簡易檢索 / 詳目顯示

研究生: 黃郁喬
YU-CHIAO HUANG
論文名稱: 使用二硒化鉬修飾蜂窩狀奈米碳管表面作為膽固醇電化學生物感測器
Honeycomb-shaped carbon nanotubes decorated with MoSe2 as an electrochemical sensor for Cholesterol
指導教授: 李奎毅
Kuei-Yi LEE
趙良君
Liang-Chiun Chao
口試委員: 陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 102
中文關鍵詞: 二硒化鉬膽固醇電化學感測器生物傳感器奈米碳管電化學生物感測器
外文關鍵詞: MoSe2, Cholesterol electrochemical sensor, biosensor, carbon nanotube, electrochemical sensor
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗主要為使用過渡金屬硫化物之二硒化鉬 (MoSe2)應用於生物電化學的檢測當中,以 p-type 矽基板為基底,為了增加 MoSe2 比表面積與感測靈敏度,利用熱化學氣相沉積法將 MoSe2 披覆於自訂圖形之奈米碳管陣列之上,將此三維材料當做電雙層電容器之電極材料,量測其電化學數值以此分析材料特性,奈米碳管之結構對於生物性感測常造成靈敏度不足而需要化學處理,然而 MoSe2 與奈米碳管陣列之結合,因為其晶格常數接近而能得到穩定的結合,因此不需要特別處理奈米碳管之化性,此三維材料之電化學電容值為 147.6 F/g;接著將膽固醇氧化酶物理性披覆於此電極材料之上,製成膽固醇生物感測器,使用循環伏安法來檢測膽固醇之濃度,因為此膽固醇生物酶檢測法為將膽固醇催化為 H2O2,因此本實驗也會進行 H2O2的濃度檢測,不論是檢測 H2O2 還是膽固醇,隨著掃描速率的增加,我們發現氧化還原峰電流值以線性方式增強,這明確顯示電活性的膽固醇物質以化學吸附的方式在此電極上產生反應電流,且膽固醇氧化酶確實的對膽固醇進行催化分解,本實驗針對 10 μM 到 10 mM 的 H2O2 和膽固醇進行分段檢測 (人體膽固醇濃度為 3.36 mM 到 5.17 mM),得到了優異的靈敏度、低的檢測極限與高的準確値,最優異的靈敏度分別為 H2O2 在 0 μM 到 100 μM 濃度下有 860 μA/mM 的靈敏度和 10 μM 的檢測極限,膽固醇在 0 μM 到 100 μM 濃度下有本實驗最高之 5.09 μA/μM 的靈敏度,因此所有數據顯示ChOx/MoSe2/CNTs 為一優異的膽固醇感測器。


    Transition metal dichalcogenides, MoSe2 were used in cholesterol biosensor
    electrochemical analysis. In this experiment, we chose p-type silicon as the basis,
    and the MoSe2 were combined with carbon nanotubes (Carbon nanotubes, CNTs)
    on it by thermal chemical vapor deposition (TCVD) to enhance the contact area
    and improve the detection sensitivity. we would use it as the electrode in the
    following electrochemistry measurement.The CNTs structural stability resulted in
    insufficiient sensitivity for biological analysis, but the combination of CNTs and
    MoSe2 can achieve the cholesterol detection without extra chemical treatment
    because their similar lattice constants obtain structural stability. We noticed that
    MoSe2/CNTs get the best capacitance value of 147 F/g. After that, the cholesterol
    oxidase were physical covering on MoSe2/CNTs , and it were used to detect
    cholesterol concentration by cyclic voltammetry. This experiment also detected
    H2O2 on account of the way biological enzyme detection was catalyze cholesterol
    to form H2O2.No matter cholesterol or H2O2, the current densities of the reduction
    current linearly increase with the scan rate, meaning that the cholesterol
    electroactive molecules are an adsorption-controlled process on MoSe2/CNTs and
    the cholesterol oxidase (ChOx) did catalyze the breakdown of cholesterol.This
    work detected cholesterol and H2O2 from 10 μM to 10 mM (a person with the
    normal level of cholesterol is in the range from 3.36 mM to 5.17 mM), and we get
    greatrst sensitivity 、 low detection limit and excellent accuracy. The best
    sensitivity were 860 μA/mM for H2O2 in the range from 0 μM-100 μM and 5.09
    μA/μM for cholesterol in the range from 0 μM-100 μM, respectively.
    MoSe2/CNTs was a excellent and practical for biosensor, first and last.

    論文摘要 (中文) Abstract 致謝 目錄 圖目錄 表目錄 Chapter 1 緒論 1.1 奈米碳管 1.2 過渡金屬硫化物 1.3 二硒化鉬 1.4 超級電容 1.5 生物感測器 1.6 膽固醇生物感測器 Chapter 2 實驗方法與儀器介紹 2.1 實驗流程圖 2.2 電極樣品製作流程 2.3 特性量測儀器介紹 2.4 電化學檢測分析 Chapter 3 結果與討論 3.1 電極材料分析 3.2 電化學量測 3.3 H2O2量測分析 3.4 膽固醇之生物量測分析 3.5量測分析與討論 Chapter 4 結論 參考文獻

    S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, no. 6348, pp. 56-58, 1991.
    [2] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, no. 6430, pp. 603-605, 1993.
    [3] J. W. Mintmire and C. T. White, "Electronic and structural properties of carbon nanotubes," Carbon, vol. 33, no. 7, pp. 893-902, 1995.
    [4] G. Dresselhaus, M. S. Dresselhaus, and R. Saito, Physical properties of carbon nanotubes. World scientific, 1998.
    [5] J.-C. Charlier, X. Blase, and S. Roche, "Electronic and transport properties of nanotubes," Reviews of Modern Physics, vol. 79, 2007.
    [6] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences, vol. 102, no. 30, pp. 10451-10453, 2005.
    [7] Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Y. Jia, and Y. Qian, "Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS2 and MoSe2," Chemistry Letters, vol. 30, no. 8, pp. 772-773, 2001.
    [8] X. Fan, P. Xu, D. Zhou, Y. Sun, Y. C. L, M. A. T. Nguyen, M. Terrones, and T. E. Mallouk, "Fast and Efficient Preparation of Exfoliated 2H MoS2 Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion," Nano Letters, vol. 15, no. 9, pp. 5956-5960, 2015.
    [9] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, "Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition," Advanced Materials, vol. 24, no. 17, pp. 2320-2325, 2012.
    [10] Y. Hernandez, V. Nicolosi1, M. Lotya1, F. M. Blighe1, Z. Sun, S. De, I. McGovern1, B. Holland, M. Byrne, Y. Gun’ko, J. Boland, P. Niraj, G. Duesberg, S. Krishnamurti, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman," High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnology, vol. 3, no. 9, pp. 563-568, 2008.
    [11] I. N. Yakovkin, "Dirac Cones in Graphene, Interlayer Interaction in Layered Materials, and the Band Gap in MoS2," Crystals, vol. 6, no. 11, 2016.
    [12] B. Han and Y. H. Hu, "MoS2 as a co-catalyst for photocatalytic hydrogen production from water," Energy Science & Engineering, vol. 4, no. 5, pp. 285-304, 2016.
    [13] W. Jaegermann and H. Tributsch, "Interfacial properties of semiconducting transition metal chalcogenides," Progress in Surface Science, vol. 29, no. 1-2, pp. 1-167, 1988.
    [14] A. V. Kolobov and J. Tominaga, Two-dimensional transition-metal dichalcogenides. Springer, 2016.
    [15] S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, "Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2," Nano Letters, vol. 12, no. 11, pp. 5576-5580, 2012.
    [16] G. D. Park, J. H. Kim, S.-K. Park, and Y. C. Kang, "MoSe2 Embedded CNT-Reduced Graphene Oxide Composite Microsphere with Superior Sodium Ion Storage and Electrocatalytic Hydrogen Evolution Performances," ACS Applied Materials & Interfaces, vol. 9, no. 12, pp. 10673-10683, 2017.
    [17] H. Du, X. Lin, Z. Xu, and D. Chu, "Electric double-layer transistors: a review of recent progress," Journal of Materials Science, vol. 50, no. 17, pp. 5641-5673, 2015.
    [18] L. L. Zhang and X. Zhao, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, vol. 38, no. 9, pp. 2520-2531, 2009.
    [19] W. Xing, W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan, H. M. Cheng, "Superior electric double layer capacitors using ordered mesoporous carbons," Carbon, vol. 44, no. 2, pp. 216-224, 2006.
    [20] L. Mai, X. Tian, X. Xu, L. Chang, and L. Xu, "Nanowire electrodes for electrochemical energy storage devices," Chemical Reviews, vol. 114, no. 23, pp. 11828-11862, 2014.
    [21] V. V. Obreja, "On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review," Physica E: Low-dimensional Systems and Nanostructures, vol. 40, no. 7, pp. 2596-2605, 2008.
    [22] J. R. Miller, "Introduction to electrochemical capacitor technology," IEEE Electrical Insulation Magazine, vol. 26, no. 4, pp. 40-47, 2010.
    [23] W.-D. Zhang, B. Xu, and L.-C. Jiang, "Functional hybrid materials based on carbon nanotubes and metal oxides," Journal of Materials Chemistry, vol. 20, no. 31, pp. 6383-6391, 2010.
    [24] Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, and S. Dai, "Carbon materials for chemical capacitive energy storage," Advanced Materials, vol. 23, no. 42, pp. 4828-4850, 2011.
    [25] B. E. Conway, V. Birss, and J. Wojtowicz, "The role and utilization of pseudocapacitance for energy storage by supercapacitors," Journal of Power Sources, vol. 66, no. 1-2, pp. 1-14, 1997.
    [26] S. Trasatti and G. Buzzanca, "Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 29, no. 2, pp. A1-A5, 1971.
    [27] Y. Chen, J. Cai, Y. Huang, K. Lee, and D. Tsai, "Preparation and characterization of iridium dioxide–carbon nanotube nanocomposites for supercapacitors," Nanotechnology, vol. 22, no. 11, p. 115706, 2011.
    [28] M. C. Sellers, B. M. Castle, and C. P. Marsh, "Three-dimensional manganese dioxide-functionalized carbon nanotube electrodes for electrochemical supercapacitors," Journal of Solid State Electrochemistry, vol. 17, no. 1, pp. 175-182, 2013.
    [29] S. P. Jahromi, A. Pandikumar, B. T. Goh, Y. S. Lim, W. J. Basirun, H. N. Lim, and N. M. Huang, "Influence of particle size on performance of a nickel oxide nanoparticle-based supercapacitor," Rsc Advances, vol. 5, no. 18, pp. 14010-14019, 2015.
    [30] B. Francois, R.-P. E. F. Encarnación, and F. Elzbieta, "Electrical Double-Layer Capacitors and Pseudocapacitors," Carbons for Electrochemical Energy Storage and Conversion Systems: CRC Press, pp. 329-375, 2009.
    [31] L. C. Clark Jr and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Annals of the New York Academy of Sciences, vol. 102, no. 1, pp. 29-45, 1962.
    [32] A. P. Turner, "Biosensors: sense and sensibility," Chemical Society Reviews, vol. 42, no. 8, pp. 3184-3196, 2013.
    [33] N. J. Ronkainen, H. B. Halsall, and W. R. Heineman, "Electrochemical biosensors," Chemical Society Reviews, vol. 39, no. 5, pp. 1747-1763, 2010.
    [34] S. Karmakar, S. K. Kundu, S. K. Bandyopadhyay, M. Gangopadhyay, and G. Taki, "Importance of transition metal modified graphene-based non-enzymatic blood glucose sensors," in 2020 4th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech), 2020: IEEE, pp. 1-4.
    [35] P. Bergveld, "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements," IEEE Transactions on Biomedical Engineering, vol. BME-17, no. 1, pp. 70-71, 1970.
    [36] C. Jimenez-Jorquera, J. Orozco, and A. Baldi, "ISFET Based Microsensors for Environmental Monitoring," Sensors, vol. 10, no. 1, 2010.
    [37] R. Hu, T. Liu, X. -B. Zhang, S.-Y. Huan, C. Wu, T. Fu, and W. Tan, "Multicolor fluorescent biosensor for multiplexed detection of DNA," Analytical Chemistry, vol. 86, no. 10, pp. 5009-5016, 2014.
    [38] R. L. Rich and D. G. Myszka, "Advances in surface plasmon resonance biosensor analysis," Current Opinion in Biotechnology, vol. 11, no. 1, pp. 54-61, 2000.
    [39] C. R. Taitt, G. P. Anderson, and F. S. Ligler, "Evanescent wave fluorescence biosensors," Biosensors and Bioelectronics, vol. 20, no. 12, pp. 2470-2487, 2005.
    [40] M. D. Marazuela, B. Cuesta, M. C. Moreno-Bondi, and A. Quejido, "Free cholesterol fiber-optic biosensor for serum samples with simplex optimization," Biosensors and Bioelectronics, vol. 12, no. 3, pp. 233-240, 1997.
    [41] Q. Li, L. Ding, Y. Zhang, and T. Wu, "A Cholesterol Optical Fiber Sensor Based on CQDs-COD/CA Composite," IEEE Sensors Journal, vol. 22, no. 7, pp. 6247-6255, 2022.
    [42] D. Ghanei Agh Kaariz, E. Darabi, and S. M. Elahi, "Fabrication of Au/ZnO/MWCNTs electrode and its characterization for electrochemical cholesterol biosensor," Journal of Theoretical and Applied Physics, vol. 14, no. 4, pp. 339-348, 2020.
    [43] G. Li, J. Zeng, L. Zhao, Z. Wang, C. Dong, J. Liang, Z. Zhou, and Y. Huang, "Amperometric cholesterol biosensor based on reduction graphene oxide-chitosan-ferrocene/platinum nanoparticles modified screen-printed electrode," Journal of Nanoparticle Research, vol. 21, no. 7, pp. 1-16, 2019.
    [44] V. Soorya and S. Berchmans, "Flower like Bi structures on Pt surface facilitating effective cholesterol Biosensing," Materials Science and Engineering: C, vol. 64, pp. 183-189, 2016.
    [45] G. Kaur, M. Tomar, and V. Gupta, "Development of a microfluidic electrochemical biosensor: Prospect for point-of-care cholesterol monitoring," Sensors and Actuators B: Chemical, vol. 261, pp. 460-466, 2018.
    [46] D. Sharma, J. Lee, J. Seo, and H. Shin, "Development of a sensitive electrochemical enzymatic reaction-based cholesterol biosensor using nano-sized carbon interdigitated electrodes decorated with gold nanoparticles," Sensors, vol. 17, no. 9, p. 2128, 2017.
    [47] C. Wang, X. Tan, S. Chen, R. Yuan, F. Hu, D. Yuan, and Y. Xiang, "Highly-sensitive cholesterol biosensor based on platinum–gold hybrid functionalized ZnO nanorods," Talanta, vol. 94, pp. 263-270, 2012.
    [48] N. Thakur, D. Mandal, and T. C. Nagaiah, "A novel NiVP/Pi based flexible sensor for direct electrochemical ultrasensitive detection of cholesterol," Chemical Communications, 2022.
    [49] A. Pannu and S. Varma, "Aplastic anemia in systemic lupus erythematosus: A better prognosis acquired aplastic anemia," Int J Hematol Blo Dis, vol. 1, no. 1, pp. 1-2, 2016.
    [50] R. Manjunatha, G. S. Suresh, J. S. Melo, S. F. D'Souza, and T. V. Venkatesha, "An amperometric bienzymatic cholesterol biosensor based on functionalized graphene modified electrode and its electrocatalytic activity towards total cholesterol determination," Talanta, vol. 99, pp. 302-309, 2012.
    [51] R. Dey and C. Raj, "Characterisation and application of cellularmetds," Phys. Chem. C, vol. 114, no. 49, pp. 21427-21433, 2010.
    [52] S. Komathi, N. Muthuchamy, K. Lee, and A. Gopalan, "Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks," Biosensors and Bioelectronics, vol. 84, pp. 64-71, 2016.
    [53] M. R. Moghadam, S. Dadfarnia, A. M. H. Shabani, and P. Shahbazikhah, "Chemometric-assisted kinetic–spectrophotometric method for simultaneous determination of ascorbic acid, uric acid, and dopamine," Analytical Biochemistry, vol. 410, no. 2, pp. 289-295, 2011.
    [54] R. W. Burke, B. I. Diamondstone, R. A. Velapoldi, and O. Menis, "Mechanisms of the Liebermann-Burchard and Zak Color Reactions for Cholesterol," Clinical Chemistry, vol. 20, no. 7, pp. 794-801, 1974.
    [55] Q. Xiong, W. K. Wilson, and J. Pang, "The Liebermann–Burchard Reaction: Sulfonation, Desaturation, and Rearrangment of Cholesterol in Acid," Lipids, vol. 42, no. 1, pp. 87-96, 2007.
    [56] C. Lieberman, "Über das Oxychinoterpen," Berichte, vol. 18, p. 1803, 1885.
    [57] J. Mauthner, " Beiträge zur Kenntniss des Cholesterins," Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, vol. 30, no. 7, pp. 635-647, 1909.
    [58] B. Zak, "Cholesterol methodology for human studies," Lipids, vol. 15, no. 9, pp. 698-704, 1980.
    [59] B. Zak, "Cholesterol methodologies: a review," Clinical Chemistry, vol. 23, no. 7, pp. 1201-1214, 1977.
    [60] D. Tonks, "The estimation of cholesterol in serum: a classification and critical review of methods," Clinical Biochemistry, vol. 1, pp. 12-29, 1967.
    [61] C. Yang, L. G. Valerio Jr, and K. B. Arvidson, "Computational toxicology approaches at the US Food and Drug Administration," Alternatives to Laboratory Animals, vol. 37, no. 5, pp. 523-531, 2009.
    [62] M. Luo, W. Wang, Q. Zhao, M. Li, Y. Chen, Z. Lu,K. Liu, and D. Wang, "Chemiluminescence biosensor for hydrogen peroxide determination by immobilizing horseradish peroxidase onto PVA-co-PE nanofiber membrane," European Polymer Journal, vol. 91, pp. 307-314, 2017.
    [63] S. Tang, Q. Zhao, and Y. Tu, "A sensitive electrochemiluminescent cholesterol biosensor based on Au/hollowed-TiO2 nano-composite pre-functionalized electrode," Sensors and Actuators B: Chemical, vol. 237, pp. 416-422, 2016.
    [64] Q. Sun, S. Fang, Y. Fang, Z. Qian, and H. Feng, "Fluorometric detection of cholesterol based on β-cyclodextrin functionalized carbon quantum dots via competitive host-guest recognition," Talanta, vol. 167, pp. 513-519, 2017.
    [65] H.-M. Lee, L.-K. Kwac, K.-H. An, S.-J. Park, and B.-J. Kim, "Electrochemical behavior of pitch-based activated carbon fibers for electrochemical capacitors," Energy Conversion and Management, vol. 125, pp. 347-352, 2016.
    [66] X. Liu, J.-Z. Zhang, K.-J. Huang, and P. Hao, "Net-like molybdenum selenide–acetylene black supported on Ni foam for high-performance supercapacitor electrodes and hydrogen evolution reaction," Chemical Engineering Journal, vol. 302, pp. 437-445, 2016.
    [67] I. Godwin, A. Harvey, X. He, D. McAteer, M. E. Lyons, and J. N. Coleman, "Production of Ni(OH)2 Nanosheets By Liquid Phase Exfoliation: High Performance Oxygen Evolution Catalysts and Supercapacitor Electrodes," in ECS Meeting Abstracts, 2016, no. 46: IOP Publishing, p. 3333.
    [68] C. Xu, S. Peng, C. Tan, H. Ang, H. Tan, H. Zhang, and Q. Yan, "Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution," Journal of Materials Chemistry A, vol. 2, no. 16, pp. 5597-5601, 2014.
    [69] L. Jia, X. Sun, Y. Jiang, S. Yu, and C. Wang, "A novel MoSe2–reduced graphene oxide/polyimide composite film for applications in electrocatalysis and photoelectrocatalysis hydrogen evolution," Advanced Functional Materials, vol. 25, no. 12, pp. 1814-1820, 2015.
    [70] Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng, H. Ye, M. Zeng, L. Xie, Z. Liu, and Y. Li., "Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction," Acs Catalysis, vol. 5, no. 4, pp. 2213-2219, 2015.
    [71] R. Rameshbabu, V. Vinoth, G. Pecchi, E. J. Delgado, H. Valdés, and R. Mangalaraja, "Novel MoSe2–Ni(OH)2 nanocomposite as an electrocatalyst for high efficient hydrogen evolution reaction," International Journal of Hydrogen Energy, vol. 46, no. 64, pp. 32471-32479, 2021.
    [72] A. K. Basu, P. Chattopadhyay, U. Roychoudhuri, and R. Chakraborty, "Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples," Bioelectrochemistry, vol. 70, no. 2, pp. 375-379, 2007.
    [73] J. Kong, A. M. Cassell, and H. Dai, "Chemical vapor deposition of methane for single-walled carbon nanotubes," Chemical Physics Letters, vol. 292, no. 4-6, pp. 567-574, 1998.
    [74] T.-J. Dai, Y.-C. Liu, X.-D. Fan, X.-Z. Liu, D. Xie, and Y.-R. Li, "Synthesis of few-layer 2H-MoSe2 thin films with wafer-level homogeneity for high-performance photodetector," Nanophotonics, vol. 7, no. 12, pp. 1959-1969, 2018.
    [75] C. C. Moura, R. S. Tare, R. O. Oreffo, and S. Mahajan, "Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration," Journal of The Royal Society Interface, vol. 13, no. 118, p. 20160182, 2016.
    [76] J. Cherusseri, N. Choudhary, K. S. Kumar, Y. Jung, and J. Thomas, "Recent trends in transition metal dichalcogenide based supercapacitor electrodes," Nanoscale Horizons, vol. 4, no. 4, pp. 840-858, 2019.
    [77] F. Lisdat and D. Schäfer, "The use of electrochemical impedance spectroscopy for biosensing," Analytical and Bioanalytical Chemistry, vol. 391, no. 5, pp. 1555-1567, 2008.
    [78] A. Ewing, M. Dayton, and R. Wightman, "Pulse voltammetry with microvoltammetric electrodes," Analytical Chemistry, vol. 53, no. 12, pp. 1842-1847, 1981.
    [79] S. Bai, S. Chen, L. Chen, K. Zhang, R. Luo, D. Li, and C. C. Liu, "Ultrasonic synthesis of MoO3 nanorods and their gas sensing properties," Sensors and Actuators B: Chemical, vol. 174, pp. 51-58, 2012.
    [80] R. Konar, B. Rajeswaran, A. Paul, E. Teblum, H. Aviv, I. Perelshtein, I. Grinberg, Y. R. Tischler, and G. D. Nessim, "CVD-Assisted Synthesis of 2D Layered MoSe2 on Mo Foil and Low Frequency Raman Scattering of Its Exfoliated Few-Layer Nanosheets on CaF2 Substrates," ACS Omega, 2022.
    [81] N. Q. Hai, H. Kim, I. S. Yoo, J. H. Kim, and J. Hur, "Comparative study of mechanically milled MoS2 and MoSe2 in graphite matrix as anode materials for high-performance lithium-ion batteries," Journal of Nanoscience and Nanotechnology, vol. 18, no. 9, pp. 6469-6474, 2018.
    [82] Y. Liu, M. Zhu, and D. Chen, "Sheet-like MoSe2/C composites with enhanced Li-ion storage properties," Journal of Materials Chemistry A, vol. 3, no. 22, pp. 11857-11862, 2015.
    [83] K. A. Wepasnick, B. A. Smith, K. E. Schrote, H. K. Wilson, S. R. Diegelmann, and D. H. Fairbrother, "Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments," Carbon, vol. 49, no. 1, pp. 24-36, 2011.
    [84] V. Singh, D. J. Late, A. Goyal, and S. Rath, "Raman spectroscopic investigations of the selenization of MoO3 in the chemical vapor deposition process to form two-dimensional MoSe2," Applied Surface Science, vol. 538, p. 147946, 2021.
    [85] C. Jian, Q. Cai, W. Hong, J. Li, and W. Liu, "Edge‐riched MoSe2/MoO2 hybrid electrocatalyst for efficient hydrogen evolution reaction," Small, vol. 14, no. 13, p. 1703798, 2018.
    [86] Q. Hao, G. Cui, Y. Zhang, J. Li, and Z. Zhang, "Novel MoSe2/MoO2 heterostructure as an effective sulfur host for high-performance lithium/sulfur batteries," Chemical Engineering Journal, vol. 381, p. 122672, 2020.
    [87] J. Tong, Y. Xue, J. Wang, M. Wang, W. Chen, Q. Tian, and Faquan Yu, "Cu/Cu2O nanoparticle–decorated MoO2 nanoflowers as a highly efficient electrocatalyst for hydrogen evolution reaction," Energy Technology, vol. 8, no. 7, p. 1901392, 2020.
    [88] B. C. Windom, W. Sawyer, and D. W. Hahn, "A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems," Tribology Letters, vol. 42, no. 3, pp. 301-310, 2011.
    [89] P. Kissinger and W. R. Heineman, Laboratory Techniques in Electroanalytical Chemistry, revised and expanded. CRC press, 2018.

    無法下載圖示 全文公開日期 2027/06/27 (校內網路)
    全文公開日期 2027/06/27 (校外網路)
    全文公開日期 2027/06/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE