簡易檢索 / 詳目顯示

研究生: 劉佑倫
Yu-Lun Liu
論文名稱: 以二維結構提升鈣鈦礦/奈米纖維素晶體螢光複合膜之螢光量子轉換效率
Highly Enhanced Photoluminescence Quantum Yield of 2-Dimensional Inorganic Perovskite/Cellulose Nanocrystals Hybrid Films
指導教授: 蔡孟霖
Meng-Lin Tsai
口試委員: 蔡孟霖
蔡東昇
郭霽慶
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 51
中文關鍵詞: 鈣鈦礦二維鈣鈦礦奈米纖維素晶體螢光量子產率苯乙銨鹵化物
外文關鍵詞: perovskite, 2D perovskite, cellulose nanocrystals, photoluminescence quantum yield, phenethylammonium halides
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來鈣鈦礦量子點在顯示器及光電產業受到大量關注,從眾多材料中脫穎而出,成為新一代顯示器未來相當具有發展潛力的材料,這些都歸功於鈣鈦礦優異的光電特性,例如:色域覆蓋面積大、螢光放光半高寬較窄、發光波長具有高度可調變性、近100%的螢光量子轉換效率等。雖然鈣鈦礦量子點的光電性質近乎完美,卻容易受到水、氧氣、連續紫外光照射等外在環境的影響而改變其自身的光電特性,使得鈣鈦礦材料至今仍無法順利進行商用化。針對改善鈣鈦礦量子點的穩定性,過去本團隊研究導入硫酸根奈米纖維素晶體取代傳統有機長碳鏈之配體,以增強鈣鈦礦量子點與配體間的鍵結強度,從而達到高穩定性的目標。雖然在穩定性方面得到顯著改善,但在製程中形成的大晶體卻會導致螢光量子轉換效率降低。因此,本研究在鈣鈦礦量子點與奈米纖維素晶體的製程中加入苯乙銨鹵化物,提供過量鹵素並且增強量子侷限效應,並轉變為二維鈣鈦礦之結構。最終使CsPbBrI2螢光複合膜的螢光量子效率提升18倍、CsPbBr3螢光複合膜提升3倍以及CsPbBr1.5Cl1.5螢光複合膜提升8倍,期許對下一世代穩定且高轉換效率的顯示技術提出貢獻。


    Recently, perovskite quantum dots (PQDs) have drawn lots of attention in the display technology field due to outstanding optoelectronic properties such as wide color gamut, high photoluminescence quantum yield (PLQY), and tunable emission wavelength. Despite the above advantages, PQDs still suffer from instability against oxygen, moisture, and continuous ultra-violet irradiation, which greatly impede the commercial applications. To enhance the stability of the PQD films, we have applied surface functionalized cellulose nanocrystals (CNCs) to substitute traditional ligands for improving the binding strength between the ligands and PQDs. However, the PLQY in such films are limited due to large crystals formed during the synthesis process. In this study, we incorporate phenethylammonium halide (PEAX, where X = Cl, Br, and I) during the synthesis process, and the PLQYs of CsPbBr1.5Cl1.5, CsPbBr3, and CsPbBrI2 films with PEAX passivation can be improved more than 8 (from 1.2% to 10%), 3 (from 22% to 69%), and 18 (from 3% to 55%) times, respectively, since the phenethylammonium halide provides a halide-rich environment and a more significant quantum confinement effect to PQDs in the CNC films. By combining the advantages of CNC and PEAX, stable light emission/conversion films with largely increased PLQY can be achieved. As a result, the synergistic approach of CNC and PEAX passivations for light emission/conversion films demonstrated herein holds the potential for developing full-color, stable, and high PLQY next generation applications in the future.

    摘要 II Abstract III 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第 1 章 緒論 1 1.1 前言 1 1.1.1 奈米材料之特性與介紹 2 1.1.2 鈣鈦礦量子點之性質 4 1.1.3 二維鈣鈦礦材料介紹 8 1.1.4 奈米纖維素晶體介紹 10 1.2 研究動機與目的 12 第 2 章 文獻回顧與探討 13 2.1 鈣鈦礦量子點之穩定性 13 2.1.1 鈣鈦礦量子點穩定性之本質因素 13 2.1.2 鈣鈦礦量子點穩定性之外部因素 15 2.2 二維鈣鈦礦之結構特性 19 2.2.1 二維鈣鈦礦之結構 20 2.2.2 間隔陽離子之作用 21 2.2.3 二維鈣鈦礦之層數與光學表現之關係 23 2.2.4 二維鈣鈦礦之結構鑑定 25 2.3 二維鈣鈦礦之光轉換特性 26 第 3 章 實驗方法 28 3.1 實驗流程 28 3.2 實驗藥品、實驗設備與分析儀器 28 3.2.1 實驗藥品 28 3.2.2 實驗設備 29 3.2.3 分析儀器 29 3.3 奈米纖維素晶體溶液配製 31 3.4 鈣鈦礦量子點/奈米纖維素晶體複合膜之製備與合成 31 3.4.1 CsPbBr1.5Cl1.5/CNC前驅液製備 31 3.4.2 CsPbBr3/CNC前驅液製備 32 3.4.3 CsPbBrI2/CNC前驅液製備 32 3.5 二維鈣鈦礦/奈米纖維素晶體複合膜之製備與合成 32 3.5.1 PEABr/Cl-CsPbBr1.5Cl1.5/CNC前驅液製備 32 3.5.2 PEABr-CsPbBr3/CNC前驅液製備 33 3.5.3 PEABr/I-CsPbBrI2/CNC前驅液製備 33 3.6 鈣鈦礦/奈米纖維素晶體複合膜合成 33 第 4 章 結果與討論 34 4.1 奈米纖維素晶體與苯乙基鹵化物於鈣鈦礦量子點之作用 34 4.2 PEAX-CsPbX3/CNC螢光複合膜之光學分析 35 4.3 PEAX-CsPbX3/CNC螢光複合膜之結構鑑定 37 4.4 PEAX-CsPbX3/CNC螢光複合膜形貌與成分分析 39 4.5 PEAX-CsPbX3/CNC螢光複合膜之穩定性測試 41 4.6 CIE 1931色域圖與白光元件 42 第 5 章 結論與未來展望 44 5.1 結論 44 5.2 未來展望 45 參考文獻 46

    [1] G. Ramalingam and K. Kasinathan et al, "Quantum Confinement Effect of 2D Nanomaterials," in Quantum Dots: Fundamental and Applications, 2020, pp. 11-19.
    [2] L. Protesescu and M. V. Kovalenko et al., "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Lett., vol. 15, no. 6, pp. 3692-3696, 2015.
    [3] S. Wei and D. Pan et al., "Room-Temperature and Gram-Scale Synthesis of CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals with 50–85% Photoluminescence Quantum Yields," Chem. Commun., vol. 52, pp. 7265-7268, 2016.
    [4] X. Li and H. Zeng et al., "CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes," Adv. Funct. Mater., vol. 26, no. 15, pp. 2435-2445, 2016.
    [5] Q. A. Akkerman and L. Manna et al., "Genesis, Challenges and Opportunities for Colloidal Lead Halide Perovskite Nanocrystals," Nat. Mater., vol. 17, pp. 394-405, 2018.
    [6] Y. Wang and X. Bai et al., "Concentration- and Temperature-Dependent Photoluminescence of CsPbBr3 Perovskite Quantum Dots," Optik, vol. 139, pp. 56-60, 2017.
    [7] L. Liu and J. Z. Zhang et al., "Varying the Concentration of Organic Acid and Amine Ligands Allows Tuning between Quantum Dots and Magic-Sized Clusters of CH3NH3PbBr3 Perovskite: Implications for Photonics and Energy Conversion," Adv. Sci., vol. 3, no. 12, pp. 12379-12387, 2020.
    [8] H. Huang and A. L. Rogach et al., "Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature," Adv. Sci., vol. 2, no. 9, p. 1500194, 2015.
    [9] F. Zhang and Y. Dong et al., "Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology," ACS Nano, vol. 9, no. 4, pp. 4533-4542, 2015.
    [10] L. Mao and M. G. Kanatzidis et al., "Hybrid Dion–Jacobson 2D Lead Iodide Perovskites," J. Am. Chem. Soc., vol. 140, no. 10, pp. 3775-3783, 2018.
    [11] M. C. Weidman and W. A. Tisdale et al., "Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition," ACS Nano, vol. 10, no. 8, pp. 7830-7839, 2016.
    [12] J. Liu and S. Jin et al., "Observation of Internal Photoinduced Electron and Hole Separation in Hybrid Two-Dimentional Perovskite Films," J. Am. Chem. Soc., vol. 139, no. 4, pp. 1432-1435, 2017.
    [13] R. Li and W. Huang et al., "Room-Temperature Electroluminescence from Two-Dimensional Lead Halide Perovskite," Appl. Phys. Lett., vol. 109, no. 15, p. 151101, 2016.
    [14] A. F. Tarchoun and W. Bessa et al., "Ecofriendly Isolation and Characterization of Microcrystalline Cellulose from Giant Reed Using Various Acidic Media," Cellulose, vol. 26, no. 13-14, pp. 7635-7651, 2019.
    [15] D. Miyashiro and K. Umemura et al., "A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes," Nanomater., vol. 10, no. 2, p. 186, 2020.
    [16] H. Kargazadeh and A. Gałęski et al., "Recent Developments in Nanocellulose-Based Biodegradable Polymers, Thermoplastic Polymers, and Porous Nanocomposites," Prog. Polym. Sci., vol. 87, pp. 197-227, 2018.
    [17] C. H. Chiang and M. L. Tsai et al., "High-Stability Inorganic Perovskite Quantum Dot–Cellulose Nanocrystal Hybrid Films," Nanotechnology, vol. 31, p. 324002, 2020.
    [18] K. Y. Li and M. L. Tsai et al., "Full-Color Perovskite Quantum Dots/Cellulose Nanocrystals Enhancement Films with Excellent Stability," Adv. Eng. Mater., vol. 23, no. 9, p. 2100424, 2021.
    [19] J. Song and H. Zeng et al., "Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3)," Adv. Mater., vol. 27, no. 44, pp. 7162-7167, 2015.
    [20] J. Pan and O. M. Bakr et al., "Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering," Adv. Mater., vol. 28, no. 39, pp. 8718-8725, 2016.
    [21] T. Leijtens and M. D. McGehee et al., "Towards Enabling Stable Lead Halide Perovskite Solar Cells; Interplay between Structural, Environmental, and Thermal Stability," J. Mater. Chem. A, vol. 5, pp. 11483-11500, 2017.
    [22] C. C. Stoumpos and M. G. Kanatzidis, "The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors," Acc. Chem. Res., vol. 48, no. 10, pp. 2791-2802, 2015.
    [23] J. Chen and K. Zheng et al., "Photo-Stability of CsPbBr3 Perovskite Quantum Dots for Optoelectronic Application," Sci. China Mater., vol. 59, pp. 719-727, 2016.
    [24] S. Huang and L. Li et al., "Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination," ACS Appl. Mater. Interfaces, vol. 9, no. 8, pp. 7249-7258, 2017.
    [25] N. Aristidou and S. A. Haque et al., "Fast Oxygen Diffusion and Iodide Defect Mediate Oxygen-Induced Degradation of Perovskite Solar Cells," Nat. Commun., vol. 8, p. 15218, 2017.
    [26] Y. Wei and J. Lin et al., "An Overview on Enhancing the Stability of Lead Halide Perovskite Quantum Dots and Their Applications in Phosphor-Converted LEDs," Chem. Soc. Rev., vol. 48, pp. 310-350, 2019.
    [27] I. Chung and M. G. Kanatzidis et al., "CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions," J. Am. Chem. Soc., vol. 134, no. 20, pp. 8579-8587, 2012.
    [28] A. Z. Chen and J. J. Choi, "Crystallographic Orientation and Layer Impurities in Two-Dimensional Metal Halide Perovskite Thin Films," J. Vac. Sci. Technol. A, vol. 38, no. 1, p. 010801, 2019.
    [29] T. Wang and L. Huang et al., "Phenethylammonium Functionalization Enhances Near-Surface Carrier Diffusion in Hybrid Perovskites," J. Am. Chem. Soc., vol. 142, no. 38, pp. 16254-16264, 2020.
    [30] S. Ahmad and C. Li et al., "Dion-Jacobson Phase 2D Layered Perovskites for Solar Cells with Ultrahigh Stability," Joule, vol. 3, no. 3, pp. 794-806, 2019.
    [31] H. Lai and Y. Chen et al., "Two-Dimensional Ruddlesden–Popper Perovskite with Nanorod-like Morphology for Solar Cells with Efficiency Exceeding 15%," J. Am. Chem. Soc., vol. 140, no. 37, pp. 11639-11646, 2018.
    [32] L. N. Quan and E. H. Sargent et al., "Ligand-Stabilized Reduced-Dimensionality Perovskites," J. Am. Chem. Soc., vol. 138, no. 8, pp. 2649-2655, 2016.
    [33] D. Ghosh and A. J. Neukirch et al., "Charge Carrier Dynamics in Two-Dimensional Hybrid Perovskites: Dion-Jacobson vs. Ruddlesden-Popper Phase," J. Mater. Chem. A, vol. 8, pp. 22009-22022, 2020.
    [34] N. Klein-Kedem and G. Hodes et al., "Effects of Light and Electron Beam Irradiation on Halide Perovskites and Their Solar Cells," Acc. Chem. Res., vol. 49, no. 2, pp. 347-354, 2016.
    [35] Y. Lin and J. Huang et al., "Suppressed Ion Migration in Low-Dimensional Perovskites," ACS Energy Lett., vol. 2, no. 7, pp. 1571-1572, 2017.
    [36] Y. Fu and S. Jin et al., "Stabilization of the Metastable Lead Iodide Perovskite Phase via Surface Functionalization," Nano Lett., vol. 17, no. 7, pp. 4405-4414, 2017.
    [37] Z. He and Y. Jin et al., "High-Efficiency Red Light-Emitting Diodes Based on Multiple Quantum Wells of Phenylbutylammonium-Cesium Lead Iodide Perovskites," ACS Photonics, vol. 6, no. 3, pp. 587-594, 2019.
    [38] H. Tsai and W. Nie et al., "Critical Role of Organic Spacers for Bright 2D Layered Perovskites Light-Emitting Diodes," Adv. Sci., vol. 7, no. 7, p. 1903202, 2020.
    [39] X. Gong and E. H. Sargent, "Electron–Phonon Interaction in Efficient Perovskite Blue Emitters," Nat. Mater., vol. 17, pp. 550-556, 2018.
    [40] Y. H. Chang and D. Y. Wang et al., "Facile Synthesis of Two-Dimensional Ruddlesden–Popper Perovskite Quantum Dots with Fine-Tunable Optical Properties," Nanoscale Res. Lett., vol. 13, p. 247, 2018.
    [41] X. Yang and J. You et al., "Efficient Green Light-Emitting Diodes Based on Quasi-Two-Dimensional Composition and Phase Engineered Perovskite with Surface Passivation," Nat. Commun., vol. 9, p. 570, 2018.
    [42] Y. Shang and Z. Ning et al., "Quasi-2D Inorganic CsPbBr3 Perovskite for Efficient and Stable Light-Emitting Diodes," Adv. Func. Mater. , vol. 28, no. 22, p. 1801193, 2018.
    [43] L. Cheng and J. Wang et al., "Multiple-Quantum-Well Perovskites for High-Performance Light-Emitting Diodes," Adv. Mater., vol. 32, no. 15, p. 1904163, 2019.
    [44] S. Yuan and L. S. Liao et al., "Optimization of Low-Dimensional Components of Quasi-2D Perovskite Films for Deep-Blue Light-Emitting Diodes," Adv. Mater. , vol. 31, no. 44, p. 1904319, 2019.

    無法下載圖示 全文公開日期 2032/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE