簡易檢索 / 詳目顯示

研究生: 黃再利
Darman - Wijaya
論文名稱: 分子動力學模擬奈米銅線結晶型態及機械行為研究
Molecular Dynamics Study on Crystallization and Mechanical Behaviors of Copper Nanowires
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
Su-Hai Hsiang
呂道揆
none
陳雙源
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 112
中文關鍵詞: 分子動力學奈米線非結晶機械行為
外文關鍵詞: Molecular Dynamics, Nanowire, Amorphous, Mechanical Behavior
相關次數: 點閱:366下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用分子動力學(Molecular Dynamics)理論模擬奈米銅線在高溫狀態下快速冷卻之晶體型態,並搭配拉伸模擬實驗,探討奈米銅線的結晶度對變形機制、強度、延展性之影響。原子間勢能函數採用嵌入原子式模型(Embedded Atom Method),並以Verlet鄰近表列法(Verlet List)處理分子與分子間的交互作用。整個數值方法則採用Gear五階預測修正法(Gear’s predictor-corrector algorithms)。
    模擬結果顯示,當材料升溫速率愈快獲得非結晶狀態的溫度愈高。而在高溫熔化狀態下快速冷卻後可獲得非均勻的結晶,並發現不同的冷卻速率得到的結晶狀態亦有所改變,冷卻速率愈快,結晶溫度愈低;相反地,冷卻速率愈慢,結晶溫度愈高。在較低冷卻速率的狀態下,可獲得含有缺陷之結晶奈米銅線,而當冷卻速率快到某臨界值時,凝固後可獲得非結晶暫態的奈米銅線,若在室溫下,給予鬆弛一段時間則會恢復成為結晶結構。非結晶奈米銅線在拉伸過程中因臨場結晶效應產生結晶強化現象具有良好的延展性,而冷卻後恢復結晶的奈米銅線因結晶度的不同,塑性變形及破斷機制由缺陷及晶界的性質所決定,故強度及延展性比完美晶體差。


    This study analyzes solidification behaviors of copper nanowires under rapid cooling and additionally mechanical properties and deformation behaviors of copper nanowires also investigated with simple tension test after rapid cooling by using molecular dynamics simulation. The Embedded Atom Method (EAM) potential function is employed to describe the atomic interactions. Gear’s predictor-corrector algorithms are adopted to calculate position of each atom.
    Analysis results demonstrate that when higher heating rate is applied, the melting temperature of copper nanowires becomes high. It is found that rapid cooling can obtain amorphous nanowires and cooling rate has great effect on the final structure of the copper nanowires during solidification. The higher cooling rate is, the lower crystallization temperature will be and vice versa, the lower cooling rate leads to the higher crystallization temperature. With the decrease of cooling rates, the final structure of copper nanowires varies from amorphous to crystalline. Amorphous copper nanowires have great ductility under tensile loading. Copper nanowires after rapid cooling has lower strength and ductility since plasticity and breaking mechanism determine from defect and behavior of grain boundary in compared to perfect lattice crystal copper nanowires.

    摘要 I 表索引 V 圖索引 VI 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 3 第二章 分子動力學基礎理論 8 2.1 分子動力學之基本假設 8 2.2 分子間作用力與勢能函數 8 2.3 運動方程式及演算法 12 2.4 數值模擬方法 14 2.5 週期性邊界條件 16 2.6 原子級應力計算方法 17 2.7 Centrosymmetry參數 (CSP) 20 第三章 程式模擬步驟與模型建立 22 3.1 程式模擬步驟 22 3.1.1 初始設定 22 3.1.1.1 預備(Preliminaries) 22 3.1.1.2 初始條件(Initial Conditions) 25 3.1.2 平衡-鬆弛 26 3.1.3 動態模擬 27 3.2 奈米銅線模型建構 28 第四章 結果與討論 30 4.1 EAM勢能函數的選取原則 30 4.1.1 Johnson的EAM模型勢能函數之對單晶奈米銅線在拉伸模擬實驗的機械行為 30 4.1.2 Mishin等人的EAM 勢能函數模型之單晶奈米銅線在拉伸模擬實驗的機械行為 32 4.1.3 不同EAM勢能函數的比較 33 4.2 升溫速率與結晶度之關係 35 4.3 冷卻速率與鬆弛時間與冷卻後的結晶之關係 39 4.3.1 冷卻速率與冷卻後的結晶之關係 39 4.3.2 鬆弛時間與冷卻後的結晶恢復之行為 42 4.4 奈米銅線拉伸行為分析 45 4.4.1 完美結晶之奈米銅線拉伸行為 45 4.4.2 鬆弛效應對不同冷卻速率試片之拉伸行為的影響 47 4.4.3 急冷後恢復結晶之奈米銅線拉伸行為 47 4.4.4 非結晶之奈米銅線的拉伸行為 48 第五章 結論與建議 52 5.1 結論 52 5.2 未來研究方向與建議 53 參考文獻 54

    1. Craighead, H.G., "Nanoelectromechanical Systems", Science 2000, 290(5496), pp. 1532-1535.
    2. Kizuka, T., "Atomic Process of Point Contact in Gold Studied by Time-Resolved High-Resolution Transmission Electron Microscopy", Physical Review Letters, 1998, 81(20), pp. 4448-4451.
    3. Kizuka, T., "Atomistic Visualization of Deformation in Gold", Physical Review B, 1998, 57(18), pp. 11158-11163.
    4. Kondo, Y., Q. Ru and K. Takayanagi, "Thickness Induced Structural Phase Transition of Gold Nanofilm", Physical Review Letters, 1999, 82(4), pp. 751-754.
    5. Kondo, Y. and K. Takayanagi, "Gold Nanobridge Stabilized by Surface Structure", Physical Review Letters, 1997, 79(18), pp. 3455-3458.
    6. Kondo, Y. and K. Takayanagi, "Synthesis and Characterization of Helical Multi-Shell Gold Nanowires", Science, 2000, 289(5479), pp. 606-608.
    7. Rodrigues, V., T. Fuhrer and D. Ugarte, "Signature of Atomic Structure in the Quantum Conductance of Gold Nanowires", Physical Review Letters, 2000, 85(19), pp. 4124-4127.
    8. Wu, B., A. Heidelberg and J.J. Boland, "Mechanical Properties of Ultrahigh-Strength Gold Nanowires", Nature Materials, 2005, 4(7), pp. 525-529.
    9. Boettinger, W.J., D. Shechtman, R.J. Schaefer and F.S. Biancaniello, "Effect of Rapid Solidification Velocity on The Microstructure of Ag-Cu Alloys", Metallurgical transactions. A, 1984, 15 A(1), pp. 55-66.
    10. Gremaud, M., M. Carrard and W. Kurz, "Microstructure of Rapidly Solidified Al-Fe Alloys Subjected to Laser Surface Treatment", Acta metallurgica et materialia, 1990, 38(12), pp. 2587-2599.
    11. Frenkel, D. and B. Smit, "Understanding Molecular Simulation (Second Edition)," 2002, Academic Press: San Diego. pp. 63-107.
    12. Irving, J.H. and J.G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics", The Journal of Chemical Physics, 1950, 18(6), pp. 817-829.
    13. Alder, B.J. and T.E. Wainwright, "Phase Transition for a Hard Sphere System", The Journal of Chemical Physics, 1957, 27(5), pp. 1208-1209.
    14. Metropolis, N., A.W. Rosenblutn, M.N. Rosenbluth, A.H. Teller and E. Teller, "Equation of State Calculations by Fast Computing Machines", Journal of Chemical Physics, 1953, 21(6), pp. 1087-1092.
    15. Haile, J.M., Molecular Dynamics Simulation: Elementary Methods, 1992, John Wiley & Sons, Inc.
    16. Verlet, L., "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Physical Review, 1967, 159(1), pp. 98-103.
    17. Quentrec, B. and C. Brot, "New Method for Searching for Neighbors in Molecular Dynamics Computations", Journal of Computational Physics, 1973, 13(3), pp. 430-432.
    18. Plimpton, S., "Fast Parallel Algorithms for Short-Range Molecular Dynamics", J. Comput. Phys., 1995, 117(1), pp. 1-19.
    19. Hui, L., F. Pederiva, B.L. Wang, J.L. Wang and G.H. Wang, "How Does The Nickel Nanowire Melt?", Applied Physics Letters, 2005, 86(1), pp. 011913-011915.
    20. Zhou, G. and Q. Gao, "Molecular Dynamics Simulation of The Solidification of Liquid Gold Nanowires", Solid State Communications, 2005, 136(1), pp. 32-35.
    21. Liu, C.S., J. Xia, Z.G. Zhu and D.Y. Sun, "The Cooling Rate Dependence of Crystallization for Liquid Copper: A molecular Dynamics Study", The Journal of Chemical Physics, 2001, 114(17), pp. 7506-7512.
    22. Wu, H.A., A.K. Soh, X.X. Wang and Z.H. Sun. Strength and Fracture of Single Crystal Metal Nanowire. 2004. Sendai, Japan: Trans Tech Publications Ltd.
    23. Wu, H.A., "Molecular Dynamics Study of The Mechanics of Metal Nanowires at Finite Temperature", European Journal of Mechanics - A/Solids, 2006, 25(2), pp. 370-377.
    24. Wu, H.A., "Molecular Dynamics Study on Mechanics of Metal Nanowire", Mechanics Research Communications, 2006, 33(1), pp. 9-16.
    25. Kang, J.W. and H.J. Hwang, "Mechanical Deformation Study of Copper Nanowire Using Atomistic Simulation", Nanotechnology, 2001, 12(3), pp. 295-300.
    26. Komanduri, R., N. Chandrasekaran and L.M. Raff, "Effect of Tool Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach", Wear, 1998, 219(1), pp. 84-97.
    27. Komanduri, R., N. Chandrasekaran and L.M. Raff, "M.D. Simulation of Nanometric Cutting of Single Crystal Aluminum-Effect of Crystal Orientation and Direction of Cutting", Wear, 2000, 242(1-2), pp. 60-88.
    28. Komanduri, R., N. Chandrasekaran and L.M. Raff, "MD Simulation of Indentation and Scratching of Single Crystal Aluminum", Wear, 2000, 240(1-2), pp. 113-143.
    29. Smith, R., "Atomic and Ion Collisions in Solids and At Surfaces: Theory, Simulation and Applications", Cambridge University Press, USA, 1997.
    30. Daw, M.S., S.M. Foiles and M.I. Baskes, "The Embedded-Atom Method: A Review of Theory and Applications", Materials Science Reports, 1993, 9(7-8), pp. 251-310.
    31. Jones, J.E., "On the Determination of Molecular Fields. II. From the Equation of State of a Gas", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1924, 106(738), pp. 463-477.
    32. Jones, J.E., "On the Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1924, 106(738), pp. 441-462.
    33. Morse, P.M., "Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels", Physical Review, 1929, 34(1), pp. 57-64.
    34. Daw, M.S. and M.I. Baskes, "Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals", Physical Review Letters, 1983, 50(17), pp. 1285-1301.
    35. Foiles, S.M., M.I. Baskes and M.S. Daw, "Embedded Atom Method Functions For The FCC Metals Cu, Ag, Au, Ni, Pd, Pt, And Their Alloys", Phys. Rev. B: Condens. Matter, 1986, 33(12), pp. 7983-7991.
    36. Rosato, V., M. Guillope and B. Legrand, "Thermodynamical And Structural Properties of FCC Transition Metals Using A Simple Tight-Binding Model", Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1989, 59(2), pp. 321-336.
    37. Tersoff, J., "New Empirical Model For The Structural Properties of Silicon", Physical Review Letters, 1986, 56(6), pp. 632-635.
    38. Daw, M.S., "Model of Metallic Cohesion: The Embedded-Atom Method", Phys. Rev. B: Condens. Matter, 1989, 39(11), pp. 7441-7452.
    39. Daw, M.S. and M.I. Baskes, "Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals", Phys. Rev. B: Condens. Matter, 1984, 29(12), pp. 6443-6453.
    40. Johnson, R.A., "Analytic Nearest-Neighbor Model For FCC Metals", Physical Review B, 1988, 37(8), pp. 3924-3931.
    41. Mishin, Y., D. Farkas, M.J. Mehl and D.A. Papaconstantopoulos, "Interatomic Potentials For Monoatomic Metals From Experimental Data and Ab Initio Calculations", Physical Review B, 1999, 59(5), pp. 3393-3407.
    42. Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations, 1971, Prentice Hall PTR.
    43. Clausius, R., "On A Mechanical Theory Applicable to Heat", Philosophical Magazine, 1870, 40, pp. 122-127.
    44. Basinski, Z.S., M.S. Duesbery and R. Taylor, "Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice", Canadian Journal of Physics, 1971, 49, pp. 2160-2180.
    45. Srolovitz, D., K. Maeda, V. Vitek and T. Egami, "Structural Defects in Amorphous Solids Statistical Analysis of A Computer Model", Philosophical Magazine A, 1981, 44(4), pp. 847 - 866.
    46. Miyazaki, N. and Y. Shiozaki, "Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method", JSME international journal. Series A, Solid mechanics and material engineering, 1996, 39(4), pp. 606-612.
    47. Lin, Y.C. and D.J. Pen, "Atomistic Behavior Analysis of Cu Nanowire Under Uniaxial Tension With Maximum Local Stress Method", Molecular Simulation, 2007, 33(12), pp. 979 - 988.
    48. Iwaki, T., "Molecular Dynamics Study on Stress-Strain in Very Thin Film : Size and Location of Region for Defining Stress and Strain", JSME international journal. Series A, Solid mechanics and material engineering, 1996, 39(3), pp. 346-353.
    49. Kelchner, C.L., S.J. Plimpton and J.C. Hamilton, "Dislocation Nucleation And Defect Structure During Surface Indentation", Physical Review B, 1998, 58(17), pp. 11085-11088.
    50. 彭達仁, "分子動力學模擬奈米銅線單軸受力狀態之微觀行為分析", 國立台灣科技大學博士論文, 2008.
    51. Johnson, R.A., "Alloy Models With The Embedded-Atom Method", Physical Review B, 1989, 39(17), pp. 12554-12559.
    52. Mishin, Y., M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter and J.D. Kress, "Structural Stability And Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations", Physical Review B, 2001, 63(22), pp. 224106-224121.
    53. Yoshida, K., Y. Gotoh and M. Yamamoto, "The Thickness Dependence of Plastic Behaviors of Copper Whiskers", Journal of the Physical Society of Japan, 1968, 24(5), pp. 1099-1107.
    54. Hirth, J.P. and J. Lothe, Theory of Dislocations. Second Edition John Wiley and Sons, Inc., 1982.
    55. Qi, W.H., B.Y. Huang, M.P. Wang, F.X. Liu and Z.M. Yin, "Freezing of silver cluster and nanowire: A comparison study by molecular dynamics simulation", Computational Materials Science, 2008, 42(3), pp. 517-524.
    56. Zhou, G. and Q. Gao, "Freezing behavior of one-dimensional copper nanowires", Solid State Communications, 2006, 138(8), pp. 399-403.
    57. Bilalbegovic, G., "Structures and melting in infinite gold nanowires", Solid State Communications, 2000, 115(2), pp. 73-76.
    58. Park, H.S. and J.A. Zimmerman, "Modeling Inelasticity and Failure in Gold Nanowires", Physical Review B (Condensed Matter and Materials Physics), 2005, 72(5), pp. 0541061-0541069.
    59. Karaman, I., H. Sehitoglu, K. Gall, Y.I. Chumlyakov and H.J. Maier, "Deformation of Single Crystal Hadfield Steel by Twinning and Slip", Acta Materialia, 2000, 48(6), pp. 1345-1359.
    60. Bendersky, L., R.J. Schaefer, F.S. Biancaniello, W.J. Boettinger, M.J. Kaufman and D. Schchtman, "Icosahedral Al-Mn and Related Phases: Resemblance in Structure", Scripta Metallurgica, 1985, 19(7), pp. 909-914.
    61. Sen, P., O. Gulseren, T. Yildirim, I.P. Batra and S. Ciraci, "Pentagonal Nanowires: A First-Principles Study of The Atomic and Electronic Structure", Physical Review B, 2002, 65(23), pp. 235433-235437.

    QR CODE