簡易檢索 / 詳目顯示

研究生: 薛又誠
Yu-Cheng Hsueh
論文名稱: 具雙模式控制之低靜態電流降壓式轉換器
A Low Quiescent Current Dual-Mode Control Buck Converter
指導教授: 林景源
Jing-Yuan Lin
口試委員: 林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
張佑丞
Yu-Chen Chang
林宜鋒
Yi-Feng Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 104
中文關鍵詞: 電池使用壽命低功耗低靜態電流降壓式轉換器睡眠模式自適應導通時間控制
外文關鍵詞: battery life, low power consumption, low quiescent current, buck converter, sleep mode, adaptive on-time control
相關次數: 點閱:292下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來可攜式電子產品已是多數人不可或缺的必需品,電源管理 積體電路(Power Management Integrated Circuit, PMIC)已經廣泛應用於手持式裝置、電腦、數位相機等。而因應物聯網(Internet of things, IoT)應用產品的發展,許多商品為達到更長的電池使用壽命,開始往低功耗的方向邁進。在許多手持電子產品或是IoT產品中,其電路喚醒的頻率低,因此讓整體電路無用消耗增加。本文提出「具雙模式控制之低靜態電流降壓式轉換器」其採用TSMC 0.18mm CMOS High Voltage Mixed-Signal based 1P6M製程實現,晶片面積為1.26 ×1.36 mm2。功率級輸入電壓為3.3 V至5 V,輸出電壓為1.8 V,負載範圍為1 μA至200 mA,切換頻率為2 MHz,輸出電感與電容分別為2.2 μH及10 μF。本文提出之設計在睡眠模式下靜態電流為100~200 nA,因此儘管負載降至10 μA還是得以維持高於80%的效率值,另外採用自適應導通時間控制使電路於喚醒時能夠加快負載之暫態響應速度,確保電路於工作模式時提升其效能。


    In recent years, portable electronic products have become an indispensable necessity for most people, and power management integrated circuit have been widely used in handheld devices, computers, digital cameras, etc. In recent years, in response to the development of IoT application products, many products have begun to move towards low power consumption in order to achieve longer battery life.In many handheld electronic products or IoT products, the circuit wake-up frequency is much lower than expected, which increases useless consumption of the overall circuit. This paper proposes "A Low Quiescent Current Dual-Mode Control Buck Converter", which is realized by TSMC 0.18mm CMOS High Voltage Mixed-Signal based 1P6M process, with a chip area of 1.26 × 1.36 mm2. The input voltage of the power stage is 3.3 V to 5 V, the output voltage is 1.8 V, the load range is 1 uA to 400 mA, the switching frequency is 2 MHz, the inductance and output capacitance are 2.2 μH and 10 μF respectively. The design proposed in this paper has a quiescent current of 100~200 nA in sleep mode, so even if the load drops to 10 uA, it can still maintain an efficiency value higher than 80%. In addition, the adaptive on-time control is used to speed up the transient state of the load when the circuit wakes up. Response speed ensures that the circuit improves its performance in the working mode.

    摘 要 iii Abstract iv 誌 謝 v 目 錄 vi 圖索引 ix 表索引 xii 第一章 緒論 1 1.1研究動機與目的 1 1.2論文大綱 2 第二章 直流-直流轉換器概論與設計參數介紹 3 2.1直流-直流轉換器簡介 3 2.1.1 線性穩壓器 3 2.1.2 電荷幫浦轉換器 4 2.1.3切換式穩壓器 5 2.1.4直流-直流轉換器比較 6 2.2切換式降壓轉換器原理 7 2.2.1連續導通模式 8 2.2.2不連續導通模式 12 2.2.3邊界導通模式 15 2.3脈衝寬度調變與脈衝頻率調變之簡介與比較 17 2.3.1脈衝寬度調變 17 2.3.2脈衝頻率調變 18 2.3.3脈衝寬度調變與脈衝頻率調變之簡介與比較 19 2.4線調節率與負載調節率 20 2.4.1線性調節率 20 2.4.2負載調節率 21 2.5暫態響應 21 2.5.1線暫態響應 21 2.5.2負載暫態響應 22 2.6靜態電流 24 第三章 漣波控制之基礎 26 3.1漣波控制原理 26 3.2固定導通時間控制 26 3.3固定導通時間控制效率比較與分析 31 3.4固定導通時間控制之穩定度分析 35 3.4.1 S-Domain穩定度分析 36 3.4.2時域穩定度分析 38 第四章 具雙模式控制之低靜態電流降壓式轉換器 42 4.1電路簡介 43 4.2電路原理分析 44 4.2.1自適應導通時間控制 44 4.2.2自適應導通時間控制電路動作原理 48 4.3轉換器迴路小訊號穩定度分析 51 4.4電路規格 57 第五章 降壓轉換器之設計與實現 60 5.1轉換器電路實現 60 5.2子電路設計 61 5.2.1自適應導通時間控制 61 5.2.2死區時間與驅動電路 64 5.2.3零電流偵測電路 66 5.2.4帶差參考電路與電流源 68 5.2.5睡眠偵測電路 74 第六章 模擬結果 78 6.1降壓轉換器模擬波形 78 6.2模擬結果比較 85 第七章 晶片量測 87 7.1晶片佈局圖與文獻比較 87 7.2晶片腳位定義與PCB佈局 90 7.3晶片量測 94 7.4晶片量測結果探討 98 第八章 結論與未來展望 99 8.1結論 99 8.2未來展望 99 參考文獻 101

    [1]W. Huang, L. Liu, X. Liao, C. Xu and Y. Li, “A 240-nA Quiescent Current, 95.8% Efficiency AOT-Controlled Buck Converter With A2-Comparator and Sleep-Time Detector for IoT Application,” in IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12898-12909, Nov. 2021, doi: 10.1109/TPEL.2021.3082896.
    [2]Ke-Horng Chen, “Power Management Techniques for Integrated Circuit Design,” 2016
    [3]Wen-Hau Yang and ao-Jen Huang, “Constant-on-Time Control DC–DC Buck Converter With the Pseudowave Tracking Technique for Regulation Accuracy and Load Transient Enhancement,” IEEE Trans. on Power Electronics ,vol: 33, Issue: 7, July 2018
    [4]Biranchinath Sahu, Member, IEEE and Gabriel A. Rincón-Mora, Senior Member, IEEE, ”An Accurate, Low Voltage, CMOS Switching Power Supply with Adaptive On-Time PulseFrequency Modulation (PFM) Control,” IEEE Trans. Circuits Syst. Regul. Pap. Vol: 54, Issue: 2, Feb, 2007
    [5]Y. Li and Z. Zhu, "A Constant Current Control Scheme for Primary-Side Controlled Flyback Controller Operating in DCM and CCM," in IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9462-9470, Sept. 2020, doi: 10.1109/TPEL.2020.2972771.
    [6]S. J. Kim, W. -S. Choi, R. Pilawa-Podgurski and P. K. Hanumolu, "A 10-MHz 2–800-mA 0.5–1.5-V 90% Peak Efficiency Time-Based Buck Converter With Seamless Transition Between PWM/PFM Modes," in IEEE Journal of Solid-State Circuits, vol. 53, no. 3, pp. 814-824, March 2018, doi: 10.1109/JSSC.2017.2776298.
    [7]H. -W. Huang, K. -H. Chen and S. -Y. Kuo, "Dithering Skip Modulation, Width and Dead Time Controllers in Highly Efficient DC-DC Converters for System-On-Chip Applications," in IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2451-2465, Nov. 2007, doi: 10.1109/JSSC.2007.907175.
    [8]B. Yuan, M. -X. Liu, W. T. Ng and X. -Q. Lai, "Hybrid Buck Converter With Constant Mode Changing Point and Smooth Mode Transition for High-Frequency Applications," in IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 1466-1474, Feb. 2020, doi: 10.1109/TIE.2019.2893826.
    [9]P. -H. Chen, C. -S. Wu and K. -C. Lin, "A 50 nW-to-10 mW Output Power Tri-Mode Digital Buck Converter With Self-Tracking Zero Current Detection for Photovoltaic Energy Harvesting," in IEEE Journal of Solid-State Circuits, vol. 51, no. 2, pp. 523-532, Feb. 2016, doi: 10.1109/JSSC.2015.2506685.
    [10]W. -L. Zeng et al., "A 470-nA Quiescent Current and 92.7%/94.7% Efficiency DCT/PWM Control Buck Converter With Seamless Mode Selection for IoT Application," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 11, pp. 4085-4098, Nov. 2020, doi: 10.1109/TCSI.2020.3006200.
    [11]Y. -J. Park et al., "A Design of a 92.4% Efficiency Triple Mode Control DC–DC Buck Converter With Low Power Retention Mode and Adaptive Zero Current Detector for IoT/Wearable Applications," in IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 6946-6960, Sept. 2017, doi: 10.1109/TPEL.2016.2623812.
    [12]M. Zhao et al., "An Ultra-Low Quiescent Current Tri-Mode DC-DC Buck Converter With 92.1% Peak Efficiency for IoT Applications," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp. 428-439, Jan. 2022, doi: 10.1109/TCSI.2021.3090911..
    [13]D. Lu, S. Yao and B. Shao, "A 110nA quiescent current buck converter with zero-power supply monitor and near-constant output ripple," 2015 IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, USA, 2015, pp. 1-4, doi: 10.1109/CICC.2015.7338393..
    [14]T. -C. Huang et al., "A Battery-Free 217 nW Static Control Power Buck Converter for Wireless RF Energy Harvesting With $\alpha $-Calibrated Dynamic On/Off Time and Adaptive Phase Lead Control," in IEEE Journal of Solid-State Circuits, vol. 47, no. 4, pp. 852-862, April 2012, doi: 10.1109/JSSC.2012.2185577.
    [15]L. -F. Shi and W. -G. Jia, "Mode-Selectable High-Efficiency Low-Quiescent-Current Synchronous Buck DC–DC Converter," in IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2278-2285, May 2014, doi: 10.1109/TIE.2013.2267697.
    [16]F. Santoro et al., "A Hysteretic Buck Converter With 92.1% Maximum Efficiency Designed for Ultra-Low Power and Fast Wake-Up SoC Applications," in IEEE Journal of Solid-State Circuits, vol. 53, no. 6, pp. 1856-1868, June 2018, doi: 10.1109/JSSC.2018.2799964.
    [17]W. Hong and M. Lee, "A 7.4-MHz Tri-Mode DC-DC Buck Converter With Load Current Prediction Scheme and Seamless Mode Transition for IoT Applications," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4544-4555, Dec. 2020, doi: 10.1109/TCSI.2020.2995734.
    [18]S. Bandyopadhyay, Y. K. Ramadass and A. P. Chandrakasan, "20 $\mu$ A to 100 mA DC–DC Converter With 2.8-4.2 V Battery Supply for Portable Applications in 45 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 46, no. 12, pp. 2807-2820, Dec. 2011, doi: 10.1109/JSSC.2011.2162914.
    [19]M. Lin, T. Zaitsu, T. Sato and T. Nabeshima, "Frequency domain analysis of fixed on-time with bottom detection control for buck converter," IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 2010, pp. 481-485, doi: 10.1109/IECON.2010.5674981.
    [20]W. Huang, L. Liu and Z. Zhu, "A Sub-200nW All-in-One Bandgap Voltage and Current Reference Without Amplifiers," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 1, pp. 121-125, Jan. 2021, doi: 10.1109/TCSII.2020.3007195.

    無法下載圖示
    全文公開日期 2025/08/21 (校外網路)
    全文公開日期 2028/08/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE