簡易檢索 / 詳目顯示

研究生: 楊雅蘭
Ya-Lan Yang
論文名稱: 二硫化鉿/石墨烯p-n二極體與雙極性電晶體之製作與分析
Fabrication and Analysis of p-n Diode and Bipolar Junction Transistor with Graphene and Layered HfS2
指導教授: 李奎毅
Kuei-Yi Lee
趙良君
Liang-Chiun Chao
口試委員: 李奎毅
Kuei-Yi Lee
趙良君
Liang-Chiun Chao
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 69
中文關鍵詞: 石墨烯二硫化鉿二極體雙極性電晶體過渡金屬硫化物電漿處理
外文關鍵詞: Graphene, Hafnium Disulfide, p-n Diode, Bipolar Junction Transistor, Transition Metal Dichalcogenides, Plasma Treatment
相關次數: 點閱:289下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 中文摘要 Abstract 誌謝 目錄 圖索引 表索引 第 1 章 緒論 1 1.1 研究背景與動機 1 1.2 Graphene 3 1.3 過渡金屬硫屬化合物 5 1.3.1 Hafnium disulfide (HfS2) 7 1.4 電性應用 10 1.4.1 p-n接面二極體 12 1.4.2 雙極性接面電晶體 14 第 2 章 實驗方法與設備 16 2.1 實驗流程 16 2.1.1 材料成長 17 2.1.2 氮電漿摻雜 21 2.1.3 分析儀器 22 2.1.4 電性量測系統 26 第 3 章 結果與討論 30 3.1 拉曼光譜圖 30 3.2 掃描式電子顯微鏡 33 3.3 X射線光電子能譜儀 34 3.4 電荷中性點量測 38 3.5 同質p-n接面二極體量測 40 3.6 同質半波整流量測 42 3.7 異質p-n接面二級體量測 45 3.8 異質半波整流量測 45 3.9 異質雙極性接面電晶體量測 47 第 4 章 結論 51 參考文獻 52 圖索引 圖1. Graphene結構示意圖 3 圖2. 在銅箔表面成長graphene之示意圖 4 圖3. Graphene與氧化graphene的能帶結構和鍵結示意圖 4 圖4. 過渡金屬硫屬化合物三種相 6 圖5. 過渡金屬電子d軌域填充變化 6 圖6. 能帶變化 6 圖7. HfS2結構之層間距離和(100)示意圖 7 圖8. HfS2外觀圖 8 圖9. 常見過渡金屬硫屬化合物之電子遷移率和能隙比較圖 8 圖10. 少層HfS2超靈敏光電晶體與金接觸下不同光強度下之開關比以及光響應度 9 圖11. HfS2原始以及摻雜N, P和As後的能帶變化 9 圖12. 現今電性應用 11 圖13. p-n二極體順偏下導通示意圖 13 圖14. p-n二極體逆偏下斷路示意圖 13 圖15. n–p-n雙極性電晶體示意圖 15 圖16. Graphene和HfS2的雙極性電晶體之能帶圖 15 圖17. 實驗流程圖 16 圖18. CVD成長graphene薄膜 17 圖19. 濕蝕刻後剩下的graphene薄膜 17 圖20. 時間溫度氣體製程關係圖 18 圖21. CVT實際架構與示意圖 19 圖22. 機械玻璃法示意圖 20 圖23. 機械玻璃法實際用具與操作 20 圖24. 電漿處理系統 21 圖25. 電漿處理系統示意圖 21 圖26. 拉曼原理圖 23 圖27. 拉曼實際外觀 23 圖28. 掃描式電子顯微鏡 24 圖29.高解析電子能譜儀 25 圖30. 電性量測系統與電荷中性點量測示意圖 26 圖31. p-n二極體量測示意圖 27 圖32. 半波整流電路示意圖 28 圖33. n-p-n雙極性電晶體量測示意圖 29 圖34. (a)石墨烯拉曼圖和(b) HfS2拉曼圖 31 圖35. HfS2不同摻雜瓦數之拉曼圖 31 圖36. 拉曼擬合峰(a) 70 W, (b).90 W, (c) 110 W和(d) MoS2氮電漿處理拉曼光譜 32 圖37. HfN(001)拉曼文獻對照圖 32 圖38. HfS2 SEM圖像 33 圖39. 摻雜30 W HfS2 XPS分析圖(a) Hf4f, (b) S2p和(c) N1s 35 圖40. 摻雜50 W HfS2 XPS分析圖(a) Hf4f, (b) S2p和(c) N1s 36 圖41. 摻雜70 W HfS2 XPS分析圖(a) Hf4f, (b) S2p和(c) N1s 36 圖42. 摻雜90 W HfS2 XPS分析圖(a) Hf4f, (b) S2p和(c) N1s 37 圖43. 摻雜110 W HfS2 XPS分析圖(a) Hf4f, (b) S2p和(c) N1s 37 圖44. (a)石墨烯本質和(b) HfS2本質CNP 38 圖45. HfS2之CNP (a ) 30, (b) 50, (c) 70, (d) 90 W 39 圖46. 同質電漿處理實際架構圖 41 圖47. HfS2經電漿處理之p-n量測(a) pristine, (b) 30 W, (c) 50 W, (d) 70 W和(e) 90 W 41 圖48. (a)同質70 W和(b)同質90 W之n值比較 42 圖49. 70 W HfS2/HfS2半波整流 43 圖50. 90 W HfS2/HfS2半波整流 44 圖51. 異質graphene/HfS2 p-n二極體量測曲線和n值 45 圖52. 異質半波整流 46 圖53. 雙極性電晶體實際結構圖 47 圖54. BJT之BE、BC接面與n值 48 圖55. BJT之VCE-ICE和共射極放大率 48 圖56. Collector為電漿處理30 W BJT之BE、BC接面與n值 50 圖57. Collector為電漿處理30 W BJT之VCE-ICE和共射極放大率 50 表索引 表1. Graphene CVD製程參數 18 表2. HfS2 CVT製程參數 20 表3. 電漿處理參數 21 表4. 電漿處理HfS2之Hf、S和N原子比例 34 表5. CNP結果整理 39 表6. 電壓電流放大率整理表 48 表7. 電壓電流放大率整理表 50

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Sciences, vol. 306, no. 5696, pp. 666-669, 2004.
    [2] P. Ma, Y. Salamin, B. Baeuerle, A. Josten, W. Heni, A. Emboras, and J. Leuthold, "Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size," ACS Photonics, vol. 6, no. 1, pp. 154-161, 2018.
    [3] A. Pospischil, M. Humer, M. M. Furchi, D. Bachmann, R. Guider, T. Fromherz, and T. Mueller, "CMOS-compatible graphene photodetector covering all optical communication bands," Nat. Photonics, vol. 7, no. 11, pp. 892-896, 2013.
    [4] J. Capmany, D. Doménech, and P. Muñoz, "Graphene integrated microwave photonics," J. Light. Technol., vol. 32, no. 20, pp. 3785-3796, 2014.
    [5] R. Degl’Innocenti, L. Xiao, S. J. Kindness, V. S. Kamboj, B. Wei, P. Braeuninger-Weimer, K. Nakanishi, A. I. Aria, S. Hofmann, and H. E. Beere, "Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays," J. Phys. D, vol. 50, no. 17, p. 174001, 2017.
    [6] H. Li, J. Wu, Z. Yin, and H. Zhang, "Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets," Acc. Chem. Res., vol. 47, no. 4, pp. 1067-1075, 2014.
    [7] H. R. Gutiérrez, Perea-López, Nestor, A. L. Elías, Berkdemir, Ayse, B. Wang, R. Lv, López-Urías, Florentino, V. H. Crespi, Terrones, Humberto, and M. Terrones, "Extraordinary room-temperature photoluminescence in triangular WS2 monolayers," Nano Lett., vol. 13, no. 8, pp. 3447-3454, 2013.
    [8] X. Liu, H.-L. Shuai, Y.-J. Liu, and K.-J. Huang, "An electrochemical biosensor for DNA detection based on tungsten disulfide/multi-walled carbon nanotube composites and hybridization chain reaction amplification," Sens. Actuators B Chem., vol. 235, pp. 603-613, 2016.
    [9] T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, and Y. J. S. r. Miyamoto, "Few-layer HfS 2 transistors," Sci. Rep., vol. 6, no. 1, pp. 1-9, 2016.
    [10] J. Zhang, F. Wang, V. B. Shenoy, M. Tang, and J. Lou, "Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD)," Mater. Today, vol. 40, pp. 132-139, 2020.
    [11] B. Deng, Z. Liu, and H. Peng, "Toward mass production of CVD graphene films," Adv. Mater., vol. 31, no. 9, p. 1800996, 2019.
    [12] Z. Huang, T. Wu, S. Kong, Q.-L. Meng, W. Zhuang, P. Jiang, and X. Bao, "Enhancement of anisotropic thermoelectric performance of tungsten disulfide by titanium doping," J. Mater. Chem. C, vol. 4, no. 26, pp. 10159-10165, 2016.
    [13] A. A. Tedstone, D. J. Lewis, and P. O’Brien, "Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides," Chem. Mater., vol. 28, no. 7, pp. 1965-1974, 2016.
    [14] N. Liu, H. Tian, G. Schwartz, J. B.-H. Tok, T.-L. Ren, and Z. Bao, "Large-area, transparent, and flexible infrared photodetector fabricated using pn junctions formed by N-doping chemical vapor deposition grown graphene," Nano Lett., vol. 14, no. 7, pp. 3702-3708, 2014.
    [15] W. Spear and P. Le Comber, "Substitutional doping of amorphous silicon," J. Alloys Compd., vol. 17, no. 9, pp. 1193-1196, 1975.
    [16] H. Conrads and M. Schmidt, "Plasma generation and plasma sources," Plasma Sources Sci Technol, vol. 9, no. 4, p. 441, 2000.
    [17] J. R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala, and N. C. Tran, "Plasma source ion‐implantation technique for surface modification of materials," J. Appl. Phys., vol. 62, no. 11, pp. 4591-4596, 1987.
    [18] G. Yang, L. Li, W. B. Lee, and M. C. Ng, "Structure of graphene and its disorders: a review," Sci Technol Adv Mater, vol. 19, no. 1, pp. 613-648, 2018.
    [19] J. H. Seol, Jo, Insun, A. L. Moore, Lindsay, Lucas, Z. H. Aitken, Pettes, Michael T, X. Li, Yao, Zhen, Huang, Rui, and D. Broido, "Two-dimensional phonon transport in supported graphene," Science, vol. 328, no. 5975, pp. 213-216, 2010.
    [20] K. Xu, Z. Wang, F. Wang, Y. Huang, F. Wang, L. Yin, C. Jiang, and J. J. A. M. He, "Ultrasensitive phototransistors based on few‐layered HfS2," Adv. Mater., vol. 27, no. 47, pp. 7881-7887, 2015.
    [21] M. Cox, A. Gorodetsky, B. Kim, K. S. Kim, Z. Jia, P. Kim, Nuckolls, Colin, and I. Kymissis, "Single-layer graphene cathodes for organic photovoltaics," Appl. Phys. Lett., vol. 98, no. 12, p. 67, 2011.
    [22] C. Mattevi, H. Kim, and M. Chhowalla, "A review of chemical vapour deposition of graphene on copper," J. Mater. Chem., vol. 21, no. 10, pp. 3324-3334, 2011.
    [23] P. Sehrawat, S. Islam, P. Mishra, and S. Ahmad, "Reduced graphene oxide (rGO) based wideband optical sensor and the role of temperature, defect states and quantum efficiency," Sci. Rep., vol. 8, no. 1, pp. 1-13, 2018.
    [24] R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, and M. Pumera, "3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution," ChemComm, vol. 53, no. 21, pp. 3054-3057, 2017.
    [25] Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, "Van der Waals heterostructures and devices," Nat. Rev. Mater., vol. 1, no. 9, pp. 1-17, 2016.
    [26] Y.-H. Zhao, F. Yang, J. Wang, H. Guo, and W. Ji, "Continuously tunable electronic structure of transition metal dichalcogenides superlattices," Sci. Rep., vol. 5, no. 1, pp. 1-5, 2015.
    [27] W.-J. Su, H.-C. Chang, Y.-T. Shih, Y.-P. Wang, H.-P. Hsu, Y.-S. Huang, and K.-Y. Lee, "Two dimensional MoS2/graphene pn heterojunction diode: fabrication and electronic characteristics," J. Alloys Compd., vol. 671, pp. 276-282, 2016.
    [28] M. D. Siao, Y. C. Lin, T. He, M. Y. Tsai, K. Y. Lee, S. Y. Chang, K. I. Lin, Y. F. Lin, M. Y. Chou, and K. Suenaga, "Embedment of multiple transition metal impurities into WS2 monolayer for bandstructure modulation," Small, pp. 2007171, 2021.
    [29] H. Yuan, H. Wang, and Y. Cui, "Two-dimensional layered chalcogenides: from rational synthesis to property control via orbital occupation and electron filling," Acc. Chem. Res., vol. 48, no. 1, pp. 81-90, 2015.
    [30] L. E. Conroy and K. C. Park, "Electrical properties of the group IV disulfides, titanium disulfide, zirconium disulfide, hafnium disulfide and tin disulfide," Inorg. Chem., vol. 7, no. 3, pp. 459-463, 1968.
    [31] N. Wu, X. Zhao, X. Ma, Q. Xin, X. Liu, T. Wang, and S. Wei, "Strain effect on the electronic properties of 1T-HfS2 monolayer," Physica E Low Dimens. Syst. Nanostruct., vol. 93, pp. 1-5, 2017.
    [32] W. Zhang, Z. Huang, W. Zhang, and Y. Li, "Two-dimensional semiconductors with possible high room temperature mobility," Nano Res., vol. 7, no. 12, pp. 1731-1737, 2014.
    [33] B. Wei and C. Lu, "Transition metal dichalcogenide MoS2 field-effect transistors for analog circuits: a simulation study," Int J Electron Commun, vol. 88, pp. 110-119, 2018.
    [34] K. Xu, Y. Huang, B. Chen, Y. Xia, W. Lei, Z. Wang, Q. Wang, F. Wang, L. Yin, and J. He, "Toward high‐performance top‐gate ultrathin HfS2 field‐effect transistors by interface engineering," Small, vol. 12, no. 23, pp. 3106-3111, 2016.
    [35] M. M. Obeid, A. Bafekry, S. U. Rehman, and C. V. Nguyen, "A type-II GaSe/HfS2 van der Waals heterostructure as promising photocatalyst with high carrier mobility," Appl. Surf. Sci., vol. 534, p. 147607, 2020.
    [36] J. Ye, K. Liao, X. Ge, Z. Wang, Y. Wang, M. Peng, T. He, P. Wu, H. Wang, and Y. Chen, "Narrowing bandgap of HfS2 by Te substitution for short‐wavelength infrared photodetection," Adv. Opt. Mater., pp. 2002248, 2021.
    [37] T. Kanazawa, T. Amemiya, V. Upadhyaya, A. Ishikawa, K. Tsuruta, T. Tanaka, and Y. Miyamoto, "Performance improvement of HfS2 transistors by atomic layer deposition of HfO2," IEEE Trans Nanotechnol, vol. 16, no. 4, pp. 582-587, 2017.
    [38] V. Upadhyaya, T. Kanazawa, and Y. Miyamoto, "Vacuum annealing and passivation of HfS2 FET for mitigation of atmospheric degradation," IEICE Trans. Electron., vol. 100, no. 5, pp. 453-457, 2017.
    [39] K. Obodo, G. Gebreyesus, C. Ouma, J. Obodo, S. Ezeonu, D. Rai, and B. Bouhafs, "Controlling the electronic and optical properties of HfS2 mono-layers via lanthanide substitutional doping: a DFT+ U study," RSC Adv., vol. 10, no. 27, pp. 15670-15676, 2020.
    [40] L. Fu, F. Wang, B. Wu, N. Wu, W. Huang, H. Wang, C. Jin, L. Zhuang, J. He, and L. Fu, "Van der Waals Epitaxial Growth of Atomic Layered HfS2 Crystals for ultrasensitive near‐infrared phototransistors," Adv. Mater., vol. 29, no. 32, p. 1700439, 2017.
    [41] X. Zhao, T. Wang, G. Wang, X. Dai, C. Xia, and L. J. A. S. S. Yang, "Electronic and magnetic properties of 1T-HfS2 by doping transition-metal atoms," Appl. Surf. Sci., vol. 383, pp. 151-158, 2016.
    [42] X. Zhao, C. Xia, T. Wang, X. Dai, and L. Yang, "Characteristics of n-and p-type dopants in 1T-HfS2 monolayer," J. Alloys Compd., vol. 689, pp. 302-306, 2016.
    [43] M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, L.-J. Li, L.-J. Chen, and J.-H. He, "Monolayer MoS2 heterojunction solar cells," ACS Nano, vol. 8, no. 8, pp. 8317-8322, 2014.
    [44] S. Wi, H. Kim, M. Chen, H. Nam, L. J. Guo, E. Meyhofer, and X. Liang, "Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping," ACS Nano, vol. 8, no. 5, pp. 5270-5281, 2014.
    [45] R. L. Cheng, Dehui Zhou, Hailong Wang, Chen Yin, Anxiang Jiang, Shan Liu, Yuan Chen, Yu Huang, Yu Duan,and Xiangfeng, "Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes," Nano Lett., vol. 14, no. 10, pp. 5590-5597, 2014.
    [46] Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Gong, Yongji, S. Najmaei, Ajayan, Pulickel M, J. Lou, Xu, Xianfan, and P. D. Ye, "Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode," ACS Nano, vol. 8, no. 8, pp. 8292-8299, 2014.
    [47] Y. Gong, S. Lei, G. Ye, B. Li, He, Yongmin, Keyshar, Kunttal, X. Zhang, Wang, Qizhong, Lou, Jun, and Z. Liu, "Two-step growth of two-dimensional WSe2/MoSe2 heterostructures," Nano Lett., vol. 15, no. 9, pp. 6135-6141, 2015.
    [48] M.-Y. Li, C.-H. Chen, Y. Shi, and L.-J. Li, "Heterostructures based on two-dimensional layered materials and their potential applications," Mater. Today, vol. 19, no. 6, pp. 322-335, 2016.
    [49] L. Liu, N. Xu, Y. Zhang, P. Zhao, H. Chen, and S. Deng, "Van der Waals bipolar junction transistor using vertically stacked two‐dimensional atomic crystals," Adv. Funct. Mater., vol. 29, no. 17, p. 1807893, 2019.
    [50] A. M. Afzal, M. Z. Iqbal, G. Dastgeer, G. Nazir, S. Mumtaz, M. Usman, and J. Eom, "WS2/GeSe/WS2 bipolar transistor-based chemical sensor with fast response and recovery Times," ACS Appl. Mater. Interfaces, vol. 12, no. 35, pp. 39524-39532, 2020.
    [51] P. Graves and D. Gardiner, "Practical Raman spectroscopy," Springer, pp. 1-12, 1989.
    [52] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, "Scanning electron microscopy and X-ray microanalysis," Springer, pp. 65-91, 2017.
    [53] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, "Perspectives on carbon nanotubes and graphene Raman spectroscopy," Nano Lett., vol. 10, no. 3, pp. 751-758, 2010.
    [54] A. Cingolani, M. Lugara, and F. Levy, "Resonance Raman scattering in HfSe2 and HfS2," Phys Scr, vol. 37, no. 3, p. 389, 1988.
    [55] A. Azcatl, Qin, Xiaoye, Prakash, Abhijith, Zhang, Chenxi, Cheng, Lanxia, Wang, Qingxiao, Lu, Ning, Kim, Moon J, Kim, Jiyoung, and Cho, Kyeongjae, "Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure," ACS Appl. Mater. Interfaces, vol. 16, no. 9, pp. 5437-5443, 2016.
    [56] M. Stoehr, H.-S. Seo, I. Petrov, and J. Greene, "Effect of off stoichiometry on Raman scattering from epitaxial and polycrystalline HfNx (0.85≤ x≤ 1.50) grown on MgO (001)," J. Appl. Phys., vol. 104, no. 3, p. 033507, 2008.
    [57] L. Bulusheva, Okotrub, AV, Kinloch, IA, Asanov, IP, Kurenya, AG, Kudashov, AG, Chen, X, and Song, H, "Effect of nitrogen doping on Raman spectra of multi‐walled carbon nanotubes," PHYS STATUS SOLIDI A, vol. 245, no. 10, pp. 1971-1974, 2008.
    [58] Z. Hu, K. Nomoto, Song, Bo, Zhu, Mingda, M. Qi, Pan, Ming, X. Gao, Protasenko, Vladimir, Jena, Debdeep, and H. G. Xing, "Near unity ideality factor and Shockley-Read-Hall lifetime in GaN-on-GaN pn diodes with avalanche breakdown," Appl. Phys. Lett., vol. 107, no. 24, p. 243501, 2015.
    [59] T. Li, Bandari, Vineeth Kumar, M. Hantusch, Xin, Jianhui, R. Kuhrt, Ravishankar, Rachappa, L. Xu, Zhang, Jidong, M. Knupfer, and F. Zhu, "Integrated molecular diode as 10 MHz half-wave rectifier based on an organic nanostructure heterojunction," Nat. Commun., vol. 11, no. 1, pp. 1-10, 2020.
    [60] C. A. Nijhuis, W. F. Reus, A. C. Siegel, and G. M. Whitesides, "A molecular half-wave rectifier," J. Am. Chem. Soc., vol. 133, no. 39, pp. 15397-15411, 2011.

    無法下載圖示 全文公開日期 2031/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE