簡易檢索 / 詳目顯示

研究生: 張宏昱
Hung-Yu Chang
論文名稱: 以前驅物溶液塗佈法進行具二維結構之鈣鈦礦薄膜並應用於紅光發光二極體
Preparation of Two-Dimensional Perovskite Thin Films via Precursor Solution Coating Method for Application in Red-Emitting Light-Emitting Diodes
指導教授: 陳良益
Liang-Yih Chen
口試委員: 李坤穆
蘇子森
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 164
中文關鍵詞: 銫鉛溴碘鈣鈦礦紅光發光二極體二維結構鹼金族碘鹽
外文關鍵詞: cesium lead bromide iodide perovskite, red-emitting light-emitting diodes, two-dimensional structure, alkali metal iodide
相關次數: 點閱:248下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全無機鈣鈦礦薄膜在光電領域有巨大的突破,特別是三維與二維結構材料更是顯著提升鈣鈦礦薄膜的螢光表現進而提升發光二極體之性能。在本研究主要探討如何以銫鉛溴碘鈣鈦礦奈米結構薄膜製備發光波段位於650奈米的紅光發光二極體。首先,為了有效提升鈣鈦礦發光層的激子再結合,在此藉由添加苯乙基碘化銨與苯乙基溴化銨來形成具有二維結構的銫鉛碘與銫鉛溴碘鈣鈦礦薄膜做為發光層。由分析結果可知:於添加80%的苯乙基溴化銨(相對於碘化鉛)所製作的銫鉛溴碘鈣鈦礦發光二極體,其外部量子效率約為 1.09%。但是此發光二極體的發光波段位於668奈米。為了進一步調整二極體的發光波段,在前驅物溶液的成份配製方面,以溴化銫取代部份的碘化銫。當碘化銫:溴化銫=0.4:0.6時,所製備薄膜的發光波段調整至648奈米。此外,在本研究中,亦探討添加鹼金屬碘鹽對於銫鉛溴碘鈣鈦礦薄膜的螢光性質有何影響。由分析結果可知:當添加2毫克的碘化鋰於前驅物溶液時,銫鉛溴碘鈣鈦礦薄膜的螢光量子產率可達到20.33%,且將此鈣鈦礦奈米薄膜做為發光層時,所製備的發光二極體,其啟動電壓 為3.1 V,發光波段為648奈米,最大輝度值可達 978.4 cd/m2,電流效率為 1.77 cd/A以及外部量子效率可達3.57%。


    In recent years, there have been significant breakthroughs in the field of optoelectronics with all-inorganic perovskite thin films, especially with the use of three-dimensional and two-dimensional structured materials, which greatly enhance the fluorescence performance of perovskite thin films and improve the performance of light-emitting diodes (LEDs). In this study, the focus is on how to prepare red-light-emitting diodes with a emission wavelength of 650 nm using cesium lead bromide iodide (CsPb(Br/I)3)perovskite thin films. Firstly, in order to effectively enhance the exciton recombination of the perovskite emission layer, cesium lead iodide (CsPbI3) and CsPb(Br/I)3 thin films with a two-dimensional structure were formed by adding phenylammonium iodide (PEAI) and phenylammonium bromide (PEABr) to serve as the emission layer. Analysis results showed that the external quantum efficiency (EQE) of the CsPb(Br/I)3 perovskite LED (PeLED), prepared with the addition of 80% PEABr (relative to lead iodide), was approximately 1.09%. However, the emission wavelength of this PeLED was at 668 nm. In order to further adjust the emission wavelength of the PeLED, the composition of the precursor solution was modified by partially replacing cesium iodide (CsI) with cesium bromide (CsBr). When the ratio of CsI to CsBr was 0.4 : 0.6, the emission wavelength of the prepared thin film was adjusted to 648 nm. Furthermore, this study also investigated the effect of alkali metal iodides on the fluorescence properties of CsPb(Br/I)3 perovskite thin films. Analysis results showed that when 2 mg of lithium iodide (LiI) was added to the precursor solution, the photoluminescence quantum yield (PLQY) of the CsPb(Br/I)3 perovskite thin film achieved 20.33%. When this perovskite thin film was used as the emission layer, the prepared LED had a turn-on voltage of 3.1 V, an emission wavelength of 648 nm, a maximum luminance of 978.4 cd/m2, a current efficiency of 1.77 cd/A, and an EQE of 3.57%.

    中文摘要 5 Abstract 6 致謝 8 圖目錄 13 表目錄 23 第一章、 緒論 25 1-1 前言 25 1-2 研究動機與目的 26 第二章、 理論基礎 27 2-1 半導體與奈米結構 27 2-1-1 半導體材料 27 2-1-2 量子侷限效應與量子阱結構 29 2-2 半導體與奈米結構 31 2-2-1 鈣鈦礦結構 31 2-2-2 二維鈣鈦礦(2D perovskite) 34 2-2-3 鈣鈦礦材料的發展 36 2-3 鈣鈦礦發光二極體 39 2-3-1 發光二極體與各結構層之功能 39 2-3-2 發光二極體的工作原理 42 2-3-3 載子傳輸材料的選擇 43 2-3-4 發光二極體之效能指標 45 2-4 鈣鈦礦發光二極體近期研究與製程優化 55 2-4-1 降低鈣鈦礦晶體尺寸 55 2-4-2 金屬鹵化物修飾 58 2-4-3 近期鈣鈦礦發光二極體整理 62 第三章、 實驗設計 63 3-1 實驗流程圖 63 3-2 實驗藥品 64 3-3 實驗分析儀器與原理 68 3-3-1 紫外光-可見光光譜儀(UV/visible spectrophotometer) 68 3-3-2 絕對量子效率量測系統 69 3-3-3 X光繞射分析儀(X-ray Diffraction,XRD) 70 3-3-4 時間解析光致發光測量系統(Time-resolved photoluminescence,TRPL) 72 3-3-5 X光光電子能譜儀 (X-Ray Photoemission Spectroscopy,XPS) 73 3-3-6 紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy,UPS) 74 3-3-7 低能量反轉光電子能譜儀 (Low Energy Inverse Photoelectron Spectroscopy,LEIPS) 76 3-3-8 高解析度場發射型掃描式電子顯微鏡 (High Resolution Field-emission Scanning Electron Microscope,FE-SEM) 77 3-3-9 電致發光量測系統(Electroluminescence,EL) 78 3-4 實驗步驟 80 3-4-1 氧化鎳前驅溶液製備 80 3-4-2 鈣鈦礦紅光二極體前驅溶液製備 80 3-4-3 發光二極體的製備 82 3-4-4 電子主導元件的製備 84 3-4-5 電洞主導元件的製備 86 第四章、 結果與討論 90 4-1-1 探討2D/3D混合CsPbBrxI3-x紅光二極體之光電效能 90 4-2 2D/3D混合CsPbBrxI3-x紅光二極體之製程優化探討 108 4-2-1 添加不同比例CsBr對CsPbBrxI3-x紅光二極體之效能探討 108 4-2-2 添加不同濃度KI對CsPbBrxI3-x紅光二極體之效能探討 123 4-2-3 添加不同濃度LiI對CsPbBrxI3-x紅光二極體之效能探討 137 第五章、 結論 153 第六章、 參考文獻 155 附錄 164

    1. M. Lu, Y. Zhang, S. Wang, J. Guo, W. W. Yu and A. L. Rogach, Metal halide perovskite light‐emitting devices: promising technology for next‐generation displays, Advanced Functional Materials 29, 1902008 (2019).
    2. K. Wei, B. Liang, C. Sun, Y. Jiang and M. Yuan, Metal halide perovskites for red‐emission light‐emitting diodes, Small Structures 3, 2200063 (2022).
    3. Z. Shen, S. Zhao, D. Song, Z. Xu, B. Qiao, P. Song, Q. Bai, J. Cao, G. Zhang and W. Swelm, Improving the quality and luminescence performance of all-inorganic perovskite nanomaterials for light-emitting devices by surface engineering, Small 16, e1907089 (2020).
    4. L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T. W. Lee and E. H. Sargent, Perovskites for next-generation optical sources, Chemical Reviews 119, 7444-7477 (2019).
    5. A. Dey, J. Ye, A. De, E. Debroye, S. K. Ha, E. Bladt, A. S. Kshirsagar, Z. Wang, J. Yin, Y. Wang, L. N. Quan, F. Yan, M. Gao, X. Li, J. Shamsi, T. Debnath, M. Cao, M. A. Scheel, S. Kumar, J. A. Steele, M. Gerhard, L. Chouhan, K. Xu, X. G. Wu, Y. Li, Y. Zhang, A. Dutta, C. Han, I. Vincon, A. L. Rogach, A. Nag, A. Samanta, B. A. Korgel, C. J. Shih, D. R. Gamelin, D. H. Son, H. Zeng, H. Zhong, H. Sun, H. V. Demir, I. G. Scheblykin, I. Mora-Sero, J. K. Stolarczyk, J. Z. Zhang, J. Feldmann, J. Hofkens, J. M. Luther, J. Perez-Prieto, L. Li, L. Manna, M. I. Bodnarchuk, M. V. Kovalenko, M. B. J. Roeffaers, N. Pradhan, O. F. Mohammed, O. M. Bakr, P. Yang, P. Muller-Buschbaum, P. V. Kamat, Q. Bao, Q. Zhang, R. Krahne, R. E. Galian, S. D. Stranks, S. Bals, V. Biju, W. A. Tisdale, Y. Yan, R. L. Z. Hoye and L. Polavarapu, State of the art and prospects for halide perovskite nanocrystals, ACS Nano 15, 10775-10981 (2021).
    6. L. Zhang, C. Sun, T. He, Y. Jiang, J. Wei, Y. Huang and M. Yuan, High-performance quasi-2D perovskite light-emitting diodes: from materials to devices, Light-Science & Applications 10, 61 (2021).
    7. C. Katan, N. Mercier and J. Even, Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors, Chemical Reviews 119, 3140-3192 (2019).
    8. S. A. Veldhuis, P. P. Boix, N. Yantara, M. J. Li, T. C. Sum, N. Mathews and S. G. Mhaisalkar, Perovskite materials for light-emitting diodes and lasers, Advanced Materials 28, 6804-6834 (2016).
    9. Z. Li, M. J. Yang, J. S. Park, S. H. Wei, J. J. Berry and K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys, Chemistry of Materials 28, 284-292 (2016).
    10. C. J. Bartel, C. Sutton, B. R. Goldsmith, R. Ouyang, C. B. Musgrave, L. M. Ghiringhelli and M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides, Science Advances 5, eaav0693 (2019).
    11. Y. Cai, W. Xie, Y. T. Teng, P. C. Harikesh, B. Ghosh, P. Huck, K. A. Persson, N. Mathews, S. G. Mhaisalkar and M. Sherburne, High-throughput computational study of halide double perovskite inorganic compounds, Chemistry of Materials 31, 5392-5401 (2019).
    12. W. Travis, E. Glover, H. Bronstein, D. Scanlon and R. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system, Chemical Science 7, 4548-4556 (2016).
    13. Y. Cao, N. N. Wang, H. Tian, J. S. Guo, Y. Q. Wei, H. Chen, Y. F. Miao, W. Zou, K. Pan, Y. R. He, H. Cao, Y. Ke, M. M. Xu, Y. Wang, M. Yang, K. Du, Z. W. Fu, D. C. Kong, D. X. Dai, Y. Z. Jin, G. Q. Li, H. Li, Q. M. Peng, J. P. Wang and W. Huang, Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures, Nature 562, 249 (2018).
    14. K. B. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. W. Gong, J. X. Lu, L. Q. Xie, W. J. Zhao, D. Zhang, C. Z. Yan, W. Q. Li, X. Y. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. H. Xiong and Z. H. Wei, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent, Nature 562, 245-248 (2018).
    15. D. W. Di, K. P. Musselman, G. R. Li, A. Sadhanala, Y. Ievskaya, Q. L. Song, Z. K. Tan, M. L. Lai, J. L. MacManus-Driscoll, N. C. Greenham and R. H. Friend, Size-dependent photon emission from organometal halide perovskite nanocrystals embedded in an organic matrix, Journal of Physical Chemistry Letters 6, 446-450 (2015).
    16. Z. J. Yong, S. Q. Guo, J. P. Ma, J. Y. Zhang, Z. Y. Li, Y. M. Chen, B. B. Zhang, Y. Zhou, J. Shu, J. L. Gu, L. R. Zheng, O. M. Bakr and H. T. Sun, Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield, Journal of the American Chemical Society 140, 9942-9951 (2018).
    17. B. A. Koscher, J. K. Swabeck, N. D. Bronstein and A. P. Alivisatos, Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment, Journal of the American Chemical Society 139, 6566-6569 (2017).
    18. Q. S. Shan, J. Z. Song, Y. S. Zou, J. H. Li, L. M. Xu, J. Xue, Y. H. Dong, B. N. Han, J. W. Chen and H. B. Zeng, High performance metal halide perovskite light-emitting diode: from material design to device optimization, Small 13, 2103268 (2017).
    19. L. Zhang, C. J. Sun, T. W. He, Y. Z. Jiang, J. L. Wei, Y. M. Huang and M. J. Yuan, High-performance quasi-2D perovskite light-emitting diodes: from materials to devices, Light-Science & Applications 10, 61 (2021).
    20. Y. Bae, J. Ryu, S. Yoon and D.-W. Kang, Recent progress in quasi-two-dimensional and quantum dot perovskite light-emitting diodes harnessing the diverse effects of ligands: A review, Nano Research 15, 6449-6465 (2022).
    21. Y. N. Chen, Y. Sun, J. J. Peng, J. H. Tang, K. B. Zheng and Z. Q. Liang, 2D Ruddlesden-Popper perovskites for optoelectronics, Advanced Materials 30, 1703487-1703502 (2018).
    22. Y. T. Zheng, T. T. Niu, X. Q. Ran, J. Qiu, B. X. Li, Y. D. Xia, Y. H. Chen and W. Huang, Unique characteristics of 2D Ruddlesden-Popper (2DRP) perovskite for future photovoltaic application, Journal of Materials Chemistry A 7, 13860-13872 (2019).
    23. H. Y. Fu, Dion-Jacobson halide perovskites for photovoltaic and photodetection applications, Journal of Materials Chemistry C 9, 6378-6394 (2021).
    24. W. Guo, Z. Yang, J. L. Dang and M. Q. Wang, Progress and perspective in Dion-Jacobson phase 2D layered perovskite optoelectronic applications, Nano Energy 86, 106129 (2021).
    25. C. K. MØLler, Crystal structure and photoconductivity of caesium plumbohalides, Nature 182, 1436-1436 (1958).
    26. D. Weber, CH3NH3PbX3, ein Pb(II)-system mit kubischer perowskitstruktur / CH3NH3PbX3, a Pb(II)-system with cubic perovskite structure, Zeitschrift für Naturforschung B 33, 1443-1445 (1978).
    27. J. Shamsi, Z. Dang, P. Ijaz, A. L. Abdelhady, G. Bertoni, I. Moreels and L. Manna, Colloidal CsX (X = Cl, Br, I) nanocrystals and their transformation to CsPbX3 nanocrystals by cation exchange, Chemistry of Materials 30, 79-83 (2018).
    28. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society 131, 6050-6051 (2009).
    29. best research cell efficiencies.
    30. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith and R. H. Friend, Bright light-emitting diodes based on organometal halide perovskite, Nature Nanotechnology 9, 687-692 (2014).
    31. Z. Liu, W. D. Qiu, X. M. Peng, G. W. Sun, X. Y. Liu, D. H. Liu, Z. C. Li, F. R. He, C. Y. Shen, Q. Gu, F. L. Ma, L. Yip, L. T. Hou, Z. J. Qi and S. J. Su, Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation, Advanced Materials 33, 2103268 (2021).
    32. J. Jiang, Z. M. Chu, Z. G. Yin, J. Z. Li, Y. G. Yang, J. R. Chen, J. L. Wu, J. B. You and X. W. Zhang, Red perovskite light-emitting diodes with efficiency exceeding 25% realized by co-spacer cations, Advanced Materials 34, 2204460 (2022).
    33. Y. Shen, Y. Q. Li, K. Zhang, L. J. Zhang, F. M. Xie, L. Chen, X. Y. Cai, Y. Lu, H. Ren, X. Y. Gao, H. J. Xie, H. Y. Mao, S. Kera and J. X. Tang, Multifunctional crystal regulation enables efficient and stable sky-blue perovskite light-emitting diodes, Advanced Functional Materials 32, 2206574 (2022).
    34. X. F. Zhao and Z. K. Tan, Large-area near-infrared perovskite light-emitting diodes, Nature Photonics 14, 215-218 (2020).
    35. S. Draguta, O. Sharia, S. J. Yoon, M. C. Brennan, Y. V. Morozov, J. M. Manser, P. V. Kamat, W. F. Schneider and M. Kuno, Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites, Nature Communications 8, 200 (2017).
    36. Y. Yu, Y. Y. Tang, B. F. Wang, K. Zhang, J. X. Tang and Y. Q. Li, Red perovskite light-emitting diodes: recent advances and perspectives, Laser & Photonics Reviews 17, 2200608 (2023).
    37. A. Srivastava and B. Kumar, presented at the 2017 14th IEEE India Council International Conference (INDICON), 2017.
    38. A. Liu, C. H. Bi, R. Q. Guo, M. Q. Zhang, X. H. Qu and J. J. Tian, Electroluminescence principle and performance improvement of metal halide perovskite light-emitting diodes, Advanced Optical Materials 9, 2002167 (2021).
    39. S.-K. Kim, H. Yang and Y.-S. Kim, Control of carrier injection and transport in quantum dot light emitting diodes (QLEDs) via modulating Schottky injection barrier and carrier mobility, Journal of Applied Physics 126 (2019).
    40. S.-K. Kim, H. Yang and Y.-S. Kim, Control of carrier injection and transport in quantum dot light emitting diodes (QLEDs) via modulating Schottky injection barrier and carrier mobility, Journal of Applied Physics 126, 185702 (2019).
    41. Q. Wang, C. Peng, L. Du, H. Li, W. Zhang, J. Xie, H. Qi, Y. Li, L. Tian and Y. Huang, Enhanced performance of perovskite solar cells via low‐temperature‐processed mesoporous SnO2, Advanced Materials Interfaces 7, 1901866 (2020).
    42. M. I. Saidaminov, M. A. Haque, J. Almutlaq, S. Sarmah, X. H. Miao, R. Begum, A. A. Zhumekenov, I. Dursun, N. Cho and B. Murali, Inorganic lead halide perovskite single crystals: phase‐selective low‐temperature growth, carrier transport properties, and self‐powered photodetection, Advanced Optical Materials 5, 1600704 (2017).
    43. B. Cai, X. Yang, Z. Yu, Y. Liang, Y. Shan, A. Hagfeldt and L. Sun, Unveiling the light soaking effects of the CsPbI3 perovskite solar cells, Journal of Power Sources 472, 228506 (2020).
    44. G. Xing, B. Wu, X. Wu, M. Li, B. Du, Q. Wei, J. Guo, E. K. Yeow, T. C. Sum and W. Huang, Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence, Nature Communications 8, 14558 (2017).
    45. Z. Y. Guo, Y. Zhang, B. Z. Wang, L. D. Wang, N. Zhou, Z. W. Qiu, N. X. Li, Y. H. Chen, C. Zhu, H. P. Xie, T. L. Song, L. Song, H. B. Xue, S. X. Tao, Q. Chen, G. C. Xing, L. X. Xiao, Z. W. Liu and H. P. Zhou, Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes, Advanced Materials 33, 2102246 (2021).
    46. N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao and R. Yang, Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells, Nature Photonics 10, 699-704 (2016).
    47. M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard and P. Kanjanaboos, Perovskite energy funnels for efficient light-emitting diodes, Nature nanotechnology 11, 872-877 (2016).
    48. Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Scholes and B. P. Rand, Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites, Nature Photonics 11, 108-115 (2017).
    49. X. Cheng, C. Qi, W. Ding, J. Lu, X. Mo, Y. Zhou, T. Lin, X. Tao, H. Chen and Y. Ouyang, Boosted electroluminescence of perovskite light-emitting diodes by pinhole passivation with insulating polymer, Journal of Physics D: Applied Physics 51, 405103 (2018).
    50. L. P. Cheng, J. S. Huang, Y. Shen, G. P. Li, X. K. Liu, W. Li, Y. H. Wang, Y. Q. Li, Y. Jiang and F. Gao, Efficient CsPbBr3 perovskite light‐emitting diodes enabled by synergetic morphology control, Advanced Optical Materials 7, 1801534 (2019).
    51. B. Han, B. Cai, Q. Shan, J. Song, J. Li, F. Zhang, J. Chen, T. Fang, Q. Ji and X. Xu, Stable, efficient red perovskite light‐emitting diodes by (α, δ)‐CsPbI3 phase engineering, Advanced Functional Materials 28, 1804285 (2018).
    52. Z. He, Y. Liu, Z. Yang, J. Li, J. Cui, D. Chen, Z. Fang, H. He, Z. Ye, H. Zhu, N. Wang, J. Wang and Y. Jin, High-efficiency red light-emitting diodes based on multiple quantum wells of phenylbutylammonium-cesium lead iodide perovskites, ACS Photonics 6, 587-594 (2019).
    53. A. Fakharuddin, W. Qiu, G. Croes, A. Devižis, R. Gegevičius, A. Vakhnin, C. Rolin, J. Genoe, R. Gehlhaar and A. Kadashchuk, Reduced efficiency roll‐off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection, Advanced Functional Materials 29, 1904101 (2019).
    54. C. Murawski, K. Leo and M. C. Gather, Efficiency roll‐off in organic light‐emitting diodes, Advanced Materials 25, 6801-6827 (2013).
    55. Y. Shirasaki, G. J. Supran, W. A. Tisdale and V. Bulović, Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes, Physical review letters 110, 217403 (2013).
    56. C. Zou, Y. Liu, D. S. Ginger and L. Y. Lin, Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes, ACS Nano 14, 6076-6086 (2020).
    57. P. Liu, W. Q. Cai, C. Zhao, S. W. Zhang, P. B. Nie, W. Z. Xu, H. Meng, H. Y. Fu and G. D. Wei, Quasi‐2D CsPbBrxI3− x composite thin films for efficient and stable red perovskite light‐emitting diodes, Advanced Optical Materials 9 (2021).
    58. Y. Tian, C. K. Zhou, M. Worku, X. Wang, Y. C. Ling, H. W. Gao, Y. Zhou, Y. Miao, J. J. Guan and B. W. Ma, Highly efficient spectrally stable red perovskite light-emitting diodes, Advanced Materials 30, 1707093 (2018).
    59. D. Liu, X. Liu, G. Sun, F. Meng, Z. Liu, C. Shen, M. Li and S.-J. Su, Efficient Zn-alloyed low-toxicity quasi-two-dimensional pure-red perovskite light-emitting diodes, ACS Applied Materials & Interfaces 13, 55412-55419 (2021).
    60. L. Yang, Y. Zhang, J. Ma, P. Chen, Y. Yu and M. Shao, Pure Red Light-Emitting Diodes Based on Quantum Confined Quasi-Two-Dimensional Perovskites with Cospacer Cations, ACS Energy Letters 6, 2386-2394 (2021).
    61. X.-Y. Cai, Y. Yu, Y.-C. Ye, Y. Shen, M.-L. Guo, J.-K. Wang, K.-C. Shen, Y.-Q. Li and J.-X. Tang, Improving the efficiency and stability of inorganic red perovskite light-emitting diodes using traces of zinc ions, Journal of Materials Chemistry C 9, 16682-16692 (2021).
    62. H. F. Shi, Z. B. Wang, H. Y. Ma, H. R. Jia, F. Z. Wang, C. Zou, S. Q. Hu, H. Li and Z. Tan, High-efficiency red perovskite light-emitting diodes based on collaborative optimization of emission layer and transport layers, Journal of Materials Chemistry C 9, 12367-12373 (2021).
    63. D. Zhang, L. Chao, G. Jin, Z. Xing, W. Hong, Y. Chen, L. Wang, J. Chen and D. Ma, Highly efficient red perovskite light‐emitting diodes with reduced efficiency roll‐off enabled by manipulating crystallization of quasi‐2D perovskites, Advanced Functional Materials 32, 2205707 (2022).
    64. S. Liu, H. Zhan, C. Qin and C. Qin, Suppressing high-order phase for efficient pure red quasi-2D perovskite light-emitting diodes, The Journal of Physical Chemistry Letters 14, 73-79 (2023).
    65. H. Masui, S. Nakamura, S. P. DenBaars and U. K. Mishra, Nonpolar and semipolar III-nitride light-emitting diodes: achievements and challenges, IEEE Transactions on Electron Devices 57, 88-100 (2009).
    66. P. Liu, W. Cai, C. Zhao, S. Zhang, P. Nie, W. Xu, H. Meng, H. Fu and G. Wei, Quasi‐2D CsPbBrxI3− x composite thin films for efficient and stable red perovskite light‐emitting diodes, Advanced Optical Materials 9, 2101419 (2021).
    67. T. Wu, J. Li, Y. Zou, H. Xu, K. Wen, S. Wan, S. Bai, T. Song, J. A. McLeod, S. Duhm, F. Gao and B. Sun, High-performance perovskite light-emitting diode with enhanced operational stability using lithium halide passivation, Angewandte Chemie International Edition in English 59, 4099-4105 (2020).
    68. P. Pang, G. Jin, C. Liang, B. Wang, W. Xiang, D. Zhang, J. Xu, W. Hong, Z. Xiao and L. Wang, Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes, ACS Nano 14, 11420-11430 (2020).
    69. Y.-h. Li, Y.-H. Lou, Y.-H. Zhou, Y. Xia, B. Wang and Z.-K. Wang, Review on the promising roles of alkali metals toward highly efficient perovskite light-emitting diodes, Journal of Materials Chemistry C 11, 2011-2025 (2023).

    無法下載圖示 全文公開日期 2025/08/21 (校內網路)
    全文公開日期 2025/08/21 (校外網路)
    全文公開日期 2025/08/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE