簡易檢索 / 詳目顯示

研究生: 陳曉薇
Hsiao-Wei Chen
論文名稱: 銀線合成與特性分析
Study on Preparation of Silver Wire and Characterizations
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
胡啟章
Chi-Chang Hu
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 多元醇法銀奈米線透明導電薄膜
外文關鍵詞: polyol method, transparent conductive film, silver nanowire
相關次數: 點閱:231下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透明導電薄膜為光電元件中不可或缺的材料,現今的透明導電薄膜大多為氧化銦錫薄膜,但因其原物料成本逐漸提升且不具可撓性,故轉為尋求其他替代材料。本研究將合成銀奈米線並應用於透明導電薄膜,並探討其光電特性。
    本研究分成兩個部分,第一部分是以多元醇法合成銀奈米線,使用二元醇為還原劑,在高溫反應下可以使硝酸銀還原成銀,再利用離子添加劑四丁基氯化銨、四丁基溴化銨誘導晶種成長,最後在包覆劑聚乙烯吡咯烷酮輔助下,形成銀非對稱性的成長,並探討不同的合成參數,如反應物濃度、溶劑比例等,對於銀奈米線成長之影響。第二部分以旋轉塗佈製備銀奈米線透明導電薄膜,調整銀奈米線漿料濃度、溶劑組成和增稠劑比例,對於薄膜的光電特性有顯著的影響。
    本實驗成功合成直徑約50 nm、長度超過10 µm以上的銀奈米線,縱橫比約500且銀轉化率皆為60%以上。後續以此材料塗佈一次即具有片電阻為塗佈次數為一次即具有片電阻為4.56 Ω/sq、穿透度76%、霧度21.5%的銀奈米線透明導電薄膜,對於未來應用在光電元件中具有實用化潛力。


    Transparent conductive film (TCF) is an indispensable material for photovoltaic devices. The demand for transparent conductive film is rapidly increased due to the wide development of technology. The indium oxide Tin (ITO) film current is mostly used as transparent conductive films until now. However, problems regarding ITO material are the lack of supply and increase in cost. Therefore, many researches are looking for other alternatives. In this study, we focused on the synthesis of silver nanowire (SNW) and its application in transparent conductive film.
    There were two parts in this study. The first part was the preparation of silver nanowires by polyol method. Under the high temperature condition, silver nitrate (AgNO3) is reduced to metallic silver with using ethylene glycol (EG) as reducing agent, where chloride salt and bromide salt are added to induce the seed growth. The asymmetric growth of silver is led by the capping agent, polyvinylpyrrolidone (PVP). The effects of synthesis factors, such as reaction temperature, concentration of reactants, composition of reducing agent, and dosing rate, on the growth of silver nanowire were investigated in detial. In the second part, the SNW transparent conductive film is fabricated in the spin coating process. The concentration of SNW and the composition of solvents show significant effects on the optoelectronic properties of film.
    In conclusion, we successfully synthesized SNW with a diameter of 50 nm and length of more than 10 μm, i.e., aspect ratio of about 500. The conversion of silver ion to metallic silver is more than 60%. The SNW transparent conductive film with sheet resistance of 4.56 Ω/sq, transmittance of 76%, and haze of 21.5% with using the prepared SNW. It has great potential for application in the photoelectric device in the future.

    致謝 i 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 ix 表目錄 xii 第1章 緒 論 1 1.1 前言 1 1.2 研究動機 2 第2章 文獻回顧 4 2.1 透明導電薄膜介紹及應用 4 2.1.1 透明導電薄膜介紹 4 2.1.2 透明導電薄膜應用 11 2.2 銀奈米線製備方法 17 2.2.1 電化學製備法 17 2.2.2 光化學製備法 18 2.2.3 化學氣相製備法 19 2.2.4 模板製備法 19 2.2.5 化學液相製備法 20 2.3 透明導電銀奈米線薄膜 26 第3章 研究方法 29 3.1 實驗規劃 29 3.2 藥品與儀器設備 30 3.2.1 實驗藥品 30 3.2.2 儀器設備 31 3.2.3 分析儀器 31 3.3 實驗步驟 35 3.3.1 多元醇法製備銀奈米線 35 3.3.2 銀奈米線薄膜之製備 36 3.3.3 材料分析與電性量測 36 第4章 結果與討論 37 4.1 多元醇製備銀奈米線其成長探討 37 4.1.1AgNO3濃度影響 37 4.1.2PVP濃度影響 41 4.1.3PVP分子量影響 44 4.1.4 還原溶劑比例影響 47 4.1.5 反應時間影響 51 4.1.6 反應溫度影響 55 4.1.7AgNO3進料速率影響 58 4.1.8 攪拌影響 61 4.1.9 銀奈米線成長機制探討 63 4.2 銀奈米線導電薄膜之光電特性 65 4.2.1 銀奈米線漿料濃度的影響 65 4.2.2 添加增稠劑比例的影響 68 4.2.3不同濃度漿料於不同基材之比較 70 第5章 結論與未來展望 73 5.1 結論 73 5.2 未來展望 76 第6章 參考文獻 78

    [1] J. Y. Lin, Y. L. Hsueh, J. J. Huang and J. R. Wu, “Effect of silver nitrate concentration of silver nanowires synthesized using a polyol method and their application as transparent conductive films,” Thin Solid Films, Vol. 584, pp. 243-247 (2015).
    [2] B. Li, S. Ye, I. E. Stewart, S. Alvarez and B. J. Wiley, “Synthesis and Purification of Silver Nanowires To Make Conducting Films with a Transmittance of 99%,,” Nana Lett , Vol. 15, pp. 6722-6726 (2015).
    [3] T. Gao, P.-S. Huang, J.-K. Leeb and P. W. Leu, “Hierarchical metal nanomesh/microgrid structures for high performance transparent electrodes,” RSC Adv., Vol. 5, pp. 70713-70717 (2015).
    [4] 楊明輝,透明導電膜材料與成膜技術的新發展,工業材料,第189期,(2002)。
    [5] J.L. Vossen, “Transparent conducting films,” Diss. AVS, (1976).
    [6] F. Streintz, “Ueber die elektrische leitfähigkeit von gepressten pulvern,” Ann. Phys., Vol. 314, pp. 854-885 (1902).
    [7] G. Rupprecht, “Untersuchungen der elektrischen und lichtelektrischen leitfähigkeit dűnner indiumoxydschichten,” Z. Phys., Vol. 139, pp. 504–518 (1954).
    [8] H. J. Vanboort and R. Groth, “Low-pressure sodium lamps with indium oxide filter,” Philips Tech. Rev., Vol. 29, pp. 17 (1968).
    [9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, Vol. 306, pp. 666-669 (2004).
    [10] 劉偉仁、蘇清源、江偉宏、郭信良、吳定宇、陳貴賢、許新城、孫嘉良、許淑婷、沈駿、邱鈺蛟、蕭碩信、張峰碩,石墨烯技術,五南圖書出版,(2015)。
    [11] 何世明、蘇清源,國家奈米元件實驗室奈米通訊,石墨烯奈米帶的近期發展與應用,第23期,2-7,(2016)。
    [12] H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x,” J. Chem. Soc.-Chem. Commun., Vol. 0, pp. 578-580 (1977).
    [13] Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu, N. I. Rabiah, Z. Chen, J. W. Chung, C. Linder, M. F. Toney, B. Murmann and Z. Bao, “A highly stretchable, transparent, and conductive polymer," Science Advances, Vol. 3, no. e1602076 (2017).
    [14] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58(1991).
    [15] 蔡宏營,奈米科技概論與應用,五南圖書出版,(2013)。
    [16] R. C. Weast, M. J. Astle and W. H. Beyer, “CRC handbook of chemistry and physics.” CRC press Boca Raton, FL, (1988).
    [17] M. H. Chang, H. A. Cho, Y. S. Kim, E. J. Lee, and Y. J. Kim, “Thin and long silver nanowires self-assembled in ionic liquids as a soft template: electrical and optical properties,” Nanoscale Res. Lett., Vol. 9, pp. 330 (2014).
    [18] 林雅婷,以還原氧化石墨烯/奈米銅線複合材料製備電性穩定之可撓透明導電薄膜,國立清華大學材料科學工程學系學位論文,(2016)。
    [19] 林明獻,「太陽電池技術入門」,全華圖書出版,(2016)。
    [20] 徐敘瑢,「光電材料與顯示技術」,五南圖書出版,(2004)。
    [21] 顧鴻壽,「觸控面板技術及其應用」,五南圖書出版,(2014)。
    [22] Y. Zhou, S. H. Yu, X. P. Cui, C. Y. Wang, and Z. Y. Chen, “Formation of silver nanowires by a novel solid-liquid phase arc discharge method,” Chem. Mater., Vol. 11, pp. 545-546 (1999).
    [23] Y. Zhou, S. H. Yu, C. Y. Wang, X. G. Li, Y. R. Zhu and Zu Y. Chen, “A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites,” Adv. Mater., Vol. 11, pp. 850-852, (1999).
    [24] S. Kundu, D. Huitink, K. Wang, and H. Liang, “Photochemical formation of electrically conductive silver nanowires on polymer scaffolds,” J. Colloid Interf. Sci., Vol. 344, pp. 334-342 (2010).
    [25] P. Mohanty, I. Yoon, T. Kang, K. Seo, K. S. K. Varadwaj, W. Choi, Q-H. Park, J. P. Ahn, Y. D. Suh, H. Ihee and B. Kim, “Simple vapor-phase synthesis of single-crystalline Ag nanowires and single-nanowire surface-enhanced raman scattering,” J. Am. Chem. Soc., Vol. 129, pp. 9576-9577 (2007).
    [26] C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science, Vol. 266, pp. 1961-1966 (1994).
    [27] Y. Jia, C. Chen, D. Jia, S. Li, S. Ji and C. Ye, “Silver Nanowire Transparent Conductive Films with High Uniformity Fabricated via a Dynamic Heating Method,” ACS Appl. Mater. Interfaces, Vol. 8, pp. 9865-9871 (2016).
    [28] P. M. Ajayan and S. Iijima, “Capillarity-induced filling of carbon nanotubes,” Nature, Vol. 361, pp. 333-334 (1993).
    [29] D. Ugarte and A. Châtelain, W. A. de Heer, “Nanocapillarity and chemistry in carbon nanotubes,” Science, Vol. 274, pp. 1897-1899 (1996).
    [30] C. J. Murphy and N. R. Jana, “Controlling the aspect ratio of inorganic nanorods and nanowires,” Adv. Mater., Vol. 14, pp. 80-82 (2002).
    [31] N. R. Jana, L. Gearheart and C. J. Murphy, “Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio,” Chem. Comm., Vol. 7, pp. 617-618 (2001).
    [32] Z. H. Wang, J. W. Liu, X. Y. Chen, J. X. Wan and Y. T. Qian, “A simple hydrothermal route to large-scale synthesis of uniform silver nanowires,” Chem. Eur. J., Vol. 11, pp. 160-163 (2005).
    [33] M. F. Meléndrez, C. Medina, F. Solis-Pomar, P. Flores, M. Paulraj and E. Pérez-Tijerina, “Quality and high yield synthesis of Ag nanowires by microwave-assisted hydrothermal method,” Noscale Res. Lett., Vol. 10, pp. 48 (2015).
    [34] F. Fievet, J. Lagier and M. J. M. B. Figlarz, “Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process,” Mrs Bulletin, Vol. 14, pp. 29-34 (1989).
    [35] G. Viau, F. F. Vincent and F. Fievet, “Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols,” Solid State Ionics, Vol. 84, pp. 259-270 (1996).
    [36] L. Gou, M. Chipara and J. M. Zaleski, “Convenient, rapid synthesis of Ag nanowires,” Chem. Mater., Vol. 19, pp. 1755-1760 (2007).
    [37] Y. Sun and Y. J. A. M. Xia, “Large‐scale synthesis of uniform silver nanowires through a soft, self‐seeding, polyol process,” Adv. Mater., Vol. 14, pp. 833-837 (2002).
    [38] S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, B. J. Wiley, “Metal nanowire networks: the next generation of transparent conductors,” Adv. Mater., Vol. 26, pp. 6670-6687 (2014).
    [39] E. J. Lee, M. H. Chang, Y. S. Kim and J. Y. Kim, “High-pressure polyol synthesis of ultrathin silver nanowires: Electrical and optical properties,” Apl Mater., Vol. 1, p.042118 (2013).
    [40] K. Zhang, Y. Du and S. Chen, “Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications,” Org Electron, Vol. 26, pp. 380-385 (2015).
    [41] T. Kim, A. Canlier, G. H. Kim, J. Choi, M. Park and S. M. Han, “Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate,” ACS Appl. Mater. Interfaces, Vol. 5, pp. 788-794 (2013).
    [42] T. Tokuno, M. Nogi, M Karakawa, J. T. Jiu, T. T. Nge, Y. Aso and K. Suganuma, “Fabrication of silver nanowire transparent electrodes at room temperature,” Nano Res, Vol. 4, pp. 1215-1222 (2011).
    [43] C. Chen, Y. Jia, D. Jia, S. Li, S. Ji and C. Ye, “Formulation of concentrated and stable ink of silver nanowires with applications in transparent conductive films,” RSC Adv, Vol. 7, pp. 1936-1942 (2017).
    [44] H. Moon, P. Won, J. Lee and S. Ko, “Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel,” Nanotechnology, Vol. 27, p. 295201 (2016).
    [45] T. N. Trung, V. K. Arepalli, R. Gudala and E. T. Kim, “Polyol synthesis of ultrathin and high-aspect-ratio Ag nanowires for transparent conductive films,” Mater. Lett., Vol. 194, pp. 66-69 (2017).
    [46] E.-J. Lee, Y.-H. Kim, D. K. Hwang, W. K. Choi and J. Y. Kim, “Synthesis and optoelectronic characteristics of 20 nm diameter silver nanowires for highly transparent electrode films,” RCS Adv., Vol. 6, pp. 11702-11710 (2016).
    [47] D. Jia, Y. Zhao, W. Wei, C. Chen, G. Lei, M. Wan, J. Tao, S. Li, S. Ji and C. Ye, “Synthesis of very thin Ag nanowires with fewer particles by suppressing secondary seeding,”CrystEngComm. C, Vol. 19, pp. 148-153 (2017).
    [48] C. Chen, Y. Zhao, W. Wei, J. Tao, G. Lei, D. Jia, M. Wan, S. Li, S. Ji and C. Ye, “Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity and their application in transparent electronics,” J. Mater. Chem., Vol. 5, pp. 2240-2246 (2017).
    [49] Y. Sun, B. Gates, B. Mayers and Y. Xia, “Crystalline silver nanowires by soft solution processing,” Nano lett., Vol. 2, pp. 165-168 (2002).
    [50] Y. Cai, S. X. Chang and Y. Cheng, “Greenhouse gas emissions from excreta patches of grazing animals and their mitigation strategies,” Earth-Science Reviews, Vol. 171, pp. 44-57 (2017).
    [51] J.W. Lim, D.Y. Cho, S.I. Na, H. K. Kim and S. Cells, “Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells,” Sol. Energ. Mat. Sol. C., Vol. 107, pp. 348-354 (2012).
    [53] J. Park, M. Kim, J. B. Shin and K. C. Choi, “Transparent chromatic electrode using the mixture of silver nanowire and silver nanoprism,” Current Appl. Phy., Vol. 14, pp. 1005-1009 (2014).
    [53] S. J. Lee, Y.-H. Kim, J. K. Kim, H. Baik, J. H. Park, J. Lee, J. Nam, J. H. Park, T.-W. Lee, G.-R. Yi and J. H. Cho, “A roll-to-roll welding process for planarized silver nanowire electrodes,” Nanoscale., Vol. 6, pp. 11828-11834 (2014).
    [54] K. Bautista, “Four-point probe operation,” Thin Film Deposition, Erik Jonsson School of Engineering; The University of Texas, p. 1e8 (2003).
    [55] K. J. Laidler, “A glossary of terms used in chemical kinetics, including reaction dynamics,” Pure and App. Chem., Vol. 68, pp. 149-192 (1996).
    [56] Y. G. Sun and Y. N. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science, Vol. 298, pp. 2176-2179 (2002).
    [57] J. Y. Lin, Y. L. Hsueh and J. J. Huang, “The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method,” J. Solid State Chem., Vol. 214, pp. 2-6 (2014).
    [58] F. Haaf, A. Sanner and F. Straub, “Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses,” Polymer J., Vol. 17, pp. 143-152 (1985).
    [59] K. E. Korte, S. E. Skrabalak and Y. N. Xia, “Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process,” J.Mater. Chem., Vol. 18, pp. 437-441 (2008).
    [60]R. R. d. Silva, M. Yang, S. Choi, M. C. M. Luo, C. Zhang, Z.-Y. Li, P. H. C. Camargo, S. J. L. Ribeiro and Y. Xia, “Facile Synthesis of Sub-20 nm Silver Nanowires through a Bromide-Mediated Polyol Method,” ACS Nano, Vol. 10, pp. 7892-7900 (2016).
    [61] P. Hang, Y. Wei, M. Oua, Z. Huanga, S. Lina, Y. Y. Tu and J. Hu, “Behind the role of bromide ions in the synthesis of ultrathin silver nanowires,” Mater. Lett., Vol. 213, pp. 23-26 (2018).
    [62] V. K. Lamer and R. H. Dinegar, “Theory, production and mechanism of formation of monodispersed hydrosols,” J. Am. Chem. Soc., Vol. 72, pp. 4847-4854 (1950).
    [63] 陳致源、林鵬、吳樸偉,合成不同形貌之銀奈米催化劑於氧氣還原反應之應用,國立交通大學材科學與工程學系碩士論文,(2010)。

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE