簡易檢索 / 詳目顯示

研究生: 林志銓
Jhih-Cyuan Lin
論文名稱: 覆有奈米銀線之碳化紗布為電極之電穿孔快速水中殺菌法
Facile water disinfection via electroporationusing silver nanowires coated carbonized gauze electrodes
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 蔡伸隆
Shen-Long Tsai
何明樺
Ming-Hua Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 89
中文關鍵詞: 電穿孔殺菌奈米銀線
外文關鍵詞: Electroporation, silver nanowires, disinfection
相關次數: 點閱:147下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電穿孔原理主要是利用外加高電壓脈衝使細菌細胞膜產生孔洞,細菌因胞內物質由孔洞流出而死亡,因此電穿孔可應用於殺死水中細菌。本論文利用奈米銀線的尖端結構及高導電性,在低電壓下仍能產生高電場,使菌體細胞膜在高電場下遭到貫穿而造成細胞死亡。編織為紗布的棉纖維在經高溫熱裂解後可碳化成具導電性的碳纖維,因其不易碎裂及易剪裁,本論文選用作為電穿孔殺菌的電極,在其上批覆一層奈米銀線,當水樣流通過電極時施加電場,奈米銀線上所產生之高電場將會對水中細菌產生電穿孔之殺菌效應。本論文將探討不同流速、不同電壓、不同水樣、細菌濃度、酸鹼度、電極層數和Nafion黏著劑添加量對殺菌效果之影響。實驗於去離子所製備之含菌水樣中施加20V電壓時,固定流速3.95 ml/min下於20分鐘內有最佳殺菌效率;在相同條件下將電極層數由2層增加至4層可延長20分鐘之高效殺菌;於電極表面上批覆一層Nafion黏著劑則同樣可使殺菌時間延長20分鐘;相同條件下磷酸緩衝液所配製之水樣及池塘水樣於20分鐘內殺菌效率亦可達100%,但以LB培養液為水樣由於其中養分充足,所以細菌可以持續產生子代而導致無法有效地應用此方法對培養液進行快速滅菌。


    Electroporation is a technique which applies high pulse voltage to generate pores on the cell membrane of bacteria. Consequently, some of intracellular compounds will be released out of the cell after electroporation that leads the cell to die. This thesis focused on using silver nanowires (AgNWs) which have high conductivity and a large number of nanoscale tips to generate high electric field strength at low applied voltage. AgNWs were coated on a very porous electrode made of carbonized gauze so that bacterial suspension can easily pass through. The bacteria killing effect of electroporation was studied by flowing Eschericia coli suspension in deionized water through the electrodes at different rate, voltage, bacterial concentration, electrode layers, and etc. The best bacteria killing ability was observed by applying 20V with 3.95 ml/min of flow rate for 20 min. Under the same condition, by increasing electrode layers to 4 layers, the bacteria killing ability enhanced and sustained to another 20 min. The different water sources have a strong effect on bacteria killing efficiency by electroporation. The AgNWs-carbonized gauze shows the similar bacteria killing ability for the bacteria in phosphate buffer solution, in pond water as well as in deionized water. However, bacteria in LB medium couldn’t be killed effectively due to the rich nutrient content that can provide bacteria to grow after damage.

    摘要 I ABSTRACT II 誌謝 III 圖目錄 VIII 表目錄 XII 符號表 XIII 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 3 第二章 文獻回顧 5 2.1 纖維素 5 2.1.1 絲瓜絡 5 2.1.2 細菌纖維素 7 2.2 奈米銀線 10 2.2.1 多醇類合成法 10 2.2.2 純化步驟 12 2.3 電穿孔 14 2.3.1 細胞膜破損 14 2.4 熱裂解 16 第三章 實驗步驟及方法 17 3.1 藥品及材料 17 3.2 儀器設備 19 3.3 藥品配置 21 3.4 實驗流程 23 3.4.1 奈米銀線製備 25 3.4.2 奈米銀顆粒製備 26 3.4.3 奈米銅線製備 27 3.4.4 細菌纖維素 28 3.4.5 纖維熱裂解製備導電材料 29 3.4.6 奈米線材批覆碳化纖維 30 3.4.7 電穿孔設備組裝 31 3.5 分析儀器與方法 32 3.5.1 FE-SEM場發式掃描電子顯微鏡 32 3.5.2 UV-vis分光光譜儀之濁度分析 33 3.5.3 感應耦合電漿原子發射光譜儀 (ICP-AES) 34 3.5.4 標準塗盤法 (Standard plating method) 35 3.5.5 菌落形成單位(Colony-forming units, CFU) 35 3.5.6 蠕動幫浦校正 36 第四章結果與討論 37 4.1 奈米銀線合成 37 4.2 奈米銅線合成 38 4.3 纖維熱裂解製備導電性濾材 39 4.4 碳化紗布批覆奈米銀 42 4.5 導電電極之阻塞影響 48 4.6 電穿孔之PH值變化 49 4.7 電穿孔殺菌 49 4.7.1 流速對電穿孔殺菌能力影響 49 4.7.2 不同水樣之電穿孔殺菌效果 51 4.7.3 靜置時間對電穿孔菌體之影響 54 4.7.4 電壓對殺菌效率之影響 55 4.7.5 菌液濃度對殺菌能力之影響 56 4.7.6 碳化紗布層數對殺菌能力之影響 57 4.7.7 低濃度菌液之電穿孔殺菌與細菌生長曲線 58 4.7.8 處理過之水樣中銀濃度含量 60 4.7.9 奈米銀線之固定化 62 4.7.10 奈米銀顆粒殺菌效果 63 4.7.11 電穿孔殺菌可處理之最佳水樣體積 65 第五章 結論與未來展望 66 5.1 結論 66 5.2 未來展望 68 第六章 參考資料 69

    1. Njume, C. and N. Goduka, Treatment of Diarrhoea in Rural African Communities: An Overview of Measures to Maximise the Medicinal Potentials of Indigenous Plants. International Journal of Environmental Research and Public Health, 2012. 9(11): p. 3911-3933.
    2. Organization, W.H. Diarrhoeal disease. 2013; Available from: http://www.who.int/mediacentre/factsheets/fs330/en/.
    3. Agrawal, V.K. and R. Bhalwar, Household water purification: Low-cost interventions. Medical Journal Armed Forces India, 2009. 65(3): p. 260-263.
    4. Krasner, S.W., et al., Occurrence of a New Generation of Disinfection Byproducts†. Environmental Science & Technology, 2006. 40(23): p. 7175-7185.
    5. Krasner, S.W., The formation and control of emerging disinfection by-products of health concern. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009. 367: p. 4077-4095.
    6. Gray, N.F., Chapter Thirty-Three - Ozone Disinfection, in Microbiology of Waterborne Diseases (Second Edition), S.L. Percival, et al., Editors. 2014, Academic Press: London. p. 599-615.
    7. Choi, Y. and Y.-j. Choi, The effects of UV disinfection on drinking water quality in distribution systems. Water Research, 2010. 44(1): p. 115-122.
    8. McGuigan, K.G., et al., Solar water disinfection (SODIS): A review from bench-top to roof-top. Journal of Hazardous Materials, 2012. 235–236(0): p. 29-46.
    9. Liu, C., et al., Conducting Nanosponge Electroporation for Affordable and High-Efficiency Disinfection of Bacteria and Viruses in Water. Nano Letters, 2013. 13(9): p. 4288-4293.
    10. Yuan, Y., et al., Nanostructured Macroporous Bioanode Based on Polyaniline-Modified Natural Loofah Sponge for High-Performance Microbial Fuel Cells. Environmental Science & Technology, 2013. 47(24): p. 14525-14532.
    11. H-W Liang, et al., Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Materials, 2012. 4.
    12. Wu, Z.-Y., et al., Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angewandte Chemie International Edition, 2013. 52(10): p. 2925-2929.
    13. Wang, X.W. and Z.H. Yuan, Electronic transport behavior of diameter-graded Ag nanowires. Physics Letters A, 2010. 374(22): p. 2267-2269.
    14. Zeng, X.-Y., et al., A New Transparent Conductor: Silver Nanowire Film Buried at the Surface of a Transparent Polymer. Advanced Materials, 2010. 22(40): p. 4484-4488.
    15. Riveros, G., et al., Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Nanotechnology, 2006. 17(2): p. 561.
    16. Kundu, S., et al., Photochemical formation of electrically conductive silver nanowires on polymer scaffolds. Journal of Colloid and Interface Science, 2010. 344(2): p. 334-342.
    17. Hu, J.Q., et al., A Simple and Effective Route for the Synthesis of Crystalline Silver Nanorods and Nanowires. Advanced Functional Materials, 2004. 14(2): p. 183-189.
    18. Sun, X.M. and Y.D. Li, Cylindrical Silver Nanowires: Preparation, Structure, and Optical Properties. Advanced Materials, 2005. 17(21): p. 2626-2630.
    19. Jiu, J., et al., Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. Journal of Materials Chemistry, 2012. 22(44): p. 23561-23567.
    20. Schuette, W.M. and W.E. Buhro, Silver Chloride as a Heterogeneous Nucleant for the Growth of Silver Nanowires. ACS Nano, 2013. 7(5): p. 3844-3853.
    21. Korte, K.E., S.E. Skrabalak, and Y. Xia, Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. Journal of Materials Chemistry, 2008. 18(4): p. 437-441.
    22. Liu, S., J. Yue, and A. Gedanken, Synthesis of Long Silver Nanowires from AgBr Nanocrystals. Advanced Materials, 2001. 13(9): p. 656-658.
    23. Hu, L., et al., Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano, 2010. 4(5): p. 2955-2963.
    24. Younan Xia., et al., Uniform Silver Nanowires Synthesis by Reducing AgNO3
    with Ethylene Glycol in the Presence of Seeds and
    Poly(Vinyl Pyrrolidone). Chem. Mater, 2002. 14(11): p. 4736-4745.
    25. Mayousse, C., et al., Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors. Nanotechnology, 2013. 24(21): p. 215501.
    26. Ross Jarrett, R.C., The Separation of Silver Nanowires from Solution Using a Novel Filtration Technique - A Comparative Study, in Photovoltaic Science Application and Technology-9. 2013: Swansea.
    27. Jiu, J., et al., Ag nanowires: large-scale synthesis via a trace-salt-assisted solvothermal process and application in transparent electrodes. Journal of Nanoparticle Research, 2013. 15(4): p. 1-13.
    28. You, T., et al., Controllable synthesis of pentagonal silver nanowires via a simple alcohol-thermal method. Materials Letters, 2009. 63(11): p. 920-922.
    29. Zhu, S., et al., Transferable self-welding silver nanowire network as high performance transparent flexible electrode.Nanotechnology, 2013. 24(33): p. 335202.
    30. Zhu, J.-J., et al., High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process. J. Nanomaterials, 2011. 2011: p. 1-7.
    31. Chabot, S., et al., Delivery of RNAi-Based Oligonucleotides by Electropermeabilization. Pharmaceuticals, 2013. 6(4): p. 510-521.
    32. Prasanna, G.L. and T. Panda, Electroporation: basic principles, practical considerations and applications in molecular biology. Bioprocess Engineering, 1997. 16(5): p. 261-264.
    33. BTX. ELECTROPORATION. 2014; Available from: http://www.btxonline.com/pages/FAQ.html.
    34. 謝欣璁, 可規劃式脈衝電場產生器研製與液態食物殺菌應用, in Electrical Engineering. 2004, National Chung Cheng University.
    35. Li, S., et al., Large-Scale Synthesis of Well-Dispersed Copper Nanowires in an Electric Pressure Cooker and Their Application in Transparent and Conductive Networks. Inorganic Chemistry, 2014. 53(9): p. 4440-4444.
    36. 楊仕鵬, 製備氧化亞銅奈米立方體觸媒並應用於非酵素型葡萄糖感測器, in Department of Chemical Engineering. 2012, National Taiwan University of Science and Technology.

    QR CODE