簡易檢索 / 詳目顯示

研究生: 劉于琮
Yu-Tsung Liu
論文名稱: 密度泛函理論於碳酸乙烯酯在LiMn2O4 (100) 表面上的吸附與分解機制之研究
Ethylene Carbonate Adsorption and Decomposition on LiMn2O4 (100) Surface: A DFT Study
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 蔡大翔
Dah-Shyang Tsai
蔡明剛
Ming-Kang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 74
中文關鍵詞: 第一原理計算鋰離子電池碳酸乙烯酯鋰錳氧化物尖晶石結構表面催化分解陰極材料固態可滲透介面膜(SPI)
外文關鍵詞: First principles calculation, Lithium-ion battery, Ethylene carbonate, Lithium manganese oxide, Spinel structure, Surface catalytic decomposition, Cathode material, Solid permeable interphase
相關次數: 點閱:231下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類隨著科技發展,能源需求逐漸增加,現今社會對於其開發及效能提升也越來越重視,在眾多電能儲存技術方面,鋰電池扮演著舉足輕重的角色,也是持續在研發中的能源。在鋰電池運作的過程中,金屬氧化物晶格表面的電子傳遞行為是相當重要的一環,為此,許多實驗以及理論計算的研究人員不遺餘力的進行開發,以提升鋰電池的效能。
    本論文使用密度泛函理論(Density Functional Theory, DFT)研究電解液在陰極表面的吸附及分解機制,了解可以提升電池的穩定性、電容量以及循環使用次數的原因。我們使用第一原理(Ab-initio)方法,計算碳酸乙烯酯(Ethylene Carbonate, EC)在完全放電後的尖晶石結構LiMn2O4(100)催化表面上的吸附及分解機制,利用GGA+U的計算方法,找到六種EC在LiMn2O4(100)表面的吸附模式,利用態密度(Density of States, DOS)、投影態密度(Project Density of States, PDOS)以及電荷密度差(Electron Density Difference, EDD)比較其吸附前後的電子傳遞方向;在分解反應中,利用Climbing Image Nudged Elastic Band (CINEB)的方法搜尋過渡態。分析結果顯示,在所有考慮的吸附模式中,電子傳遞的方向皆是由表面傳遞至EC,使其產生自由基進而斷碳氧鍵開環,並且,在分解反應的過程中,不會產生氣體。


    A need for improved and efficient energy storage technology is pragmatic for the sustainable development of our society. With this respect, the development of electrochemical energy storage technologies, such as lithium ion batteries, will play a grand role in the advancement of alternative renewable energy sources. Such battery technologies employ redox reactions with intercalation reactions in crystalline metal oxides, where lithium ions act as charge carriers to produce efficient and high power energy storage options. Therefore, a comprehensive understanding of the important processes occurring in lithium ion battery by using either computational or experimental approach will help to develop batteries with better performance.
    The adsorption and decomposition mechanism of electrolyte on the cathode surface is one of the governing factors which control the stability, capacity and cyclic life. In this thesis, first principles calculations are used to study the adsorption and surface catalyzed decomposition mechanisms of ethylene carbonate on the (100) surface of fully discharged LiMn2O4. Six different adsorption configuration of EC on LiMn2O4 (100) surface was found by using GGA+U approximation. The adsorption strength and electronic properties of each site was then discussed by using density of states (DOS), projected density of states (PDOS) and electron density difference (EDD). Moreover, the initial decomposition mechanisms of EC on LiMn2O4 (100) surface is investigated by examining the minimum energy path between these two minima using the climbing image nudged elastic band reaction-pathway sampling scheme. In all sites, an electron transfer from the surface to the adsorbate was observed resulting in weakening and subsequent breaking of C-O bond and formation of open chain radical. Even though adsorption and decomposition reaction can occur on the (100) surface of LiMn2O4, for all configurations studied, the results show that the generation of gas is highly unlikely to occur at normal condition. In order to investigate the catalytic effect of the surface on the EC decomposition reaction, DFT calculations for the gas phase molecular decomposition of EC are performed and discussed in detail. In general, this work aims to give an insight about the initial stages in surface catalyzed electrolyte decomposition reactions on spinel cathode structure.

    Abstract 摘要 致謝 Contents List of Figure List of Table Chapter 1 Introduction Chapter 2 Literature Survey 2.1 Lithium Ion Battery: An Overview 2.2 Working Principle of Li Ion Battery 2.3 Main Component of Li Ion Battery 2.3.1 Electrolytes 2.3.2 Anode Material 2.3.3 Cathode Material Chapter 3 Computational Details 3.1 Method 3.2 Surface Model Chapter 4 Results and Discussion 4.1 LiMn2O4 Bulk and the (100) Clean Surface 4.2 Adsorption of Ethylene Carbonate on LiMn2O4 (100) Surface 4.3 Surface Catalyzed Decomposition Mechanisms of EC 4.4 Gas Phase Decomposition Mechanisms of EC Chapter 5 Conclusion Reference

    (1) Jansen, A. N.; Kahaian, A. J.; Kepler, K. D.; Nelson, P. A.; Amine, K.; Dees, D. W.; Vissers, D. R.; Thackeray, M. M. J Power Sources 1999, 81-82, 902.
    (2) Scrosati, B. Electrochim Acta 2000, 45, 2461.
    (3) Megahed, S.; Ebner, W. J Power Sources 1995, 54, 155.
    (4) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
    (5) Fergus, J. W. Journal of Power Sources 2010, 195, 939.
    (6) Shaju, K. M.; Bruce, P. G. Chemistry of Materials 2008, 20, 5557.
    (7) Lee, H.-W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Nano Lett 2010, 10, 3852.
    (8) Gummow, R. J.; de Kock, A.; Thackeray, M. M. Solid State Ionics 1994, 69, 59.
    (9) Hunter, J. C. J Solid State Chem 1981, 39, 142.
    (10) Kim, J.-S.; Kim, K.; Cho, W.; Shin, W. H.; Kanno, R.; Choi, J. W. Nano Lett 2012, 12, 6358.
    (11) Matsui, M.; Dokko, K.; Kanamura, K. J Electrochem Soc 2010, 157, A121.
    (12) Matsuo, Y.; Kostecki, R.; McLarnon, F. J Electrochem Soc 2001, 148, A687.
    (13) Aurbach, D.; Gamolsky, K.; Markovsky, B.; Salitra, G.; Gofer, Y.; Heider, U.; Oesten, R.; Schmidt, M. Journal of The Electrochemical Society 2000, 147, 1322.
    (14) Edstrom, K.; Gustafsson, T.; Thomas, J. O. Electrochim Acta 2004, 50, 397.
    (15) Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D. J Mater Chem 2011, 21, 9938.
    (16) Diaz-Gonzalez, F.; Sumper, A.; Gomis-Bellmunt, O.; Villafafila-Robles, R. Renew Sust Energ Rev 2012, 16, 2154.
    (17) Yang, H.; Amiruddin, S.; Bang, H. J.; Sun, Y. K.; Prakash, J. J Ind Eng Chem 2006, 12, 12.
    (18) Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. J Power Sources 2013, 226, 272.
    (19) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
    (20) Aurbacha, D.; Markovskya, B.; Weissmana, I.; Levia, E.; Ein-Eli, Y. Electrochim Acta 1999, 45, 67.
    (21) Doeff, M. In Batteries for Sustainability; Brodd, R. J., Ed.; Springer New York: 2013, p 5.
    (22) Yoshio, M.; Noguchi, H. In Lithium-Ion Batteries; Yoshio, M., Brodd, R., Kozawa, A., Eds.; Springer New York: 2009, p 9.
    (23) Marichal, C.; Hirschinger, J.; Granger, P.; Menetrier, M.; Rougier, A.; Delmas, C. Inorg Chem 1995, 34, 1773.
    (24) Menetrier, M.; Saadoune, I.; Levasseur, S.; Delmas, C. J Mater Chem 1999, 9, 1135.
    (25) Imanishi, N.; Fujiyoshi, M.; Takeda, Y.; Yamamoto, O.; Tabuchi, M. Solid State Ionics 1999, 118, 121.
    (26) Liu, J.; Liu, N.; Liu, D.; Bai, Y.; Shi, L.; Wang, Z.; Chen, L.; Hennige, V.; Schuch, A. J Electrochem Soc 2007, 154, A55.
    (27) Cho, J.; Kim, C. S.; Yoo, S. I. Electrochemical and Solid-State Letters 2000, 3, 362.
    (28) Cho, J.; Kim, G. Electrochemical and Solid-State Letters 1999, 2, 253.
    (29) Chen, Z.; Dahn, J. R. Electrochim Acta 2004, 49, 1079.
    (30) Kalyani, P.; Kalaiselvi, N. Science and Technology of Advanced Materials 2005, 6, 689.
    (31) Dahn, J. R.; von Sacken, U.; Juzkow, M. W.; Al‐Janaby, H. J Electrochem Soc 1991, 138, 2207.
    (32) Broussely, M.; Perton, F.; Biensan, P.; Bodet, J. M.; Labat, J.; Lecerf, A.; Delmas, C.; Rougier, A.; Peres, J. P. J Power Sources 1995, 54, 109.
    (33) Fuel and Energy Abstracts 2001, 42, 240.
    (34) Meng, Y. S.; Arroyo-de Dompablo, M. E. Energ Environ Sci 2009, 2, 589.
    (35) Besenhard, J. O.; Winter, M. Chemphyschem 2002, 3, 155.
    (36) Dey, A. N.; Sullivan, B. P. J Electrochem Soc 1970, 117, 222.
    (37) Aurbach, D.; Y. Ein-Eli, B. M.; Zaban, A.; Luski, S.; Carmeli, Y.; H. Yamin J Electrochem Soc 1995, 142, 2882.
    (38) Ohzuku, T.; Iwakoshi, Y.; Sawai, K. J Electrochem Soc 1993, 140, 2490.
    (39) Dahn, J. Phys Rev B 1991, 44, 9170.
    (40) Guo, D.; Chang, Z.; Li, B.; Tang, H.; Yuan, X.-Z.; Wang, H. J Solid State Electr 2013, 17, 2849.
    (41) Dahn, J. R.; Sacken, U. v.; Juzkow, M. W.; Al-Janaby, H. Journal of the Electrochemical Society 1991, 138, 2207.
    (42) Koetschau, I.; Richard, M. N.; Dahn, J. R.; Soupart, J. B.; Rousche, J. C. J Electrochem Soc 1995, 142, 2906.
    (43) Chu, A. C.; Josefowicz, J. Y.; Farrington, G. C. Journal of the Electrochemical Society, 1997, 144, 4161.
    (44) Ein-Eli, Y.; Thomas, S. R.; Koch, V.; Aurbach, D.; Markovsky, B.; Schechter, A. J Electrochem Soc 1996, 143, L273.
    (45) Chua, D.; Choblet, A.; Manivanna, V.; Lin, H. W.; Wolfenstine, J. In Applications and Advances, 2001. The Sixteenth Annual Battery Conference on 2001, p 275.
    (46) Ue, M.; Murakami, A.; Nakamura, S. J Electrochem Soc 2002, 149, A1572.
    (47) Koch, V. R.; Dominey, L. A.; Nanjundiah, C.; Ondrechen, M. J. J Electrochem Soc 1996, 143, 798.
    (48) Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U. Electrochim Acta 2002, 47, 1423.
    (49) Nanjundiah, C.; Goldman, J. L.; Dominey, L. A.; Koch, V. R. J Electrochem Soc 1988, 135, 2914.
    (50) Xu, K.; Lam, Y.; Zhang, S. S.; Jow, T. R.; T.B. Curtis The Journal of Physical Chemistry C 2007, 111, 7411.
    (51) Xu, K. Chemical Reviews 2004, 104, 4303.
    (52) Xu, K.; Lee, U.; Zhang, S. S.; Jow, T. R. J Electrochem Soc 2004, 151, A2106.
    (53) Zhang, S. S. J Power Sources 2006, 162, 1379.
    (54) In Industrial Chemistry Library; Pistoia, G., Ed.; Elsevier: Amsterdam, 1994; Vol. 5.
    (55) Kepler, K. D.; Vaughey, J. T.; Thackeray, M. M. Electrochemical and Solid-State Letters 1999, 2, 307.
    (56) Shao-Horn, Y.; Croguennec, L.; Delmas, C.; Nelson, E. C.; O'Keefe, M. A. Nat Mater 2003, 2, 464.
    (57) Li, T.; Qiu, W.; Zhao, R.; Xia, H.; Zhao, H.; J. Liu Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material 2008, 15, 74.
    (58) Brandt, K. Solid State Ion 1994, 69, 173.
    (59) Koksbang, R.; Barker, J.; Shi, H.; Saidi, M. Y. Solid State lonics 1996, 84, 1.
    (60) Rossen, E.; Reimers, J. N.; Dahn, J. R. Solid State Ionics 1993, 62, 53.
    (61) Garcia, B.; Farcy, J.; Pereira-Ramos, J. P.; Perichon, J.; Baffler, N. J Power Sources 1995, 54, 373.
    (62) Ohzuku, T.; Ueda, A.; Kouguchi, M. J Electrochem Soc 1995, 142, 4033.
    (63) Arai, H.; Okada, S.; Sakurai, Y.; Yamaki, J.-i. Solid State Ionics 1998, 109, 295.
    (64) Stoyanova, R. Solid State Ionics 2003, 161, 197.
    (65) Albrecht, S.; Kumpers, J.; Kruft, M.; Malcus, S.; Vogler, C.; Wahl, M.; Wohlfahrt-Mehrens, M. J Power Sources 2003, 119-121, 178.
    (66) Guilmard, M.; Croguennec, L.; Denux, D.; C. Delmas Chem Mater 2003, 15, 4476.
    (67) Kim, Y.; Kim, D.; Kang, S. Chem Mater 2011, 23, 5388.
    (68) M.M.Thackeray; W.I.F.David; P.G.Bruce; J.B.Goodenough Mater Res Bull 1983, 18, 431.
    (69) Guyomard, D.; Tarascon, J. M. J Electrochem Soc 1992, 139, 937.
    (70) Tarascon, J. M.; Guyomard, D. Electrochim Acta 1993, 38, 1221.
    (71) Lee, S.-W.; Kim, K.-S.; Moon, H.-S.; Lee, J.-P.; Kim, H.-J.; Cho, B.-W.; Cho, W.-I.; Park, J.-W. J Power Sources 2004, 130, 227.
    (72) Chen, J.-S.; Wang, L.-F.; Fang, B.-J.; Lee, S.-Y.; Guo, R.-Z. J Power Sources 2006, 157, 515.
    (73) Shu, D. Solid State Ionics 2003, 160, 227.
    (74) Xia, Y.; Sakai, T.; Fujieda, T.; Yang, X. Q.; Sun, X.; Ma, Z. F.; McBreen, J.; Yoshio, M. J Electrochem Soc 2001, 148, A723.
    (75) Xia, Y.; Zhou, Y.; Yoshio, M. J Electrochem Soc 1997, 144, 2593.
    (76) EinEli, Y.; Howard, W. F.; Lu, S. H.; Mukerjee, S.; McBreen, J.; Vaughey, J. T.; M.M.Thackeray J Electrochem Soc 1998, 145, 1238.
    (77) Dokko, K.; Horikoshi, S.; Itoh, T.; Nishizawa, M.; Mohamedi, M.; Uchida, I. J Power Sources 2000, 90, 109.
    (78) Gnanaraj, J. S.; Pol, V. G.; Gedanken, A.; Aurbach, D. Electrochem Commun 2003, 5, 940.
    (79) Lee, S.-W.; Kim, K.-S.; Moon, H.-S.; Kim, H.-J.; Cho, B.-W.; Cho, W.-I.; Ju, J.-B.; Park, J.-W. J Power Sources 2004, 126, 150.
    (80) Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J Electrochem Soc 1997, 144, 1188.
    (81) MacNeila, D. D.; Lub, Z.; Chenb, Z.; Dahna, J. R. J Power Sources 2002, 108, 8.
    (82) Takahashi, M.; Tobishima, S. I.; Takei, K.; Sakurai, Y. Solid State Ionics 2002, 148, 283.
    (83) Thackeray, M. Nat Mater 2001, 1, 81.
    (84) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J Electrochem Soc 1997, 144, 1609.
    (85) Takahashi, M.; Tobishima, S.; Takei, K.; Sakurai, Y. J Power Sources 2001, 97-98, 508.
    (86) Barker, J.; Saidi, M. Y.; Swoyer, J. L. Electrochemical and Solid-State Letters 2003, 6, A53.
    (87) Andersson, A. S.; Kalska, B.; Haggstrom, L.; Thomas, J. O. Solid State Ionics 2000, 130, 41.
    (88) Chung, S.-Y.; Bloking, J. T.; Chiang, Y.-M. Nat Mater 2002, 1, 123.
    (89) Yang, S.; Zavalij, P. Y.; Whittingham, M. S. Electrochem Commun 2001, 3, 505.
    (90) Ravet, N.; Chouinard, Y.; Magnan, J. F.; Besner, S.; Gauthier, M.; M. Armand J Power Sources 2001, 97, 503.
    (91) Huang, H.; Yin, S. C.; Nazar, L. F. Electrochemical and Solid-State Letters 2001, 4, A170.
    (92) Sun, Y.-K.; Myung, S.-T.; Park, B.-C.; Prakash, J.; Belharouak, I.; Amine, K. Nat Mater 2009, 8, 320.
    (93) Sun, Y.-K.; Lee, B.-R.; Noh, H.-J.; Wu, H.; Myung, S.-T.; Amine, K. J Mater Chem 2011, 21, 10108.
    (94) Cho, Y.; Lee, S.; Lee, Y.; Hong, T.; Cho, J. Adv Energy Mater 2011, 1, 821.
    (95) Novak, P.; Christensen, P. A.; Iwasita, T.; Vielstich, W. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1989, 263, 37.
    (96) Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. J Power Sources 2012, 208, 210.
    (97) Vetter, J.; Novak, P.; Wagner, M. R.; Veit, C.; Moller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A. J Power Sources 2005, 147, 269.
    (98) Balakrishnan, P. G.; Ramesh, R.; Prem Kumar, T. J Power Sources 2006, 155, 401.
    (99) Nishi, Y. J Power Sources 2001, 100, 101.
    (100) Yamaki, J.-i. In Advances in Lithium-Ion Batteries; van Schalkwijk, W., Scrosati, B., Eds.; Springer US: 2002, p 155.
    (101) Aurbach, D.; Levi, M. D.; Levi, E.; Teller, H.; Markovsky, B.; Salitra, G.; Heider, U.; Heider, L. J Electrochem Soc 1998, 145, 3024.
    (102) Kanamura, K.; Toriyama, S.; Shiraishi, S.; Ohashi, M.; Takehara, Z.-i. Journal of Electroanalytical Chemistry 1996, 419, 77.
    (103) Kresse, G.; Furthmler, J. Comp Mater Sci 1996, 6, 15.
    (104) Kresse, G.; Furthmler, J. Phys Rev B 1996, 54, 11169.
    (105) Perdew, J. P.; Yue, W. Phys Rev B 1986, 33, 8800.
    (106) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77, 3865.
    (107) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1997, 78, 1396.
    (108) Blochl, P. E. Phys Rev B 1994, 50, 17953.
    (109) Kresse, G.; Joubert, D. Phys Rev B 1999, 59, 1758.
    (110) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Phys Rev B 1998, 57, 1505.
    (111) Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G. Phys Rev B 2004, 70, 235121.
    (112) Henkelman, G.; Uberuaga, B. P.; Jonsson, H. The Journal of chemical physics 2000, 113, 9901.
    (113) Benedek, R.; Thackeray, M. M. Physical Review B 2011, 83, 195439.
    (114) Leung, K. The Journal of Physical Chemistry C 2012, 116, 9852.
    (115) Mukai, K.; Sugiyama, J.; Kamazawa, K.; Ikedo, Y.; Andreica, D.; Amato, A. J Solid State Chem 2011, 184, 1096.
    (116) Grechnev, G. E.; Ahuja, R.; Johansson, B.; Eriksson, O. Phys Rev B 2002, 65, 174408.
    (117) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J., J. A. ; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Gaussian, Inc.: Wallingford CT, 2009.
    (118) Zhao, Y.; Truhlar, D. Theor Chem Acc 2008, 120, 215.
    (119) Dunning, T. H. The Journal of chemical physics 1989, 90, 1007.
    (120) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. The Journal of chemical physics 1992, 96, 6796.
    (121) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J Chem Theory Comput 2006, 2, 364.
    (122) Leggesse, E. G.; Lin, R. T.; Teng, T.-F.; Chen, C.-L.; Jiang, J.-C. The Journal of Physical Chemistry A 2013, 117, 7959.

    QR CODE