簡易檢索 / 詳目顯示

研究生: 鍾毓銓
Yu-Cyuan Chung
論文名稱: 絕緣層覆矽基板上Mach-Zehnder干涉為主之光功率分光器與生醫感測器
Optical Power Splitter and Biosensor using Mach-Zehnder Interference on a Single SOI Platform
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 劉信孚
Hsin-Fu Liu
林智暉
Chih-Hui Lin
周錫熙
Hsi-Hsir Chou
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 98
中文關鍵詞: 多模干涉混合電漿波導表面電漿干涉儀馬赫詹德干涉
外文關鍵詞: multimode Interference, hybrid plasmonic waveguide, surface plasmon interferometer, Mach-Zehnder interference
相關次數: 點閱:271下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光功率分光器目前被廣泛地應用在光電積體電路上,譬如光訊號的傳輸、光交換器、波長濾波器和光監測功能…等,此論文以0.25µm厚的SOI為設計平台,以馬赫詹德干涉(Mach-Zehnder Interferometer)為理論提出兩種新穎的多模干涉(Multimode Interference; MMI)耦合器與混合電漿波導(Hybrid Plasmonic Waveguide; HPW)耦合器,以及表面電漿生物感測器,除了理論的架構建立外,數值模擬方面主要是藉由商用Photon Design軟體中,以FDTD (Finite Difference Time Domain)為主的OmniSim和以FDM (Finite Difference Method)為架構的FIMMWAVE來完成。
    本論文將S-bend MMI應用於輸出比例可調節之光功率分光器,S-bend MMI主要功能是建構在自我成像原理及彎曲波導導致模態重新分佈的理論上,我們以多模干涉為理論基礎,設計出2x2非等比例寬頻譜之光功率耦合器。在符合單模條件下,我們以0.45µm寬度與0.25µm深度的矽線(Silicon-wire)波導作為多模干涉器的輸入與輸出端,經過計算並求得最佳化條件後,S-bend MMI參數為多模波導寬度為3µm,長度為13.2µm、10.8µm及彎曲半徑為38µm、31µm時,可得到在1520-1600nm的波長頻寬的光功率分光比分別為0.97±0.015與0.76±0.01,並利用此分光比之光功率分光器取代傳統方向耦合器(Directional Coupler; DC)於延遲馬赫詹德干涉(Delay Mach-Zehnder Interferometer; DMZI)波長濾波器中波長較敏感的特性。接著會探討由兩段相同以及兩段不同彎曲半徑所組成之S-bend MMI在相位的變化,並藉由理論計算與實驗數據證明此探討結果。
    另一探討寬頻光功率分光器的主題為混合電漿波導為主之馬赫詹德方向耦合器(Mach-Zehnder Directional Coupler; MZDC)。在此論文中,我們提出表面電漿干涉的概念來取代非耦合區,並考慮輸入與輸出彎曲波導的耦合量對於分光比的影響,除了可大幅縮小元件尺寸,其波長不敏感的特性更可涵蓋S至C波段,50/50、70/30、80/20、95/5四種分光比之寬頻譜能量分光器將於論文中展示。
    本論文也利用矽線波導表面電漿之馬赫詹德干涉來產生生物感測器效應,與一般矽線波導表面電漿感測器不同的是,我們將金屬完全覆蓋並環繞在感測區,此感測機制是當光傳遞到金屬時,會在矽波導與金屬交接面產生一表面電漿波以及金屬與介質待測物交接面產生另一表面電漿波,當此兩表面電漿波傳至金屬層尾端時,最後會在矽波導層結合,等同於一馬赫詹德干涉儀,因感測區三面都有覆蓋金屬,干涉疊加使得靈敏度模擬結果可達 2891 nm/Refractive Index Unit (RIU),並利用兩表面電漿波之折射率代入公式計算,解釋此結構靈敏度增加的原因。


    The optical power splitters are widely utilized in photonic integrated circuits for optical signal transmission, optical switch, wavelength filter, and power monitoring. In this thesis, the novel couplers from MMI (multimode interference) and HPW (hybrid plasmonic waveguide) as well as the surface plasma biosensor, all constructed by the Mach-Zehnder interferometer (MZI), have been proposed, designed, and simulated on a 0.25-µm thick silicon-on-insulator platform. The numerical calculation was carried with the help of the OmniSim based on FDTD (Finite Difference Time Domain) and the FIMMWAVE based on FDM (Finite Difference Method) commercial software.
    In this thesis, the S-bend MMI is utilized to adjust the output optical power. The S-bend MMI main function is combining the self-imaging and bend waveguide for mode redistribution to demonstrate a 2x2 broadband optical power splitter with any ratio. A 0.45-μm width and 0.25-μm depth are taken to be operated in the single-mode region of silicon wire for transmission. The multimode conditions of S-bend MMI are 3-μm width, 13.2-μm length, and 38-μm bend radius for the splitting ratio of 0.97±0.015 from 1520 to 1600 nm wavelength. And another 0.76±0.01 ratio comes from 3-μm width, 10.8-μm length, and 31-μm bend radius. Moreover, the S-bend MMI will be used to replace the wavelength sensitive directional coupler (DC) in delayed Mach-Zehnder interferometer (DMZI) wavelength filter for better extinction ratio. Finally a S-bend MMI composed of two bend radii will be theoretically studied for the phase and splitting ratio simultaneously.
    Another broadband optical power splitter is the Mach-Zehnder directional coupler (MZDC) based hybrid plasmonic waveguide. Here, the surface plasma interference (SPI) is utilized to replace MZDC decoupled region. Moreover, the input and output bend effect on the splitting ratio will be further illustrated. In addition to the significant size reduction, the SPI splitter can be insensitive to the wavelength range between C and L-bands.
    In this thesis, a MZI based silicon wire is utilized as the biological sensors through surface plasmon polaritons. The structure we propose different from the previous publication is the metal surrounding around the waveguide in the sensing area. The optical mode in the sensing region will be converted to the surface plasmon polariton between the silicon and metal. At the end of the surface plasma region, all the modes will interfere with each other to form MZI. The calculation shows that the sensitivity can achieve 2891 nm/Refractive Index Unit (RIU), the sensitivity increase is mainly from two interfered refractive indices of two surface plasma polaritons.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 簡介 1 1.2 研究動機 3 1.3 論文架構 4 第二章 光波導理論與特性 5 2.1 波導結構 5 2.2 單多模條件 6 2.3 雙折射效應 9 2.4 波導傳播損耗 10 第三章 矽線波導元件之光功率分光器理論與設計 19 3.1 多模干涉儀理論 19 3.1.1 自我成像原理 19 3.1.2 多模干涉儀之干涉型態 25 3.1.3 多模干涉儀設計 29 3.2 非等比例輸出之多模干涉儀 32 3.2.1 利用彎曲波導改變有折射率分佈以調整能量比例 32 3.2.2 利用非等比例多模干涉分光器應用至延遲馬赫詹德波長濾波器 36 3.2.3 不同彎曲半徑組成之S-bend MMI延遲長度探討 39 3.3 方向耦合器 41 3.3.1 方向耦合器基本理論 41 3.3.2 超模 45 3.3.3 方向耦合器模擬 46 第四章 表面電漿波導元件理論與設計模擬 49 4.1 表面電漿 49 4.1.1 表面電漿理論 50 4.1.2 電磁波的色散關係式 52 4.2 混合型電漿波導 58 4.2.1 混合型電漿波導耦合器設計 64 4.3 表面電漿之激發條件 70 4.3.1 稜鏡耦合 70 4.3.2 光波導耦合 71 4.3.3 光柵耦合 71 4.4 表面電漿干涉文獻回顧 72 4.4.1 表面電漿波導模擬驗證 74 4.5 矽波導表面電漿干涉模擬與設計 75 第五章 實驗與量測結果 84 5.1 光功率分光器量測 84 5.2 表面電漿波導感測器量測 88 第六章 結論與未來展望 92 6.1 結論 92 參考文獻 93

    [1 ]A. M. Novo, R. Halir, S. R. García, D. P. Galacho, L. Z. Peche, A. O. Moñux, I. M. Fernández, J. W. Pérez, and P. Cheben, “Wavelength independent multimode interference coupler,” Optics Express, Vol. 21, No. 6, pp. 7033-7040, 2013.
    [2] A. Takagi, K. Jinguji, and M. Kawachi, “Broadband silica-based optical waveguide coupler with asymmetric structure,” Electronics Letters, Vol. 26, No. 2, pp. 132-133, 1990.
    [3] A. Takagi, K. Jinguji and M. Kawachi, “Wavelength characteristics of (2 × 2) optical channel-type directional couplers with symmetric or nonsymmetric coupling structures,” Journal of Lightwave Technology, Vol. 10, No. 6, pp. 735-746, 1992.
    [4] Z. Lu, H. Yun, Y. Wang, Z. Chen, F. Zhang, N. Jaeger, and L. Chrostowski, “Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control,” Optics Express, Vol. 23, No. 3, pp. 3795-3808, 2015.
    [5] S. Tseng, “Robust coupled-waveguide devices using shortcuts to adiabaticity,” Optics Letters, Vol. 39, No. 23, pp. 6600-6603, 2014.
    [6] X. Chen, R. Wen, and S. Tseng, “Analysis of optical directional couplers using shortcuts to adiabaticity,” Optics Express, Vol. 24, No. 16, pp. 18322-18331, 2016.
    [7] C. R. Doerr, M. Cappuzzo, E. Chen, A.Wong-Foy, L. Gomez, A. Griffin, and L. Buhl, “Bending of a planar lightwave circuit 2 × 2 coupler to desensitize it to wavelength, polarization, and fabrication changes,” IEEE Photonics Technology Letters, Vol. 17, No. 6, pp. 1211-1213, 2005.
    [8] H. Morino, T. Maruyama and K. Iiyama, “Reduction of wavelength dependence of coupling characteristics using Si optical waveguide curved directional coupler,” Journal of Lightwave Technology, Vol. 32, No. 12, pp. 2188-2192, 2014.
    [9] S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers,” Optics Letters, Vol. 41, No. 4, pp. 836-839, 2016.
    [10] Y. Wang, Z. Lu, M. Ma, H. Yun, F. Zhang, N. A. F. Jaeger, and L. Chrostowski, “Compact broadband directional couplers using subwavelength gratings,” IEEE Photonics Technology Letters, Vol. 8, No. 3, p. 7101408, 2016.
    [11] J. Senior and M. Y. Jamro, Optical Fiber Communications: Principles and Practice, 3rd ed, Financial Times/Prentice Hall, 2009.
    [12] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE Journal of Quantum Electronics, Vol. 27, No. 8, pp. 1971-1974 , 1991.
    [13] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent Silicon-on-Insulator waveguides with small cross section,” Journal of Lightwave Technology, Vol. 23, No. 6, pp. 2103-2111, 2005.
    [14] T. Aalto, Microphotonic silicon waveguide components: VTT Technical Research Centre of Finland, 2004.
    [15] K. W. Ang, G. Q. L. Patrick, “Avalanche photodiodes: Si charge avalanche enhances APD sensitivity beyond 100 GHz,” Laser Focus World, Vol. 46, No. 8, pp. 41, 2010.
    [16] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technology Letters, Vol. 16, No. 5, pp. 1328-1330, 2004.
    [17] Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, No. 6, pp. 1090-1101, 2002.
    [18] A. Sakai, G. Hara, and T. Baba, “Sharply bent optical waveguide on silicon-on-insulator substrate,” Proceedings of SPIE, Vol. 4283, pp. 610-618, 2001.
    [19] E. A. J. Marcatili, “Bends in optical dielectric guides,” The Bell System Technical Journal, pp. 2103-2132, 1969.
    [20] M. Heiblum, and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE Journal of Quantum Electronics, Vol. QE-11, No. 2, pp. 75-83, 1975.
    [21] Y. A. Vlasov, and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Optics Express, Vol. 12, No. 8, pp. 1622-1631, 2004.
    [22] V. Subramaniam, G. N. D. Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” Journal of Lightwave Technology, Vol. 15, No. 6, pp. 990-997, 1997.
    [23] K. K. Lee, D. R. Lim, H.-C Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Applied Physics Letters, Vol. 77, No. 11, pp. 1617-1619, 2000.
    [24] D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell System Technical Journal, Vol. 48, No. 10, pp. 3187-3215, 1969.
    [25] F. P. Payne, J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Optical and Quantum Electronics, Vol. 26, pp. 977-986, 1994.
    [26] M. Heiblum, and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE Journal of Quantum Electronics, Vol. QE-11, No. 2, pp. 75-83, 1975.
    [27] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photonics Technology Letters, Vol. 16, No. 7, pp. 1661-1663, 2004.
    [28] L. B. Soldano and E. C. M. Pennings, “Opticalmulti-mode interference devices based on self-imaging: Principles and applications,” Journal of Lightwave Technology, Vol. 13, No. 4, pp. 615-627, 1995.
    [29] A. Kilian, et al, “Birefringence free planar optical waveguide made by flame hydrolysis deposition (FHD) through tailoring of the overcladding,” Journal of Lightwave Technology, Vol. 18, No. 2, pp. 193-198, 2000.
    [30] R. W. Hoffman, in physics of nonmetallic Thin Films, edited by C. H. S. Dupuy and A. Cachard, Plenum Press: New York, pp. 273, 1976.
    [31] Q. Lai, M. Bachmann, W. Hunziker, P.A. Besse and H. Melchior, “Arbitrary ratio power splitters using angled silica on silicon multimode interference couplers,” Electronics Letters, Vol. 32, No. 17, pp. 1576-1577, 1996.
    [32] D. S. Levy, Y. M. Li, R. Scarmozzino, and R. M. Osgood, “A Multimode Interference-Based Variable Power Splitter in GaAs–AlGaAs,” IEEE Photonics Technology Letters, Vol. 9, No. 10, pp. 1373-1375, 1997.
    [33] M. Cherchi, S. Ylinen, M. Harjanne, M. Kapulainen, T. Vehmas and T. Aalto, “Unconstrained splitting ratios in compact double-MMI couplers,” Optics Express, Vol. 22, No. 8, pp. 9245-9253, 2014.
    [34] T. T. Le and L. W. Cahill, “The Design of Multimode Interference Couplers with Arbitrary Power Splitting Ratios on an SOI Platform,” Conference Proceedings Lasers and Electro-optics Society Annual Meeting-LEOS, art. No. 4688648, pp. 378-379, 2008.
    [35] T. Saida, A. Himeno, M. Okuno, A. Sugita, and K. Okamoto, “Silica based 2x2 multimode interference coupler with arbitrary power splitting ratio,” Electronics Letters, Vol. 32, No. 23, pp. 2031-2033, 1999.
    [36] P. A. Besse, E. Gini, M. Bachman, and H. Melchior, “New 2x2 and 1x3 multimode interference couplers with free selection of power splitting ratios,” Journal of Lightwave Technology, Vol. 14, No. 10, pp. 2286-2293, 1996
    [37] D. A. M.-Arrioja, P. LiKamWa, C. V.-Ordonez, and J. J. S.-Mondragon, “Tunable multimode interference coupler,” Electronics Letters, Vol. 43, No. 13, pp. 714-716, 2007.
    [38] K.-C. Shu, Y. Lai, D.-W. Huang, “A novel S-shape 1x2 thermo-optic polymer waveguide switch,” Conference, OFC 2002, Vol. 70, 2002.
    [39] S. C. M. Lidgate, P. Sewell, T.M. Benson, “Conformal mapping: Limitations for waveguide bend analysis,” IEE Proceedings: Science, Measurement and Technology, Vol. 149, No. 5, pp. 262-266, 2002.
    [40] S.-H Hsu and Y.-L Tsai, “Tapping signal power on 12µm-thick SOI optical waveguide for performance monitoring,” Electronics Letters, Vol. 45, No. 3, pp. 161-163, 2009.
    [41] F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, and B. J. Offrein, “Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing,” Optics Express, Vol. 21, No. 10, pp. 11652-11658, 2013.
    [42] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering), Oxford, 2006.
    [43] J.-M. Liu, Photonic devices, Cambridge University Press, pp. 206-209, 2005.
    [44] R. F. Oulton1, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nature Photonics, Vol. 2, pp. 496-500, 2008.
    [45] I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,’’ Optical Express, Vol. 18, No. 8, pp. 348-363, 2010.
    [46] 廖高崧,金屬-介質-金屬波導結構的表面電漿分光器之研究,碩士論文,國立交通大學光電工程學系碩士班(2013)
    [47] 郭建銘,效能增強混合式表面電漿子波導管之設計與分析,碩士論文,國立清華大學工程系統科學系(2013)
    [48] 林君豪,以全向量虛軸有限元素波束傳播法分析數種表面電漿波導結構的模態特性,碩士論文,國立臺灣大學電機資訊學院光電工程學(2014)
    [49] 洪仕熹,發展高階有限差分法與邊界匹配條件分析介電質與金屬光波導結構,碩士論文,國立高雄應用科技大學電子工程系(2012)
    [50] S. H. Hsu, J.-C. Hsu, and S.-C. Chen, “Interferometric fiber strain sensor using fiber Bragg grating based optical ruler,” 2013/June, CLEO, p. JW2A.72, San Jose, California, USA, 2013.
    [51] M. Z. Alam, J. N. Caspers, J. S. Aitchison, and M. Mojahedi , “Compact low loss and broadband hybrid plasmonic directional coupler,” Optics Express, Vol. 21, No. 13, pp. 16029-16034, 2013.
    [52] J. Homola, J. hyrok, M. Skalsw, J. Hradilova, P. KoltiovB, “A Surface Plasmon Resonance Based Integrated Optical Sensor,” Sensors and Actuators B: Chemical, Vol. 38, pp. 286-290, 1997.
    [53] 吳民耀,劉威志,"表面電漿子理論與模擬",物理雙月刊,廿八卷二期, pp. 486-496, 2006.
    [54] 邱國斌,蔡定平,"金屬表面電漿簡介",物理雙月刊,廿八卷二期, pp. 472-485, 2006.
    [55] B. E. Little, and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technology Letters, Vol. 9, No. 12, pp. 1607-1609, 1997.
    [56] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical, Vol. 54, pp. 3-15, 1999.
    [57] J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, J. Schrofel, “Surface Plasmon Resonance Biosensor Based on Integrated Optical Waveguide,” Sensors and Actuators B, Vol. 76, pp. 8-12, 2001.
    [58] P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, “Surface Plasmon Interferometer in Silicon-on-insulator: Novel Concept for an Integrated Biosensor,” Optics Express, Vol. 14, No. 16, pp. 7063-7072, 2006.
    [59] P. Debackere, R. Baets, and P. Bienstman, "Bulk Sensing Experiments using a Surface-Plasmon Interferometer,” Optics Letters, Vol. 34, No. 18, pp. 2858-2860, 2009.
    [60] P. Debackere, S. Scheerlinck, P. Bienstman, R. Baets, “Surface Plasmon Interferometer in Silicon-On-Insulator: Novel Concept for an Integrated Biosensor: Reply,” Optic Express, Vol. 15, No. 21, pp. 13651-13653, 2007.
    [61] R. Levy, S. Ruschin, “SPR Waveguide Sensor based on Transition,” Sensors and Actuators B: Chemical, Vol. 124, pp. 459-465, 2007.
    [62] B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive Index Sensor based on Hybrid Coupler with Short-Range Surface Plasmon Polariton and Dielectric Waveguide,” Applied Physics Letters, Vol. 100, pp. 111108, 2012.
    [63] R. Levy, S. Ruschin, “SPR Waveguide Sensor based on Combined Sensing Phase and Amplitude Changes,” SPIE, Vol. 6475, pp.374, 2007.
    [64] R. Levy, S. Ruschin, “Design of a Single-Channel Modal Interferometer Waveguide Sensor,” IEEE Sensors Journal, Vol. 9, No. 2, pp. 146-153, 2009.
    [65] B. Fan, F. Liu, Y. Li, Y. Huang, Y. Miura, and D. Ohnishi, “Refractive Index Sensor for Ultra-thin Layer based on SPP-Dielectric Hybrid Coupler,” CLEO, p. JTh2A.97, 2012.
    [66] B. Fan, F. Liu, Y. Li, X. Wang, K. Cui, X. Feng, W. Zhang, Y. Huang, “Integrated Refractive Index Sensor based on Hybrid Coupler with Short Range Surface Plasmon Polariton and Dielectric Waveguide,” Sensors and Actuators B: Chemical, Vol. 186, pp. 495-505, 2013.
    [67] Y. S. Chu, W. H. Hsu, C. W. Lin, W. S. Wang, “Surface Plasmon Resonance Sensors using Silica-On-Silicon Optical Waveguides,” Microwave and Optical Technology Letters, Vol. 48, No. 5, pp. 955-957, 2006.
    [68] X. F. Wu, J. Zhang, J. Chen, C. Zhao, and Q. Gong, “Refractive index sensor based on surface-plasmon interference,” Optics Letters, Vol. 34, No. 3, pp. 392-394, 2009.
    [69] Y. Gao, Q. Gan, Z. Xin, X. Cheng, and F. J. Bartoli, “Plasmonic Mach-Zehnder Interferometer for Ultrasensitive On-Chip Biosensing,” ACS NANO, Vol. 5, No. 12, pp. 9836-9844, 2011.
    [70] K. Q. Le and P. Bienstman, “Enhanced Sensitivity of Silicon-On-Insulator Surface Plasmon Interferometer With Additional Silicon Layer,” IEEE Photonics Journal, Vol. 3, No. 3, pp. 538-545, 2011.

    QR CODE