簡易檢索 / 詳目顯示

研究生: 張哲綺
Che-Chi Chang
論文名稱: 使用共振器的寬頻平面傳輸線至矩形波導轉接及其封裝效應探討
Broadband planer transmission Line to RWG Transitions Using Resonators and their Housing Effect
指導教授: 王蒼容
Chun-Long Wang
口試委員: 楊成發
Chang-Fa Yang
周詠晃
Young-Huang Chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 157
中文關鍵詞: 非對稱Quasi-Yagi天線共面波導共振器矩形波導轉接封裝效應微帶線
外文關鍵詞: Microstrip line, resonator, transition, Coplanar waveguide, rectangular waveguide, asymmetric Quasi-Yagi antenna, Housing
相關次數: 點閱:249下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出兩種緊湊且寬頻的微波元件,第一個微波元件為使用三線耦合線的共面波導至矩形波導轉接,第二個微波元件為使用非對稱Quasi-Yagi的微帶線至矩形波導轉接。此外,也探討封裝效應。
    在第二章,我們提出使用三線耦合線的共面波導至矩形波導轉接,並利用奇偶模理論,分析三線耦合線。-20 dB反射係數操作頻寬均可涵蓋8.6 GHz到12.6 GHz (38%),幾乎涵蓋整個X-band (8.2-12.4 GHz),且在這個頻帶內穿透係數大於-0.15 dB。
    在第三章,我們提出使用非對稱Quasi-Yagi的微帶線至矩形波導轉接,首先我們提出使用非對稱Dipole之微帶線至矩形波導的轉接。使用非對稱Dipole的轉接,其製作在Rogers® RO5880、RO4003與RO6010的基板上,-15 dB反射係數操作頻寬分別為28.8%、29.5%與22.9%。為了進一步降低反射係數與提升頻寬,我們在Dipole前端加上矩形Director,形成非對稱Quasi-Yagi的微帶線至矩形波導轉接電路。使用非對稱Quasi-Yagi的轉接,其製作在Rogers® RO5880、RO4003與RO6010的基板上,-20 dB反射係數操作頻寬均可涵蓋8 GHz到13 GHz (48.5%),完全涵蓋整個X-band (8.2-12.4 GHz),且在這個頻帶內,穿透係數分別大於-0.06 dB、-0.13 dB和-0.14 dB。
    與過去的文獻中,使用各種技術的共面波導至矩形波導轉接和微帶線到矩形波導轉接電路比[1]-[13],我們所提出的設計,大幅減少了機械複雜度和電路尺寸,電路的操作頻寬也大幅增加。
    為了驗正模擬結果的正確性,我們使用背對背結構進行實做量測,量測的反射與穿透係數與模擬相當接近,驗正了模擬結果的正確性。
    最後,在第四章中,我們探討三種不同的封裝結構對轉接的影響。此外,我們也更進一步探討矩形波導的不連續接面,計算在不同大小的金屬薄片下,電路實際的短路面,和在不連續面的等效電感。


    In this thesis, two compact and broadband microwave components are proposed; One is the coplanar waveguide-to-rectangular waveguide transition using triple coupled line and the other is the microstrip line-to-rectangular waveguide transition using asymmetric Quasi-Yagi antenna. In addition, the housing effect is also discussed.
    First of all, in chapter 2, a compact and broadband coplanar waveguide-to-rectangular waveguide transition using triple coupled line is proposed. The reflection coefficient of the proposed transition is smaller than -20 dB in the frequency range from 8.6 GHz to 12.6 GHz, almost covering the whole X-band (8.2-12.4 GHz). The corresponding transmission coefficient in this frequency range is larger than -0.15 dB.
    Secondly, in chapter 3, a compact and broadband microstrip-to-rectangular waveguide transition using the asymmetric Quasi-Yagi antenna is proposed. As the preliminary design, the microstrip-to-rectangular waveguide transition using the asymmetric Dipole antenna is proposed. The transition is realized on different substrates, including RO5580, RO4003, and RO6010. The fractional bandwidths of the proposed transitions realized on various substrates are 28.8%, 29.5% and 22.9% in which the reflection coefficients are smaller than -15 dB. In order to further increase the bandwidth, a rectangular director is placed at the front end of the antisymmetric dipole, forming a asymmetric Quasi-Yagi. The revised transition is also realized on three different substrates and the reflection coefficient of these transitions all are smaller than -20 dB, covering the frequency from 8 to 13 GHz, which corresponds to 48.5% fractional bandwidth. The corresponding transmission coefficients in this frequency range are larger than -0.06 dB, -0.13 dB, and -0.14 dB.
    As compared with the CPW-to-RWG transitions and MSL-to-RWG transitions using various techniques [1]-[13], the mechanical complexity and circuit size are reduced while the bandwidth is increased.
    In order to verifty the simulation results, one back-to-back CPW-to-RWG transition and three MSL-to-RWG transitions are fabricated and measured where the measurement results are in good agreement with the simulation results.
    Finally, in chapter4, the effects of three different housing packaging structures for the MSL-to-RWG transitions are investigated. In addition, the junction between the rectangular waveguide and the housing is simulated in order to acquire the equivalent transmission length and equivalent inductance of the junction.

    摘要 I ABSTRACT III 目錄 V 表目錄 VIII 圖目錄 XI 第1章 簡介 1 1.1 研究動機 2 1.2 文獻探討 3 1.2.1 共面波導至矩形波導轉接 3 1.2.2 微帶線至矩形波導轉接 7 1.3 貢獻 12 1.4 論文架構 14 第2章 使用三線耦合線之共面波導至矩形波導轉接 15 2.1 轉接結構 16 2.2 轉接設計與分析 18 2.3 背對背結構驗證 22 2.4 小結 24 第3章 使用非對稱QUASI-YAGI之微帶線至矩形波導轉接 25 3.1 轉接結構 26 3.2 轉接設計與分析 28 3.2.1 採用RO5880基板 28 3.2.1.1 使用非對稱Dipole之轉接 28 3.2.1.2 使用非對稱Quasi-Yagi之轉接 31 3.2.1.3 背對背結構驗正 37 3.2.2 採用RO4003基板 39 3.2.2.1 使用非對稱Dipole之轉接 39 3.2.2.2 使用非對稱Quasi-Yagi之轉接 42 3.2.2.3 背對背結構驗正 49 3.2.3 採用RO6010基板 51 3.2.3.1 使用非對稱Dipole之轉接 51 3.2.3.2 使用非對稱Quasi-Yagi之轉接 54 3.2.3.3 背對背結構驗正 62 3.3 小結 64 第4章 HOUSING封裝效應探討 65 4.1 封裝結構 66 4.2 矩形波導的不連續分析 73 4.2.1 採用RO5880基板 73 4.2.1.1 可變的封裝結構 76 4.2.1.2 WR-90的封裝結構 83 4.2.1.3 無封裝結構 88 4.2.2 採用RO4003基板 93 4.2.2.1 可變的封裝結構 96 4.2.2.2 WR-90的封裝結構 100 4.2.2.3 無封裝結構 104 4.2.3 採用RO6010基板 108 4.2.3.1 可變的封裝結構 111 4.2.3.2 WR-90的封裝結構 115 4.2.3.3 無封裝結構 119 4.3 小結 124 第5章 結論 126 5.1 結論 126 參考文獻 128 附錄 A 130 附錄 B 132 附錄 C 133 附錄 D 134

    [1] G. E. Ponchak and R. N. Simons, "A new rectangular waveguide to coplanar waveguide transition," in Microwave Symposium Digest, 1990., IEEE MTT-S International, 1990, pp. 491-492 vol.1.
    [2] V. S. Mottonen, "Wideband coplanar waveguide-to-rectangular waveguide transition using fin-line taper," IEEE Microwave and Wireless Components Letters, vol. 15, pp. 119-121, 2005.
    [3] S. Kumawat, M. B. Mahajan, and R. Jyoti, "Development of Coplanar Waveguide to Rectangular Waveguide Transition," in 2009 Annual IEEE India Conference, 2009, pp. 1-4.
    [4] L. Ting-Huei and W. Ruey-Beei, "CPW to waveguide transition with tapered slotline probe," IEEE Microwave and Wireless Components Letters, vol. 11, pp. 314-316, 2001.
    [5] R. Y. Fang, C. T. Wang, and C. L. Wang, "A direct CPW-to-rectangular waveguide transition using a dipole slot antenna," in Microwave Conference, 2009. EuMC 2009. European, 2009, pp. 157-160.
    [6] R. Y. Fang and C. L. Wang, "Miniaturized Coplanar Waveguide to Rectangular Waveguide Transition Using Inductance-Compensated Slotline," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, pp. 1666-1671, 2012.
    [7] Y. Hui-Wen, A. Abdelmonem, L. Ji-Fuh, and K. A. Zaki, "Analysis and design of microstrip-to-waveguide transitions," IEEE Transactions on Microwave Theory and Techniques, vol. 42, pp. 2371-2380, 1994.
    [8] F. J. Villegas, D. I. Stones, and H. A. Hung, "A novel waveguide-to-microstrip transition for millimeter-wave module applications," IEEE Transactions on Microwave Theory and Techniques, vol. 47, pp. 48-55, 1999.
    [9] P. Herrero and J. Schoebel, "A WR-6 rectangular waveguide to microstrip transition and patch antenna at 140 GHz using low-cost solutions," in 2008 IEEE Radio and Wireless Symposium, 2008, pp. 355-358.
    [10] N. Kaneda, Y. Qian, and T. Itoh, "A broad-band microstrip-to-waveguide transition using quasi-Yagi antenna.pdf," vol. 47, p. 2562, Dec 1999.
    [11] T.-H. Lin and R.-B. Wu, "A Broadband Microstrip to Waveguide Transition with Tapered CPS Probe," Milan, Italy.
    [12] Y. Lou, C. H. Chan, and Q. Xue, "An In-Line Waveguide-to-Microstrip Transition Using Radial-Shaped Probe," IEEE Microwave and Wireless Components Letters, vol. 18, pp. 311-313, 2008.
    [13] J.-K. Chuang, R.-Y. Fang, and C.-L. Wang, "Compact and broadband microstrip-to-waveguide transition using antisymmetric tapered probes," presented at the Electronics Letters, 2012.
    [14] D. M. Pozar, Microwave Engineering 3rd ed. New York: John Wiley & Sons, 2005.
    [15] L. Lewin, "On the Resolution of a Class of Waveguide Discontinuity Problems by the Use of Singular Integral Equations," IRE Transactions on Microwave Theory and Techniques, vol. 9, pp. 321-332, 1961.
    [16] L. Lewin, "Calculation of Waveguide Junction and Diaphragm Interactions," IEEE Transactions on Microwave Theory and Techniques, vol. 17, pp. 785-788, 1969.

    QR CODE