簡易檢索 / 詳目顯示

研究生: 鄒竣宇
Jyun-Yu Zou
論文名稱: 具串聯LC諧振器之合成傳輸線研究及其雙模態相位陣列應用
A Study of Synthesized Microstrip Lines With Series Tanks and the Application to Dual-mode Phased Array
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 曾昭雄
Chao-Hsiung Tseng
瞿大雄
Tah-Hsiung Chu
吳宗霖
Tzong-Lin Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 164
中文關鍵詞: 合成傳輸線串聯LC諧振器枝幹耦合器雙工器相位陣列天線波束切換陣列信號回溯陣列
外文關鍵詞: Synthesized microstrip line, series LC tank, branch-line coupler, diplexer, phased array antenna, switched-beam array, retro-directive array
相關次數: 點閱:341下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一款具串聯LC諧振器之新型合成傳輸線。該合成傳輸線以曲折線電感與串聯LC諧振器組成,不但可利用慢波結構縮小電路尺寸外,亦因串聯LC諧振器於共振時虛接地特性,產生高頻傳輸零點;同時,經合成傳輸線之適當佈局規劃,該高頻零點更可使合成傳輸線於特定頻率具有開路輸入阻抗,具以實現雙模態操作之能力。本論文詳盡討論此創新合成傳輸線之設計理念、電路架構、等效集總電路模型、模擬與量測結果、及實際應用等。
    本論文提出該新型合成傳輸線之創新應用,包含:具寬廣上止帶之微型化枝幹耦合器、微型化雙工器與雙模態耦合元件。數款微小化電路皆成功驗證該合成傳輸線之效能,使電路在保有原操作頻帶電器效能之前提下,有效降低電路面積,並可實現雙模態操作或止帶抑制之能力。
    利用雙模態耦合元件,搭配雙頻帶耦合器,本論文創新實現一款雙模態相位陣列天線系統,該系統為獨創設計,未見於文獻記載。此系統於低頻帶具有波束切換天線陣列之響應,而於高頻帶則有信號回溯陣列之特性;其輻射場型之量測結果,可充分驗證該雙模態相位陣列系統之設計架構。此創新構想將可擴展相位陣列天線之應用情境。


    A novel synthesized microstrip line with series LC tanks is proposed in this thesis. The proposed synthesized line is formed by series LC tanks and meander line inductors. It features not only slow-wave properties for miniaturization, but an out-of-band transmission zero due to the virtual short-circuit of the LC tank in resonance. By properly adjusting the layouts of the quasi-lumped elements, the input impedance of the synthesized microstrip line can be nearly open-circuited, therefore enabling the ability of dual-mode operation. The design concept, circuit configuration, equivalent lumped model, simulated and measured results and practical applications of the synthesized microstrip lines are carefully investigated and discussed.
    Base on the synthesized microstrip lines, three novel circuit designs, namely the miniaturized branch-line coupler with wide upper stopband, the miniaturized diplexer, and the dual-mode couplers, are developed and discoursed in this thesis. These size-reduced designs, in addition to demonstrating comparable in-band responses as their conventional counterparts, provide the ability of out-of-band rejection or dual-mode operation simultaneously. They clearly sustain the performance of the synthesized microstrip lines.
    In chapter 4 of this thesis, a novel dual-mode phased array antenna is also proposed and implemented using the dual-mode/dual-band directional couplers. The proposed architecture is original, and has never been reported in the open literature. This dual-mode array behaves like a switched-beam array and a retro-directive array, respectively, in the lower and upper operating bands. The measured radiation patterns clearly validate the design concept of the proposed array. This dual-mode system could extend the application range of the phased array antennas.

    摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 2 1.3 研究貢獻 4 1.4 論文組織 5 第二章 具串聯LC諧振器之雙模合成傳輸線設計原理 6 2.1 前言 6 2.2 雙模操作之合成傳輸線 6 2.2.1 電路佈局與設計原理 6 2.2.2 實驗結果與討論 12 2.2.3 設計範例B 16 2.3 具雙重可調零點之合成傳輸線 22 2.4 結語 35 第三章 具串聯LC諧振器之雙模合成傳輸線應用 36 3.1 前言 36 3.2 微型化雙工器 36 3.2.1 電路佈局與設計原理 36 3.2.2 實驗結果與討論 40 3.3具寬廣上止帶之微型化枝幹耦合器 42 3.3.1 電路佈局與設計原理 42 3.3.2 實驗結果與討論 45 3.4 結語 49 第四章 雙模態相位陣列天線 50 4.1 前言 50 4.2 電路架構與設計原理 50 4.3雙模態相位陣列天線之構成元件 59 4.3.1 50歐姆雙模態傳輸線 59 4.3.2 雙模態枝幹耦合器 66 4.3.3 雙模態交叉跨線 77 4.3.4 雙頻枝幹耦合器 81 4.3.5 雙頻交叉跨線 87 4.3.6 準八木天線 92 4.3.7 矩形微帶天線 99 4.3.8 增益放大器 102 4.3.9 切換器與環路器 105 4.4 實驗結果與討論 108 4.4.1 雙模態系統之電路驗證 108 4.4.2 系統之輻射場型量測驗證 118 4.5 結語 129 第五章 結論 130 5.1 總結 130 5.2 未來發展 130 參考文獻 132 附錄 137 作者簡介與著作 145

    [1] C.-W. Wang, T.-G. Ma and C.-F. Yang, “A new planar artificial transmission line and its applications to miniaturized Butler matrix,” IEEE Trans. Microwave Theory Tech., vol. 55, no. 12, pp. 2792-2801, Dec. 2007.

    [2] C.-H. Lai, and T.-G. Ma, “Novel synthesized microstrip line with quasi-elliptic response for harmonic suppressions,” in IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA, pp. 1540–1543, 2010.

    [3] C.-C. Wang, C.-H. Lai, and T.-G. Ma, “Miniaturized coupled-line couplers using uniplanar synthesized coplanar waveguides,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2266–2276, Aug. 2010.

    [4] J.-W. Tsai, and T.-G. Ma, “Compact dual-mode four-port network with quadrature-coupling and direct-thru transmission in each of the individual bands,” in IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, pp. 1–4, 2011.

    [5] T. N. Kaifas, J. N. Sahalos, “On the design of a single-layer wideband Butler matrix for switched-beam UMTS system applications,” IEEE Antennas Propagt. Mag., vol. 48, no. 6, pp. 193-204, Dec. 2006.

    [6] S.-N. Hsieh and T.-H. Chu, “Linear retro-directive antenna array using 90° hybrids,” IEEE Trans. Antennas Propag., vol. 56, no. 6, pp. 1573–1580, Jun. 2008.

    [7] A. Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34–50, Sep. 2004.

    [8] P.-L. Chi and T. Itoh, “Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications in beam pattern diversity systems,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1207–1215, May. 2009.

    [9] I-H. Lin, C. Caloz, and T. Itoh, “A branch-line coupler with two arbitrary operating frequencies using left-handed transmission lines,” in IEEE-MTT Int. Symp. Dig., Philadelphia, PA, vol. 1, pp.325-327, 2003.

    [10] H.okabe, C. Caloz, and T. Itoh, “A compact enhanced-bandwidth hybrid ring using an artificial lumped-elemt left-handed transmission-line section,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 798-804, Mar. 2004.

    [11] K.-O. Sun, S.-J. Ho, C.-C. Yen, and D. van der Weide, “A compact branch-line coupler using discontinuous microstrip lines,” IEEE Microw. Wireless Comp. Lett., vol. 15, no. 8, pp. 519–520, Aug. 2005.

    [12] K. W. Eccleston and S. H. M. Ong, “Compact planar microstrip line branch-line and rat race coupler couplers,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 10, pp. 2119–2125, Oct. 2003.

    [13] S. S. Liao, P. T. Sun, N. C. Chin, and J. T. Peng, “A novel compact-size branch-line coupler,” IEEE Microw. Wireless Comp. Lett., vol. 15, no. 9, pp. 588–590, Sep. 2005.

    [14] C.-W. Tang and M.-G. Chen, “Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 9, pp. 1926–1934, Sep. 2007.

    [15] S. S. Liao and J. T. Peng, “Compact planar microstrip branch-line couplers using the quasi-lumped elements approach with nonsymmetrical and symmetrical T-shaped structure,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 9, pp. 3508–3514, Sep. 2006.

    [16] C.-W. Tang, M.-G. Chen, and J.-W. Wu, “Realization of ultra-compact planar microstrip branch-line couplers with high-impedance open stubs,” in IEEE-MTT Int. Symp. Dig., pp.995-998, 2007.

    [17] M.-L. Chuang, “Miniaturized ring coupler of arbitrary reduced size,” IEEE Trans. Microw. Theory Tech., vol. 15, no. 1, pp. 16–18, Jan. 2005.

    [18] H.-S. Wu, H.-J. Yang, C.-J. Peng, and C.-K. C. Tzuang, “Miniaturized microwave passive filter incorporating multiplayer synthetic quasi-TEM transmission line,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2713–2720, Sep. 2005.

    [19] C.-C. Chen and C.-K. C. Tzuang, “Synthetic quasi-TEM meandered transmission lines for compacted microwave integrated circuits,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 6, pp. 1637–1647, Jun. 2004.

    [20] S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, and M. Chongcheawchamnan “High isolation and compact size microstrip hairpin diplexer,” IEEE Microw. Wireless Compon. Lett., Vol. 15, no. 2, pp. 101-103, Feb. 2005.

    [21] T. Yang, P.-L. Chi, and T. Itoh, “Compact quarter-wave resonator and its applications to miniaturized diplexer and triplexer,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2 pp. 260-269, Feb. 2011.

    [22] T. Yang, P.-L. Chi, and T. Itoh, “High isolation and compact diplexer using the hybrid resonators,” IEEE Microw. Wireless Compon. Lett., Vol. 20, no. 10, pp. 551-553, Oct. 2010.

    [23] K.-H. Li, C.-W. Wang, and C.-F. Yang “A miniaturized diplexer using planar artificial transmission lines for GSM/DCS applications,” in Proc. 2007 Asia-Pacific Microw. Conf., Bangkok Thailand, pp. 1–4, Dec. 2007.

    [24] K. Srisathit, P. Jadpurn, and W. Surakampontorn “Miniature wilkinson divider and hybrid coupler with harmonic suppression using T-shaped transmission line,” in Proc. 2007 Asia-Pacific Microw. Conf., Bangkok Thailand, pp. 1–4 Dec. 2007.

    [25] B.-Z. Wang, W. Shao, and S.-Q. Xiao “A compact microstrip branch-line coupler with capacitor loading,” in IEEE MTT-S Workshop Series on Art of Miniaturizing RF and Microwave Passive Components, pp. 139-141, 14-15 Dec. 2008.

    [26] P. Mondal and A. chakrabarty, “Design of miniaturised branch-line and rat-race hybrid couplers with harmonics suppression” IET Microw. Antennas Propag., Vol. 3, no. 1, pp. 109-116, Feb. 2009.

    [27] J. Wang, B.-Z. Wang, Y.-X. Guo, L. Ong and S. Xiao, “A compact slow-wave microstrip branch-Line coupler with high performance,” IEEE Microw. Wireless Compon. Lett., Vol. 17, no. 7, pp. 501-503, Jul. 2007.

    [28] J.-W. Tsai, C.-H. Wu, T.-G. Ma, “Novel dual-mode retro-directive antenna array using synthesized microstrip lines,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3375–3388, Dec. 2011.

    [29] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Compon., Hybrids, Manuf. Technol., vol. 15, no. 4, pp. 483–490, Aug. 1992.

    [30] H. Zhang and K. J. Chen, “A stub tapped branch-line coupler for dual-band operations,” IEEE Microw. Wireless Compon. Lett., vol. 17, no.2, pp. 106–108, Feb. 2007.

    [31] K.-S. Chin, K.-M. Lin, Y.-H. Wei, T.-H. Tseng, and Y.-J. Yang,“Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1213–1221, May 2010.

    [32] P.-L. Chi and T. Itoh, “Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications in beam pattern diversity systems,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1207–1215, May 2009.

    [33] M.-J. Park, “Dual-band, unequal length branch-line coupler with enter-tapped stubs,” IEEE Microw. Wireless Compon. Lett., vol. 19, o. 10, Oct. 2009.

    [34] J. Bonache, G. Siso, M. Gil, A. Iniesta, J. Garcia-Rincon, and F. Martin,“Application of composite right/left handed (CRLH) transmission lines ased on complementary split ring resonators (CSRRs) to the design of ual band microwave components,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 524–526, Aug. 2008.

    [35] H. Kim, B. Lee, and M.-J. Park, “Dual-band branch-line coupler with port extensions,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 3, pp. 651–655, Mar. 2010.

    [36] H.-C. Huang, l-C. Lu, and P. Hsu, "A Simple Planar High-Directivity Yagi-Uda Antenna with a Concave Parabolic Reflector," in Proc. IEEE Int. Workshop on Antenna Tech., Mar. 2010, pp. 1-4.

    [37] Y. Qian, W. R. Deal, N. Kaneda, and T. Itoh, “Microstrip-fed quasi-Yagi antenna with broadband characteristics,” Electron. Lett., vol. 34, no. 23, pp. 2194–2196, Nov. 1998.

    [38] W. L. Sutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. Wiley, 1998.

    QR CODE