簡易檢索 / 詳目顯示

研究生: 蕭語鋕
Yu-chih Hsiao
論文名稱: 使用新式微波導波結構研製平衡-不平衡轉換器、混波器及CMOS毫米波帶通濾波器
Development of Balun, Mixer and CMOS Millimeter-Wave Bandpass Filter Using New Microwave Giuded-Wave Structures
指導教授: 曾昭雄
Chao-hsiung Tseng
口試委員: 瞿大雄
Tah-hsiung Chu
馬自莊
Tzyh-ghuang Ma
黃建彰
Chien-chang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 79
中文關鍵詞: 開槽式耦合微帶線平衡-不平衡轉換器混波器互補式金屬帶線雙模態毫米波帶通濾波器
外文關鍵詞: slot-coupled microstrip line, balun, mixer, Complementary-conducting strip transmission line, dual-mode, miilimeter-wave bandpass filter
相關次數: 點閱:243下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要係使用兩種新式導波結構實現微波及毫米波電路。在微波電路設計部分,本論文使用開槽式耦合微帶線研製馬群平衡-不平衡轉換器及雙平衡式混波器;毫米波電路設計部分,本論文使用互補式金屬帶線研製毫米波CMOS帶通濾波器。其電路設計概念、實現方式及模擬量測結果皆於論文中詳細討論。
      微波電路設計部分,本論文使用菱形開槽式耦合微帶線設計寬頻微波電路。因該導波結構可提供高比例之奇、偶模阻抗比及 平坦相位響應,因此,本論文用此特性實現 相位響應平坦之寬頻馬群平衡-不平衡轉換器,並將其應用於雙平衡式混波器設計。由模擬及實驗量測結果可知,使用開槽式耦合微帶線可設計頻寬約為90%之寬頻馬群平衡-不平衡轉換器,在通帶內之相位平衡擺幅約為 ,振幅平衡擺幅為-0.37 dB ~ 0.32 dB。設計完成之平衡-不平衡轉換器則應用於設計雙平衡式混波器,當中頻輸出頻率為100 MHz時,轉換損耗於射頻輸入頻率1.2 GHz ~ 4 GHz內皆大於-10 dB。
      毫米波電路設計部分,本論文使用適用於CMOS製程之低損耗慢波結構-互補式金屬帶線,實現雙模環型帶通濾波器,以有效縮小電路面積。濾波器使用單邊、雙邊開路段枝及步階阻抗兩種微擾架構激發環型共振器之雙模態。單邊及雙邊開路段枝微擾濾波器之晶片大小皆為330 mmx240 mm,而單邊及雙邊帶步階阻抗微擾濾波器之晶片大小分別為372 mmx180 mm及360 mmx210 mm。由於步階阻抗微擾濾波器之結構對稱,且不連續效應較開路段枝微擾濾波器較輕緩,因此在60 GHz附近之中心頻率可獲得較佳之穿透損耗。由本論文之實驗結果,互補式金屬帶線用於設計CMOS被動元件可有效縮小電路面積,且維持良好之電路特性。


    This thesis uses two new guide-wave structures to develop microwave and millimeter-wave circuits. For the microwave circuit design, the slot-coupled microstrip lines are employed to implement Marchand balun and doubly balanced mixer. For the millimeter-wave circuit design, the complementary-conducting strip(CCS) lines are utilized to realize millimeter-wave bandpass filters. The circuit design concepts, fabrications, and experimental results are presented in the thesis.
    For the microwave circuit design, diamond-shape slot-coupled microstrip lines are used to design broadband microwave circuits. Since this guided-wave structure can provide a high ratio of even-mode and odd-mode impedances and flat phase response, these properties are applied to design a broadband Marchand balun with a flat phase response. The developed baluns are then exploited to realize a doubly balanced mixer. Based on the simulated and measured results, the developed Marchand balun has a 90% relative bandwidth. The in-band phase and amplitude im-balances are in the range of -180.4o~181.8o and -0.37 dB~0.32 dB, respectively. The developed doubly balanced mixer has a conversion loss better than -10 dB from 1.2 GHz to 4 GHz as the intermediate frequency is set to 100 MHz.
    For the millimeter-wave circuit design, this thesis uses low loss and slow-wave structures, CCS lines, to realize compact dual-mode ring bandpass filters. The open-stub and step-impedance perturbation structures are inserted into the ring resonators for dual-mode excitation. The developed filters with open-stub perturbations occupy chip sizes of 330 mmx240 mm, while those with single and double step-impedance perturbations have 372 mmx 180mm and 360 mmx 210 mm chip sizes, respectively, Since the filters with step-impedance perturbations have symmetrical structures and low discontinuity effects, they can achieve lower insertion losses at center frequency around 60 GHz. The experimental results demonstrate that using CCS line can effectively reduce chip sizes of CMOS passive components and retain original circuit characteristics.

    摘要.........................................................i Abstract....................................................ii 目錄........................................................iv 第一章 緒論..................................................1 1.1開槽式耦合微帶線之研究發展現況............................1 1.2互補式金屬帶線之研究發展現況..............................3 1.3章節說明..................................................5 第二章 使用開槽式耦合微帶線研製平衡-不平衡轉換器及混波器.....6 2.1 開槽式耦合微帶線簡介.....................................6 2.2 寬頻馬群平衡-不平衡轉換器之研製.........................13 2.2.1 馬群平衡-不平衡轉換器之設計原理.......................13 2.2.2 馬群平衡-不平衡轉換器之模擬及量測結果.................19 2.3 雙平衡式混波器之研製....................................22 2.3.1 雙平衡式混波器之設計原理..............................22 2.3.2 雙平衡式混波器之製作及量測結果........................26 第三章 使用互補式金屬帶線研製CMOS毫米波帶通濾波器...........33 3.1 互補式金屬帶線簡介......................................33 3.2 使用開路段枝微擾研製雙模環型帶通濾波器..................39 3.2.1 電路原理及分析........................................39 3.2.2 晶片模擬及量測結果....................................45 3.3使用步階阻抗微擾研製雙模環型帶通濾波器...................51 3.3.1 電路原理及分析........................................51 3.3.2 晶片模擬及量測結果....................................56 第四章 結論................................................62 參考文獻....................................................63 附錄 A MA4E2072M crossover quad diode規格..................66

    [1] M.-F. Wong, V. F. Hanna, O. Picon, and H. Baudrand, “Analysis and design of slot-coupled directional couplers between double-sided substrate microstrip lines,” IEEE Trans. Microw. Theory Tech., vol. 29, no. 12, pp. 2123–2129, Dec. 1991.
    [2] Amin M. Abbosh and Marek E. Bialkowski, “Design of compact directional couplers for UWB applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 189-194, Feb. 2007.
    [3] Amin M. Abbosh, “Ultra-wideband phase shifters,“ IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1935-1941, Sep. 2007.
    [4] Amin M. Abbosh, “Planar bandpass filters for ultra-wideband application,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2262-2269, Oct. 2007.
    [5] Marek E. Bialkowski, Amin M. Abbosh, and Norhudah Seman, ”Compact microwave six-port vector voltmeters for ultra-wideband applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2216-2223, Oct. 2007.
    [6] Amin M. Abbosh, “A compact UWB three-way power divider,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 598-600, Aug. 2007.
    [7] C.-C. Chen, C.-K. C. Tzuang, ”Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 6, Jun. 2004.
    [8] S. Wang and C.-K. C. Tzuang, “Compacted Ka-band CMOS rat-race hybrid using synthesized transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 1023-1026.
    [9] M.-J. Chiang, H.-S. Wu, and C.-K. C. Tzuang, ” A Ka-band CMOS Wilkinson power divider using quasi-TEM transmission lines,” IEEE Microw. Wireless Compon. Lett., vol.17, no. 12, pp.837-839, Dec. 2007.
    [10] A.-S. Liu, C.-K. C. Tzuang, R.-B. Wu and H.-S. Wu, “Ka-band 32-GHz planar integrated switched-beam smart antenna,” in IEEE MTT-S Int. Microw. Symp. Dig., 2005, pp. 12-17.
    [11]M.-J. Chiang, H.-S. Wu and C.-K. C. Tzuang, “Artificial-synthesized edge-coupled transmission lines for compact CMOS directional coupler designs,” IEEE Trans. Microw. Theory Tech., vol. 57, pp. 3410-3417 Dec. 2009.
    [12] C.-K. C. Tzuang, C.-C. Chen, and W.-Y. Chien, “LC-free CMOS oscillator employing two-dimensional transmission line,” in Proc. IEEE Int. Frequency Control Symp. and PDA Exhibition/17th Euro. Frequency and Time Forum, 2003, pp. 487–489.
    [13] C.-K. C. Tzuang, H.-H. Wu, H.-S. Wu, and J. Chen, “CMOS active bandpass filter using compacted synthetic quasi-TEM lines at C-band,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4548–4555, Dec. 2006.
    [14] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 1999.
    [15] N. Marchand, “Transmission line conversion transformers,” Electronics, vol. 17, no. 12, pp. 142-145, Dec. 1944.
    [16] K. S. Ang and I. D. Robertsion, “Analysis and design of impedance-transforming planar Marchand baluns,” IEEE Trans. Microw. Theory Tech. vol.49, no. 2, pp. 402-406. Feb. 2001.
    [17] Z. Y. Zhang, Y. X. Guo, L. C. Ong and M. Y. W. Chia, “A new planar marchand balun,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1207-1210, Dec. 2005.
    [18] T.-G. Ma, Y.-T. Cheng, “A miniaturized multilayered Marchand balun using coupled artificial transmission lines.” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 7, pp. 446-448, Jul. 2009.
    [19] C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, and H. Wang,” Analysis of multi-conductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microw. Theory and Tech., vol. 55, no. 6, pp.1190-1199, Jun. 2007.
    [20] C.-Y. Chang, C.-W. Tang, and D.-C. Niu,”Ultra-broad-band doubly balanced star mixers using planar Mouw’s hybrid junction,” IEEE Trans. Microw. Theory and Tech., vol. 49, no. 6, pp.1077-1085, June 2001.
    [21] D. M. Pozar, Microwave engineering, 3rd. New York:Wiley,2004, pp.615-630.
    [22] S. A. Maas, Nonlinear microwave and RF circuits, 2nd. Norwood, MA: Aretch Jouse,2003, pp.345-352.
    [23] Y.-A Lai, C.-M Lin, C.-H. Lin and Y.-H. Wang, “A new Ka-band doubly balanced mixer based on Lange couplers,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp.458-460, Jul. 2008.
    [24] H.-K. Chiou, T.-Y. Yang,” Low-loss and broadband asymmetric broadside-coupled balun for mixer design in 0.18-μm CMOS Technology,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp.835-848, Apr. 2008.
    [25] M.-J. Chiang, H.-S. Wu and C.-K. C. Tzuang,” Design of synthetic quasi-TEM transmission line for CMOS compact integrated circuit,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp.2512-2520, Dec. 2007.
    [26] S. Wang, K.-H Tsai, K.-K. Huang, S.-Z. Li, H.-S. Wu, C.-K. C. Tzuang, “Design of X-band RF CMOS transceiver for FMCW monopulse radar,” IEEE Trans. Microw. Theory Tech. vol. 57, no. 1, pp.61-70, Jan. 2009.
    [27] W. R. Eisenstadt and Y. Eo,”S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Comp., Hybrids, Manufact. Tech., vol. 15, pp. 483-490, Aug. 1992.
    [28] S. Sun, J. Shi, L. Zhu, S. C. Rustagi, K. Mouthaan.” Millimeter-wave bandpass filters by standard 0.18-μm CMOS Technology,” IEEE Electron Device Lett., vol. 28, no. 3, pp.220-222, Mar. 2007.
    [29] J. Brinkhoff and F. Lin, “Integrated filters for 60 GHz systems on CMOS,” in International Workshop on Radio-Frequency Integration Technology 2007.
    [30] C. -Y. Hsu, C. -Y Chen, and H. -R. Chuang, “A 60-GHz millimeter-wave bandpasss filter using 0.18-μm CMOS technology,” IEEE Electron Device Lett., vol.29, no. 3, pp.246-248, Mar. 2008.
    [31] C.-Y. Hsu, C.-Y. Chen, and H.-R. Chuang, “70 GHz folded loop dual-mode bandpass filter fabricated using 0.18-μm standard CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol.18, no. 9, pp.587-589, Sep. 2008.
    [32] C.-H. Liu, C.-Y. Hsu, C.-Y. Chen and H.-R. Chuang, “60-GHz bandpass filter with ACMRC resonator fabricated using 0.18-贡m CMOS technology,“ Microw. and Optical Tech. Lett., vol. 51, no. 3, pp. 597-600, Mar. 2009.

    QR CODE