簡易檢索 / 詳目顯示

研究生: 陳葦純
Wei-Chung Chen
論文名稱: 製備奈米線/聚亞醯胺表面電極其特性之研究
Preparation and characterization of nanowire/polyimide surface electrodes
指導教授: 郭東昊
Dong-hauKuo
口試委員: 蘇清淵
Ching-iuan Su
薛人愷
Ren-kaeShiue
郭永綱
Yung- Kang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 114
中文關鍵詞: 奈米銀線奈米碳管聚亞醯胺表面電極ITO電阻率
外文關鍵詞: Silver nanowire, carbon nanotube, polyimide, surface electrode, ITO, electrical resistivity
相關次數: 點閱:255下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本實驗主要是以熱蒸噴霧法,將奈米銀線與奈米碳管溶於乙醇中,並噴覆於加熱的鈉玻璃基板上,再以PI溶液披覆於其上後,放置於90℃烘箱中經24小時烘乾後,完成奈米線/聚亞醯胺表面電極的製作。實驗中分別討論奈米銀線表面電極(Ag NW/PI)系統、奈米碳管表面電極(CNT/PI)系統、(奈米銀線+奈米碳管)混摻型表面電極系統、披覆ITO薄膜之奈米銀線表面電極(ITO/Ag NW/PI)系統、批覆ITO薄膜表面電極(ITO/PI)系統,對表面電極進行電阻率量測與機械作用力下之破壞分析。
    (Ag NW/PI)表面電極系統經噴覆30次得到的最低電阻率為0.016 Ω-cm與最低電阻率為0.16 Ω-cm的(CNT/PI)表面電極系統進行比較,發現(Ag NW/PI)系統可以得到較低的電阻率。對熱蒸噴霧12次所製備出的混摻型表面電極,進行其電阻率之比較,其中以摻雜奈米銀線比例較多的表面電極,有較低的電阻率,如Ag:CNT= 3:1所製得之表面電極電阻率為0.62 Ω-cm。
    挑選熱蒸噴霧12次具有電阻率為0.17 Ω-cm的奈米銀線表面電極披覆導電ITO,形成( ITO/Ag NW/PI)系統的電阻率為0.012 Ω-cm,比原先未披覆ITO的(Ag NW/PI)系統有較低的電阻率,因此覆上ITO,可以改善表面電極的電阻率,主要原因為ITO的導電材料有較低電阻率。若將ITO於相同濺鍍條件下,披覆於PI基板上,所形成ITO/PI系統其電阻率為9×10-4 Ω-cm。
    研究壓痕荷重與循環彎折測試對表面電極之變形行為,發現覆有ITO的表面電極,破裂面為最明顯,係因為ITO的脆性與ITO/PI的剛性不匹配造成變形不同與界面應力產生,導致覆有ITO表面電極會有崩裂的情形產生。

    關鍵字: 奈米銀線、奈米碳管、聚亞醯胺、表面電極、ITO、電阻率


    Abstract
    In this study, nanowires/polyimide surface electrodes were prepared by thermal atomization spraying with two kinds of solutions of silver nanowires and carbon nanotubes on soda lime glass plates followed by casting of polyimide solution and oven drying at 90oC for 24h. Five kinds of surface electrode systems were investigated: silver nanowire/polyimide (Ag NW/PI) system, carbon nanotube/polyimide (CNT/PI) system, (Ag NW+CNT/PI) blend-type system, ITO-coated (Ag NW/PI) system or (ITO/Ag NW/PI) system, and ITO/polyimide (ITO/PI) system. Electrical resistivity of these surface electrodes and their response under mechanical tests were evaluated.
    The (Ag NW/PI) and (CNT/PI) systems had electrical resistivities of 0.016 Ω-cm and 0.16 Ω-cm, respectively, after spraying for 30 times. The Ag NW-covered surface electrode had lower resistivity. For the blended surface electrodes with Ag:CNT= 1:3, 1:1, and 3:1 in volume ratio, the surface electrode had lower resistivity at a higher silver ratio. For the electrode with Ag:CNT= 3:1, it had the lowest resistivity of 0.62 Ω-cm.
    The (ITO/Ag NW/PI) system displayed low electrical resistivity of 0.012 Ω-cm, after the 12-time sprayed (Ag NW/PI) system with electrical resistivity of 0.17Ω-cm was coated with low-resistivity ITO films. If the ITO films were coated on polyimide substrates by magnetron sputtering under the conditions of sputter power of 60 W, substrate temperature of 200oC, and deposition duration of 30 min, the obtained ITO/PI system had low resistivity of 9×10-4 Ω-cm.
    The fractural behaviors of different surface electrode systems were investigated under the effects of indentation loading and cyclic bending tests. Due to the brittleness of the ITO ceramic and the mismatch in the stiffness for the ITO and polyimide, the ITO/PI and ITO/Ag NW/PI systems showed severe cracking.

    Keywords: Silver nanowire, carbon nanotube, polyimide, surface electrode, ITO, electrical resistivity

    圖目錄 VIII 表目錄 XII 第一章 緒論 1 1-1有機-無機混成奈米材料簡介 1 1-2有機-無機奈米材料的研製方法 2 1-3有機-無機混成奈米材料的特性 3 1-4奈米材料的效應 4 1-5奈米材料的應用 7 第二章 基礎理論與文獻回顧 9 2-1聚亞醯胺的簡介 9 2-1-1縮合型聚亞醯胺(Condensation Polyimide) 10 2-1-2加成型聚亞醯胺(Addition Polyimide) 12 2-1-3聚亞醯胺的特性 16 2-1-4聚亞醯胺的應用 17 2-2奈米碳管的簡介 20 2-2-1單壁奈米碳管的結構 22 2-2-2多壁奈米碳管的結構 24 2-2-3奈米碳管的應用與型態 25 2-2-4奈米碳管的未來發展 27 2-3透明導電薄膜簡介 29 2-3-1透明導電薄膜導電原理 30 2-3-2透明導電薄膜的特性及應用 32 2-4奈米銀線的簡介 33 2-4-1奈米銀的特性 34 2-4-2奈米銀的應用 36 2-4-3聚亞醯胺與奈米銀之反應原理介紹 37 2-4-4不同高分子基材與複合材料之應用 44 2-4-5聚亞醯胺與複合材料之表面電極應用 48 第三章 研究動機與實驗方法 54 3-1研究動機 54 3-2實驗方法 56 3-2-1實驗藥品與儀器 56 3-3實驗步驟 58 3-3-1聚亞醯胺的合成 58 3-3-2聚亞醯胺與奈米線表面電極的製備與合成 62 3-4儀器分析介紹 69 3-4-1高分析度場發射掃描式電子顯微鏡(FESEM) 69 3-4-2穿透式電子顯微鏡(TEM) 69 3-4-3 RF濺鍍機分為五大系統 70 3-4-4 數位多功能電錶 71 第四章 結果與討論 76 4-1奈米線之顯微結構 77 4-1-1奈米銀線之顯微結構 77 4-1-2奈米碳管之顯微結構 80 4-2表面電極之微觀結構 82 4-2-1奈米銀線表面電極(Ag NW/PI)系統 82 4-2-2奈米碳管表面電極(CNT/PI)系統 86 4-3表面電極之電特性分析 90 4-3-1奈米銀線與奈米碳管表面電極系統 90 4-3-2 (奈米銀線+奈米碳管)混摻型表面電極系統 93 4-3-3披覆ITO薄膜之奈米銀線表面電極(ITO/Ag NW/PI)系統 99 4-4不同荷重下表面電極壓痕測試 102 4-4-1給予100mN壓痕荷重下,表面電極破壞形貌 102 4-4-2給予245mN壓痕荷重下,表面電極破壞形貌 104 4-4-3給予490mN壓痕荷重下,表面電極破壞形貌 106 4-5表面電極循環彎折測試 108 第五章 結論 111

    1 馬振基編著,“奈米材料科技原理與應用”全華科技出版社,民92。
    2 盧希鵬、馬振基,“奈米材料技術地圖”,國科會科學技術資料中心,(2003) 。
    3 尹邦躍、張勁燕編著,奈米時代,五南圖書股份有限公司,(2002)。
    4奈米時代-實現與夢想,中國輕工業出版社。
    5林建中編著 “高分子材料性質與應用”,高立圖書公司,台北。
    6 盧永坤編著,“奈米科技概論”,滄海書局。
    7 W. N. Edwards, U.S. 3(1965)179-614 .
    8 R. A. Meyers, J. Polym. Sci. Part A: Polym. Chem., 7(1969)2757-2762.
    9 G. D. Khvne, J. Macromal. Sci. Chem., 14 (1980) 687-693.
    10李東霖,國立成功大學材料科學及工程研究所博士論文(2010)
    11 莊士緯,國立成功大學材料科學及工程研究所碩士論文(2003)
    12 D. J. Liaw and B. Y. Liaw, Polym. J., 28(1996)970-980.
    13 C. P. Yang and W. T. Chen, Macromolecules, 26 (1993)4865-4875.
    14R. W. Lauver, J. Polym. Sci. Part A: Polym. Chem., 17 (1979)2529-2539.
    15 A.L. Lamdis , N. Bilow , R.H. Boshan , R.E. Lawrence and T.J.
    Apponyi , ACD Polym. Prep. 15 (1974).
    16樂文禮,國立成功大學化學工程研究所碩士論文,(2002).
    17蔡東穎,國立成功大學化學工程研究所碩士論文,(1998).
    18 M.Grundschober , British Pat. (1978) 718-1190.
    19工業技術研究院,影像顯示科技中心, http://www.itri.org.tw
    20薛敬和,高分子化學,高立圖書有限公司,中華民國
    21 Gibson JAE.Nature. (1992)359-369.
    22賀福,王茂章。碳纖維及其複合材料。北京:科學出版社,(1997)
    23 Ball P. Nature., (2001)142- 414.
    25 AG Whittaker,Wolten GM. Science., (1972)54-178.
    26 MS Dresselhaus, M. Endo in Carbon Nanotubes( Eds Dresselhaus MS,Dresselhaus G, Avouris Ph).Topics Appl Phys.,(2001)11-80.
    27 GH Gao, T Cagin, WA Goddard. Nanotechnology., (1998)
    28 Amelinckx S, Lucas A, Lambin P. Rep Prog Phys.,(1999) 62-1471
    29戴貴平。奈米碳管的電化學儲氫研究:〔博士論文〕。瀋陽:中國科學院金屬研究所
    30 A. Leela Mohana Reddy, S. Ramaprabhu “Hydrogen adsorption properties of single-walled carbon nanotube—Nanocrystalline platinum composites” , 33(2008 ) 1028 –1034
    31 Ball P. Nature. (2001) 24-3183,
    32成會明編著,奈米碳管“奈米研究與應用系列”五南圖書出版公司,民93。
    33林錕松博士,“奈米科技在產業之應用潛力”,元智大學化材系
    34廖鎔榆,工業材料雜誌256期,工研院材化所
    35銦錫氧化物導電薄膜溶膠凝膠法製備及鑑定
    36吳金寶,材料最前線/材料世界網,工研院材化所
    37邱俞翔、施佑杰、戴淵竣、包正綱,以濺射共沉積法成長Cu2O:Al 之P 型透明導電膜研究。
    38 趙中興編著,顯示器原理與技術,全華圖書出版公司,(1999)
    39顧鴻壽/周本達/陳密/張德安/樊雨心/周宜衡編著,平面面板顯示器基本概論二版,高立圖書有限公司,(2005)
    40周更生、李賢學、高振裕、盧育杰,「奈米銀」,科學發展月刊,第408期,(2006)
    41 I. Sondi, B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case
    study on E. coli as a model for Gram-negative bacteria”, J. Colloid. Interface. Sci.
    , ( 2004) 177-275.
    42 S. Jing, S. Xing, L. Yu, C. Zhao, “Synthesis and characterization ofAg/polypyrrole nanocomposites based on silver nanoparticles colloid”, Materials Letters ,61 (2007) 4528–4530
    43呂晃志、蔡宜壽,「銀系無機抗菌材料的開發」,化工資訊與商情,第44
    期, (2007);第45 期,( 2007)
    44 Shengli Qi, Zhanpeng Wu, Dezhen Wu, and Riguang Jin, “ Controlled Formation of Optically Reflective and Electrically Conductive Silvered Surfaces
    on Polyimide Film via a Direct Ion-Exchange Self-Metallization Technique Using Silver Ammonia Complex Cation as the Precursor” , J. Phys. Chem. B, Vol. 112 (2008) 5575-5584
    45Dezhen Wu, Tao Zhang1, Wen-Cai Wang, Liqun Zhang and Riguang Jin, “ Reflective and conductive surface-silvered polyimide films prepared by surface
    graft copolymerization and electroless plating”, Polym. Adv. Technol. 19(2008) 335–341.
    46D. Scott Thompson,Luke M. Davis, David W. Thompson, and Robin E. Southward, “Single-Stage Synthesis and Characterization of Reflective and Conductive Silver-
    Polyimide Films Prepared from Silver(I) Complexes with ODPA/4,4′-ODA”, Thompson et al. 1(2009)1457–1466.
    47Zhanpeng Wu, Dezhen Wu, Teng Zhang, Lizhong Jiang, Wencai Wang, Riguang Jin, “Preparation of Silvered Polyimide Films with Reflective and Electrically Conductive Surfaces Using Single-Stage Self-Metallization Techniques and Factors Affecting Silver Particles Migration” , Applied Polymer Science. 102(2006) 2218–2225.
    48Yaozu Liao, Chen Zhang, Ya Zhang, Veronica Strong, Jianshi Tang, Xin-Gui Li, “Carbon Nanotube/Polyaniline Composite Nanofibers: Facile Synthesis and Chemosensors” , Nano Lett. ,11(2011)954–959.
    49Liangbing Hu, Han Sun Kim,Jung-Yong Lee, Peter Peumans,and Yi Cui,Scalable Coating and Properties of Transparent, Flexible, Silver NanowireElectrodes, American Chemical Society. ,4(2010)2955-2963.
    51 E. Artukovic,M. Kaempgen, D. S. Hecht,S. Roth, and G. Gru1ner, “Transparent and Flexible Carbon Nanotube Transistors” , Nano Lett., 5(2005)757-760.
    52 Jung-Yong Lee,Stephen T. Connor,Yi Cui,and Peter Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes” , Nano Lett., 8( 2008)689-692
    53E. S. Snow, P. M. Campbell, and M. G. Ancona, “High-mobility carbon-nanotube thin-film transistors on a polymeric substrate” , Appl. Phys. Lett. 86(2005).

    無法下載圖示 全文公開日期 2016/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE