簡易檢索 / 詳目顯示

研究生: 廖梵鈞
Fan-Jun Liao
論文名稱: 寬頻分光器於Mach-Zehnder干涉儀之粗波分複用器應用
Broadband Splitter based Mach-Zehnder Interferometer in Couse Wavelength Division Multiplexing Applications
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 李三良  
San-Liang Lee
李志堅
Chih-Chien Lee
范慶麟
Ching-Lin Fan 
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 71
中文關鍵詞: 波導分波多工器寬頻分光器馬赫詹德干涉儀馬赫詹德方向耦合器
外文關鍵詞: Broadband Splitter, Couse Wavelength Division Multiplexing
相關次數: 點閱:161下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽線波導馬赫詹德延遲干涉儀(Delayed Mach-Zehnder Interferometer, DMZI),不僅可運用於色散(Chromatic Dispersion, CD)與光訊雜比(Optical Signal-to-noise Ratio, OSNR)監測,也可以應用在相位偏移鍵控(Phase Shift Keying, PSK)調變技 術。非理想型馬赫詹德延遲干涉儀在相位解調變時,會使得光隔離度下降,導致消光比變小及誤碼率表現不佳,同時也使得系統監測之靈敏度下降,此原因來自於干涉儀分光率不均,所以寬頻分光器在馬赫詹德延遲干涉儀器是非常重要的元件。
    在本論文中,我們以多模干涉儀 (Multimode Interferometer, MMI)、馬赫-詹德方向耦合器(Mach-Zehnder Directional Coupler, MZDC)和 S 彎曲多模干涉儀(S-Bend Multimode Interferometer, S-Bend MMI)三種元件組合成矽線波導馬赫詹德延遲干涉儀,以應用在粗波分複用器(Coarse Wavelength Division Multiplexer, CWDM),其中以 RSoft 與 Matlab 套裝商用軟體進行數值模擬分析並以理論基礎設計出矽線波導馬赫詹德方向耦合器、多模干涉儀和 S 彎曲多模干涉儀,使其具有寬頻譜的光學特性,其中MZDC更具有與波長不敏感與可任意分光率的分光功率器。
    矽線波導光功率分光器尺寸為次微米,在彎曲波導結構會影響耦合相位,進而產生分光率的異常現象,所以設計元件時,我們特別考慮到彎曲結構所帶來的耦合效應,粗波分複用器系統適用的波長範圍在1280 nm與1320 nm之間,Channel Spacing 也設計在 10 nm。本論文的貢獻在於此矽線波導分波複用器之各種寬頻分光器的探討以及高光隔離度的可行性。


    The delayed Mach-Zehnder interferometer (DMZI) can be applied to the chromatic dispersion (CD) monitoring and differential phase shift keying (DPSK) modulator/demodulator. The optical isolation of a non-ideal DMZI is reduced in the phase modulation, which causes the less extinction ratio and worse bit error rate besides less sensitive system monitoring. This optical isolation reduction mainly comes from the uneven spectral interferometer and implies the crucial property of broadband coupling in DMZI.
    In this thesis, a silicon-wire based DMZI, composed by three broadband couplers of multimode interferometer, Mach-Zehnder directional coupler (MZDC) and S-Bend multimode interferometer is utilized to demonstrate the coarse wavelength division multiplexer (CWDM). The commercial software packages, Rsoft and Matlab, are taken for numerical simulation analysis on the wavelength independent coupler for the above three different kinds of optical power dividers.
    Silicon-wire based optical power dividers is sub-micron size. The bending structure will affect the coupling phase and will be considered for broadband couplers to avoid the malfunction on splitting ratios. The operating wavelength range and channel spacing of CWDM are from 1280nm to 1320nm and 10 nm, respectively. The main contributions in this thesis are researching the different kinds of broadband couplers in CWDM applications to achieve higher possible isolations.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1簡介 1 1.2 研究動機 2 1.3 論文架構 3 第二章 波導理論與特性 4 2.1 波導結構 4 2.2 單多模條件 6 2.4 雙折射效應 8 2.5 波導傳播損耗 10 第三章 矽線波導元件理論與設計模擬 19 3.1 方向耦合器基本理論 19 3.2 超模 24 3.3 馬赫詹德方向耦合器 25 3.3.1 馬赫詹德方向耦合器理論 25 3.3.2 馬赫詹德方向耦合器設計 28 3.4 光功率分光器模擬與比較 33 3.4.1 方向耦合器模擬 33 3.4.2 馬赫詹德方向耦合器模擬 36 3.4.3 多模干涉儀模擬 39 3.4.4 非等比例多模干涉儀 42 第四章 光功率分光器應用於馬赫詹德延遲儀 46 4.1馬赫詹德延遲干涉儀理論 46 4.2理想型馬赫詹德延遲干涉儀 47 4.3非理想型馬赫詹德延遲干涉儀 49 第五章 粗波分複用器與設計模擬 51 5.1 粗波分複用器理論 51 5.2 兩種不同設計之比較 53 第六章 元件量測與分析 57 6.1馬赫詹德方向耦合器分光率量測 57 6.2粗波分複用器量測 63 第七章 結論 67 參考文獻 68

    [1] F.Horst ,W.M.J. Green ,S. Assefa ,S. M. Shank ,Y.A.Vlasov, and B.J. Offrein” Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing” Optics Express 11652, Vol. 21, No. 10,2013.
    [2] J.Senior and M.Y. Jamro, Optical Fiber Communications: Principles and Practice, 3rd ed, Financial Times/Prentice Hall, 2009.
    [3] R.A.Soref ,J.Schmidtchen and K.Petermann , “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE Journal of Quantum Electronics, Vol. 27, No. 8, pp. 1971-1974 , 1991.
    [4] S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, “Single-mode and polarization-independent Silicon-on-Insulator waveguides with small cross section,” Journal of Lightwave Technology, Vol. 23, No. 6, pp. 2103-2111, 2005.
    [5] T.Aalto , Microphotonic silicon waveguide components: VTT Technical Research Centre of Finland, 2004.
    [6] K.W. Ang , G.Q. Lo , “Avalanche photodiodes: Si charge avalanche enhances APD sensitivity beyond 100 GHz,” Laser Focus World, Vol. 46, No. 8, pp. 41, 2010.
    [7] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J.V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D.V. Thourhout, R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photonics Technology Letters, Vol. 16, No. 5, pp. 1328-1330, 2004.

    [8] Y.Hibino , “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher index-contrast silica-based PLCs,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, No. 6, pp. 1090-1101, 2002.
    [9] A. Sakai, G. Hara, and T. Baba, “Sharply bent optical waveguide on silicon-on-insulator substrate,” Society of Photographic Instrumentation Engineers, Vol. 4283, pp. 610-618, 2001.
    [10] E. A. J. Marcatili, “Bends in optical dielectric guides,” The Bell System Technical Journal, pp. 2103-2132, 1969.
    [11] M. Heiblum, and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE Journal of Quantum Electronics, Vol. QE-11, No. 2, pp. 75-83, 1975.
    [12] Y. A. Vlasov, and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Optics Express, Vol. 12, No. 8, pp. 1622-1631, 2004.
    [13] V. Subramaniam, G. N. D. Brabander, D. H. Naghski, and J. T. Boyd, “Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides,” Journal of Lightwave Technology, Vol. 15, No. 6, pp. 990-997, 1997.
    [14] K. K. Lee, D. R. Lim, H.C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Applied Physics Letters, Vol. 77, No. 11, pp. 1617-1619, 2000.
    [15] D.Marcuse , “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell System Technical Journal, Vol. 48, No. 10, pp. 3187-3215, 1969.
    [16] F. P. Payne, J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Optical and Quantum Electronics, Vol. 26, pp. 977-986, 1994.
    [17] M. Heiblum, and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE Journal of Quantum Electronics, Vol. QE-11, No. 2, pp. 75-83, 1975.
    [18] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, "Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides," IEEE Photonics Technology Letters, Vol. 16, pp. 1661-1663, 2004.
    [19] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering), Oxford, 2006.
    [20] J.M. Liu, “Photonic devices,” Cambridge University Press, pp. 206-209, 2005.
    [21] S.H. Hsu, “Signal power tapped with low polarization dependence and insensitive wavelength on silicon-on-insulator platforms,” Journal of the Optical Society America B, Vol. 27, No. 5, pp. 941-947, 2010.
    [22] B. E. Little, and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using mach-zehnder structures,” IEEE Photonics Technology Letters, Vol. 9, No. 12, pp. 1607-1609, 1997.
    [23] Q. Dai, M. Bachmann, W. Hunziker, P.A. Besse and H.3 Melchior, “Arbitary ratio power splitters using angled silica silicon multimode interference coupler,” Electron. Letters., Vol. 32, No. 17,pp. 1576-1577, 1996.
    [24] D. S. Levy, Y. M. Li, R. Scarmozzino, and R. M. Osgood, “A multimode interference-based variable power splitter in GaAs-AlGaAs,” IEEE photon. Technol. Letters., Vol. 9, No. 10, pp. 1373-1375, 1997.

    [25] T. T. Le, L. W. Cahill, “The design of multimode interference couplers with arbitrary power splitting ratios on an SOI platform,” Conference Proceedings-Lasers and Electro-Optics Society Annual Meeting-LEOS, art. No. 4688648, pp. 378-379, 2008.
    [26] T. Saida, A. Himeno, M. Okuno, A. Sugita, and K. Okamoto, “Silica based 2x2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Letters., Vol. 32,No. 23, pp.2031-2033, 1999.
    [27] P. A. Besse, E. Gini, M. Bachman, and H. Melchior, “New 2x2 and 1x3 multimode interference coupler with free selection of power splitting ratios,” IEEE J. Lightwave Technol., Vol. 14, No. 10,pp.2286-2293, 1996.
    [28] D. A. Arrioja, P.L. LiKamWa, C. V. Ordonez, and J.J. Sanchez-Mondragon, “Tunble multimode interference coupler,” Electron. Letters., Vol. 43, No. 13 ,pp. 714-716, 2007.
    [29] K.-C. Shu, Y. Lai, D.-W. Huang, “A novel S-shape 1x2 thermo-optic polymer waveguide switch,” Optical Fiber Communication Conference 2002 , Vol. 70, 2002.
    [30] S.C.M. Lidgate, P. Sewell, T.M. Benson, “Conformal mapping: Limitations for waveguide bend analysis,” IEEE Proceedings: Science, Measurement and Technology, Vol. 149, No. 5, pp.262-266, 2002
    [31] S.H. Hsu and Y.L. Tasi, “Tapping signal power on 12um-thick SOI optical waveguide for performance monitoring,” Electron. Letters., Vol. 45, No. 3, pp. 161-163, 2009.
    [32] R. März ,“Integrated Optics, Design and Modelling, ”Artech House Publishers, Boston-London, 1995.

    QR CODE