a European journal of chemical physics and physical chemistry, 2002. 3: p. 155-159.
    10. Dey, a.N. and B.P. Sullivan, The Electrochemical Decomposition of Propylene Carbonate on Graphite. Journal of The Electrochemical Society, 1970. 117: p. 222-224.
    11. Goodenough, J.B. and Y. Kim, Challenges for rechargeable batteries. Journal of Power Sources, 2011. 196: p. 6688-6694.
    12. Winter, M., et al., InsertioneElectrode materials for rechargeable lithium batteries.Adv. Mater, 1998. 10(10): p. 725-763.
    13. Shimotake, H., Progress in batteries and solar cells. 1990: JEC Press.
    14. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. Materials Science and Engineering R, 2012. 73(5-6): p. 51-65.
    15. Fergus, J.W., Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 2010. 195: p. 939-954.
    16. Julien, C.M., et al., Comparative Issues of Cathode Materials for Li-Ion Batteries. inorganics, 2014. 2: p. 132-154.

    17. Li, T., et al., <17. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008. 15: p. 74.
    18. Whittingham, M.S., Lithium Batteries and Cathode Materials. Chem. Rev., 2004. 104: p. 4271-4301.
    19. Winter, M., et al., Insertion electrode materials for rechargeable lithium batteries. Adv. Mater., 1998. 10(10): p. 725-763.
    20. Mizushima, K., et al., LixCoO 2 (0<x~l): A new cathode material for batteries of high energy density Mater. Res. Bull., 1980. 15: p. 783-789.
    21. Koksbang, R., et al., <19 Solid State lonics 84 ,1996, 1-21.pdf>. Solid State lonics, 1996. 84: p. 1.
    22. Arai, H., et al., Reversibility of LiNiO2 cathode Solid State Ionics 1997. 95: p. 275- 282.
    23. Stoyanova, R., Lithium/nickel mixing in the transition metal layers of lithium nickelate: high-pressure synthesis of layered Li[LixNi1−x]O2 oxides as cathode materials for lithium-ion batteries. Solid State Ionics, 2003. 161(3-4): p. 197-204.
    24. Kim, Y., D. Kim, and S. Kang, Experimental and First-Principles Thermodynamic Study of the Formation and Effects of Vacancies in Layered Lithium Nickel Cobalt Oxides. Chemistry of Materials, 2011. 23(24): p. 5388-5397.
    25. Ohzuku, T., A. Ueda, and M. Kouguchi, <22 Ohzuku T, Ueda A, Kouguchi M J Electrochem Soc 142, 1995, 4033.pdf>. Journal of The Electrochemical Society, 1995. 142: p. 4033.
    26. Kim, Y., D. Kim, and S. Kang, <27 Experimental and First-Principles Thermodynamic Study of the Formation and Effects of Vacancies in Layered Lithium Nickel Cobalt Oxides. Chemistry of Materials, 2011. 23(24): p. 5388-5397.
    27. Armstorng, A.R. and P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 1996. 381: p. 499-500.
    28. Armstrong, A.R., et al., Combined Neutron Diffraction, NMR, and Electrochemical Investigation of the Layered-to-Spinel Transformation in LiMnO2. Chem. Mater., 2004. 16: p. 3106-3118.
    29. Jansen, A.N., et al., Development of a high-power lithium-ion battery. J. Power Sources, 1999. 81-82: p. 902-905.
    30. Amatucci, G.G., J.M. Tarascon, and L.C. Klein, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ionics, 1996. 83(1–2): p. 167-173.
    31. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, <40 A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188..pdf>. Journal of The Electrochemical Society 1997. 144: p. 1188.
    32. Takahashi, M., et al., <42 M. Takahashi, S.I. Tobishima, K. Takei, Y. Sakurai, Solid State Ionics 148 (2002) 283..pdf>. Solid State Ionics 2002. 148: p. 283
    33. Chung, S.-Y., J.T. Bloking, and Y.-M. Chiang, <48. Nature Materials, 2002. 1: p. 123.
    34. MacNeila, D.D., et al., <41 D.D. MacNeil, Z. Lu, Z. Chen, J.R. Dahn, J. Power Sources 108 (2002) 8..pdf>. Journal of Power Sources 2002. 108: p. 8.
    35. Thackeray, M.M., et al., Electrochemical extraction of lithium from LiMn2O4. Materials Research Bulletin, 1984. 19(2): p. 179-187.
    36. Aurbach, D., et al., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques. Journal of Power Sources, 1999. 81 82(0): p. 472-479.
    37. Wang, L., et al., First-principles study of surface properties ofLiFePO4: Surface energy, structure, Wulff shape, and surface redox potential. Physical Review B, 2007. 76(16).
    38. Christensen, A. and E.A. Carter, First-principles study of the surfaces of zirconia. Phys. Rev. B, 1998. 58(12): p. 8050-8064.
    39. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews, 2014. 114(23): p. 11503-11618.
    40. Ogata, S., N. Ohba, and T. Kouno, Multi-Thousand-Atom DFT Simulation of Li-Ion Transfer through the Boundary between the Solid–Electrolyte Interface and Liquid Electrolyte in a Li-Ion Battery. J. Phys. Chem. C, 2013. 117(35): p. 17960-17968.
    41. Borodin, O., W. Behl, and T.R. Jow, Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes. J. Phys. Chem. C, 2013. 117(17): p. 8661-8682.
    42. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104: p. 4303-4417.
    43. Nagaura, K. and K. Tozawa, Progress in Batteries and Solar Cells. Vol. 9. 1990, Brunswick OH, USA: JEC Press Inc. and IBA Inc. 209.
    44. Botte, G.G., R.E. White, and Z. Zhang, Thermal stability of LiPF6–EC:EMC electrolyte for lithium ion batteries. Journal of Power Sources, 2001. 97-98: p. 570-575.
    45. Campion, C.L., W. Li, and B.L. Luch, Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2005. 152: p. A2327-A2334.
    46. Sloop, S.E., et al., Chemical Reactivity of PF[sub 5] and LiPF[sub 6] in Ethylene Carbonate/Dimethyl Carbonate Solutions. Electrochemical and Solid-State Letters, 2001. 4: p. A42-A44.
    47. Wang, X., E. Yasukawa, and S. Kasuya, Lithium Imide Electrolytes with Two-Oxygen- Atom-Containing Cycloalkane Solvents for 4 V Lithium Metal Rechargeable Batteries. Journal of The Electrochemical Society, 2000. 147: p. 2421-2426.
    48. Handa, M., et al., A New Lithium Salt with a Chelate Complex of Phosphorus for Lithium Battery Electrolytes. Electrochemical and Solid-State Letters, 1999. 2: p. 60-62.
    49. Schmidt, M., et al., Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. Journal of Power Sources, 2001. 97–98: p. 557-560.
    50. Aravindan, V., et al., Lithium-ion conducting electrolyte salts for lithium batteries. Chemistry, 2011. 17: p. 14326-14346.

    51. Barthel, J., et al., A New Class of Electrochemically and Thermally Stable Lithium Salts for Lithium Battery Electrolytes: I . Synthesis and Properties of Lithium bis[1,2‐ benzenediolato(2‐ )‐O,O′]borate Journal of The Electrochemical Society 1995. 142 p. 2527-2531.
    52. Handa, M., S. Fukuda, and Y. Sasaki, Use of a Chelate Complex with Boron as a Lithium Salt for Lithium Battery Electrolytes. Journal of the Electrochemical Society Letters, 1997. 144: p. L235-L237.
    53. Xu, W. and C.A. Angell, LiBOB and Its Derivatives Weakly Coordinating Anion, and the Exceptional Conductivity of Their Nanoqueous Solutions. Electrochemical and Solid-State Letters, 2001. 4: p. E1-E4.
    54. Fergus, J.W., Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources, 2010. 195(15): p. 4554-4569.
    55. Shui Zhang, S., An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochemistry Communications, 2006. 8: p. 1423-1428.
    56. Xu, W., et al., LiMOB, an Unsymmetrical Nonaromatic Orthoborate Salt for Nonaqueous Solution Electrochemical Applications. Journal of The Electrochemical Society, 2004. 151: p. A632-A638.
    57. Tan, S., et al., Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries. A European Journal of Chemical Physics and Chemistry, 2014. 15(10): p. 1956- 1969.
    58. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries. Chemistry of Materials, 2010. 22(3): p. 587-603.
    59. Duncan, H., N. Salem, and Y. Abu-Lebdeh, Electrolyte Formulations Based on Dinitrile Solvents for High Voltage Li-Ion Batteries. Journal of The Electrochemical Society, 2013. 160(6): p. A838-A848.
    60. Besenhard, J.O., et al., Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 1995. 54(2): p. 228-231.

    61. Chung, G.C., et al., Origin of Graphite Exfoliation An Investigation of the Important Role of Solvent Cointercalation. Journal of The Electrochemical Society, 2000. 147(12): p. 4391-4398.
    62. Xu, K., M.S. Ding, and T.R. Jow, Quaternary Onium Salts as Nonaqueous Electrolytes for Electrochemical Capacitors. Journal of The Electrochemical Society, 2001. 148(3): p. A267-A274.
    63. Foster, D.L., W.K. Behl, and J. Wolfenstine, The effect of various electrolyte additives on reversible Li-graphite intercalation. Journal of Power Sources, 2000. 85(2): p. 299-301.
    64. Tobishima, S., Y. Ogino, and Y. Watanabe, Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells. Journal of Applied Electrochemistry, 2003. 33(2): p. 143-150.
    65. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
    66. Xu, K., S. Zhang, and R. Jow, Electrochemical impedance study of graphite/electrolyte interface formed in LiBOB/PC electrolyte. Journal of Power Sources, 2005. 143(1–2): p. 197-202.
    67. Spahr, M.E., et al., Exfoliation of Graphite during Electrochemical Lithium Insertion in Ethylene Carbonate-Containing Electrolytes. Journal of The Electrochemical Society, 2004. 151(9): p. A1383-A1395.
    68. Mansour, A.N., Characterization of LiNiO2 by XPS. Surface Science Spectra, 1994. 3(3): p. 279.
    69. Aurbach, D., et al., The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M=Ni, Mn). J. Electrochem. Soc., 2000. 147(4): p. 1322-1331.
    70. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources, 2000. 89: p. 206-218.
    71. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104: p. 4303-4417.
    72. Aurbach, D., et al., Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides. Journal of The Electrochemical Society, 1998. 145(9): p. 3024-3034.
    73. Paled, E., The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model. J. Electrochem. Soc., 1979. 126: p. 2047-2051.
    74. Besenhard, J.O., et al., Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. Journal of Power Sources, 1995. 54(2): p. 228-231.
    75. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. (December 1992). "UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations" (PDF). Journal of the American Chemical Society. 114 (25): 10024–10035. doi:10.1021/ja00051a040.
    76. Zhou, F., et al., First-principles prediction of redox potentials in transition-metal compounds withLDA+U. Physical Review B, 2004. 70(23).
    77. Xiong, D., et al., A High Precision Study of the Effect of Vinylene Carbonate (VC) Additive in Li/Graphite Cells. Journal of The Electrochemical Society, 2011. 158(12): p. A1431- A1435.
    78. Kang, Xu., et al., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104, 4303−4417

    QR CODE