簡易檢索 / 詳目顯示

研究生: 鄒智元
Chih-Yuan Tsou
論文名稱: 光纖感測器與高可撓式光波導之研究
Study of Fiber Optic Sensors and Highly Flexible Optical Waveguides
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 林保宏
Pao-hung Lin
范慶麟
Ching-Lin Fan 
李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
何文章
Wen-Jeng Ho
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 152
中文關鍵詞: 光波導光纖感測器可撓式光波導
外文關鍵詞: optical waveguide, fiber sensor, flexible waveguide
相關次數: 點閱:251下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光波導由於電磁免疫等優越特性而被廣泛的研究與應用,最普遍常見的光波導元件為可用於長距離傳輸的光纖波導,由於光纖提供極佳的特性如低傳輸損耗、重量輕與低價格,因此也常被作為光纖感測器的應用,但光纖卻難以做元件內部的積體整合,而高分子光波導與矽光波導由於擁有可高積體整合的特性能夠解決此問題。在本論文中我們將介紹這些光波導以及他們的應用。
    本論文以單模光纖作為光纖感測器作為起頭,利用低同調干涉之概念以雙級式馬赫詹德干涉儀(Mach–Zehnder interferometer)應用於光纖感測器,可實現於應變(strain)、力量(force)與雙折射效應(birefringence)的光纖偵測。雙級式光纖干涉感測器,能在干涉圖上得到兩倍的干涉距離有效的提升靈敏度。此架構以3公尺的單模光纖作為低同調干涉感測元件,擁有6.8 μm/με之應變靈敏度,並且此系統搭配力量偵測器,可得到力量對於干涉距離變化的關係,實驗結果顯示此架構擁有8.5 μm/mN的力量靈敏度。此外,提出以1310 nm光波長的高同調光源作為光學尺較準系統,可提升系統之解析度,利用655 nm半波長的週期性變化,配合18.9 nm的步進馬達解析度,在理論上3公尺光纖之應變解析度可達2.7nε。本論文也對1公尺與30公尺的單模光纖作為干涉式應變感測器,分別可擁有2.3, 66.7 μm/με之應變靈敏度,此結果明顯顯示感測光纖長度越長將擁有越高的靈敏度。馬赫詹德光纖干涉感測器也能夠測量極化保持光纖(Polarization maintaining Fiber, PMF)的節拍長度與雙折射效應,經過此感測系統測量康寧熊貓型極化保持光纖,實驗結果顯示長度1公尺與3公尺的極化保持光纖,雙折射效應分別為3.85×10-4與3.92×10-4,換算為節拍長度分別為4.03mm與3.95 mm,此結果與產品規格中之節拍長度相比較是吻合的。
    可撓式光波導不僅可彎曲並擁有非常低的光傳輸損耗,還擁有極佳之穩定性與可彈性的整合產品,可應用在折疊式的智慧型3C產品之中,本論文研究此光波導與傳統印刷電路板整合成可撓式光電電路板(Optical and electric printed circuit board, OEPCB ),不僅可達到傳統銅線無法達成之高速傳輸,還可保有極佳的彎曲不敏感特性。光電電路板之光學設計以LightTool軟體模擬光學路徑以及製程對準誤差所造成之損耗,簡易的切割製程製作45度的斜面,並以電子束蒸鍍的方式製作銀反射面,可達成光學垂直耦合的目的,由於銀鍍層製作成本高,因此本論文也針對不使用銀鍍層的內部全反射的概念作為垂直耦合的方法做探討。量測結果顯示此可撓式光波導傳輸損耗最低可達0.1dB/cm,也證實切割法不僅擁有簡單的斜面製程,還能夠使波導端面平整化,擁有比一般研磨端面更低的損耗。載入12.5Gb/s之高頻訊號,由數位通訊分析儀能得到清楚的眼圖與Q值,而且在彎曲半徑2mm的狀態下傳輸,Q值仍然變化不大。並且此波導能夠以2mm的彎曲半徑撓曲而不受破壞,經過高溫高濕以及溫度循環的測試仍能夠擁有低損耗的傳輸特性。
    由於矽材料本身在通訊波段上有極低的吸收損耗,並且易與矽晶圓上之積體電路元件整合或製程上的相容,可達成光電積體電路之標的。論文中介紹矽光波導之單多模現象,並以光波導延伸應用於微環形共振腔,且可作為微波相位延遲器之應用,以多模干涉器(Multimod interference, MMI)之波長不敏感特性作為次微米環型共振腔之功率耦合器,目標在於完成波長不敏感之環型共振腔,以調整光源之波長的方式可調整微波之相位,環長為110nm之環型共振腔實驗結果顯示,可調整350°的相位差。
      最後,除了一般水平的光連結外,為達成更高度的整合,45度的反射面可用以達成矽光波導與高分子波導的垂直的光學連結概念,實驗結果證實,可撓式光波導與矽光波導之光學連結於1310nm之光波長可擁有較低的損耗。結合可撓曲低損耗的高分子波導以及CMOS製程相容的矽光波導,將會是下世代光學連結的研究目標。


    Optical waveguide has been widely used in various applications because it is immunity to electromagnetic interference. The most common optical waveguide for long-distance transmission is optical fiber. Due to optical fibers offer the advantages of low propagation loss, light weight, and low costs, it has been widely applied to fiber-optics sensor as well. But optical fiber is difficult to achieve in-device integration. However, optical polymer waveguides and silicon waveguides can resolve this problem because of their ability to satisfy the high-density integration. In this thesis, we introduce these optical waveguides and their applications.
    We propose using a two-stage optical low-coherence Mach-Zehnder (MZ) interferometer containing a super-luminescent emitting diode (SLED) for fiber sensing sensitivity enhancement. This fiber-optic structure was used to several types of sensors such as strain, force, and birefringence sensors. An single mode fiber with a 3-m-long sensing arm exhibited strain and force sensitivities as high as 6.8 μm/με and 8.5 μm/mN, respectively. In addition, the beat-length value of a polarization-maintaining fiber (PMF) was measured using an optical MZ interferometer. The experimental results indicate that the birefringence values of 1-m and 3-m PM fibers were 3.85 × 10-4 and 3.92 × 10-4, respectively. Using an optical ruler derived from a 1310-nm wavelength distributed feedback (DFB) laser assisted by a stable stepper motor improved strain resolution. Theoretically, a 3-m-long fiber sensing arm in a MZ interferometer can be used to obtain a 2.7-nε high-strain resolution. The sensitivity values of 1-m and 30-m fiber strain sensing were 2.3 and 66.7 μm/με, respectively. The experimental results indicated that a long optical fiber provides high sensitivity.
    In addition, we propose using a flexible multimode waveguide for high-speed transmission. We demonstrated that a highly flexible multimode waveguide implemented on an electronic printed circuit board (PCB) can be used in folded-type applications. An optical interconnection using polymer waveguides on an optical and electronic printed circuit board (OEPCB) was designed and fabricated to achieve low optical propagation loss and a high-speed data rate. The optical flexible waveguides were fabricated using the roll-to-roll lamination method. To achieve a simple fabrication process and high position accuracy, the polymer waveguides were forming 45° reflective mirrors using dicing approach and followed by the e-beam deposition for 90° beam turning. To simplify the fabrication process, laser-to-waveguide and waveguide-to-detector coupling were implemented using the total internal reflection (TIR) method. A transmission rate of up to 12.5 Gb/s and an optical propagation loss of 0.1 dB/cm were produced using the board-embedded flexible polymer waveguide. The additional optical loss of 0.3 dB was experimentally shown on the 2-mm bending radius and 180° curvature angle.
    Because of the advantageous effects of silicon material on transparency in telecommunication wavelengths, complementary metal–oxide–semiconductor (CMOS)-compatible processing, and the high index contrast for a small footprint, the silicon-on-insulator (SOI) platform has attracted increasing attention for processing photonic integrated circuits in a massive electronics fabrication infrastructure. We developed the use of SOI photonic wire microring resonators, which use a multimode interference (MMI) coupler between the ring and waveguides. The MMI coupler exhibited a wide operating wavelength and high fabrication tolerance for maintaining insensitivity MMI-coupled ring resonator. The MMI-coupled ring resonator was designed and fabricated with a circumference of 110 μm and a stable quality factor of 1199 across a wide range of wavelengths. The use of a tunable microwave phase shifter (a tunable phase shift range of 350°) based on a wavelength-tuning SOI microring resonator, which can be tuned using a tunable laser source (TLS).
    Based on the rapid development of silicon and polymer waveguide transmissions, a concept of unidirectional interconnection between silicon and polymer waveguides is proposed in this study. The concept of combining flexible polymeric waveguide links with CMOS-compatible silicon waveguides is also proposed for next-generation applications.

    摘要 1-I Abstract 1-III 誌謝 1-VI Content 1-VII List of Figures 1-X Chapter 1 Introduction 1 Chapter 2 Fiber-optic Sensors 3 2.1 Overview 3 2.2 Theory of Fiber-optic Sensors 7 2.2.1 Fiber Strain 7 2.2.2 Fiber Bragg grating sensors 8 2.2.3 Monochromatic interferometry 11 2.2.4 Low-coherence interferometry 15 2.2.5 Optical MZ interferometer 21 2.2.6 Two-stage optical MZ interferometer 24 2.3 Experimental Result 27 2.3.1 Fiber Bragg grating strain sensor 27 2.3.2 Stepper motor resolution histogram 29 2.3.3 Experiment result of optical LCI sensor 31 2.3.4 MZ optical LCI for measuring birefringence 37 Chapter 3 Flexible Waveguide Implemented on PCB 43 3.1 Overview 43 3.2 Conceptual Structure of OEPCB 46 3.3 Optical Interconnection Loss Estimate of OEPCB 48 3.4 Fabrication of flexible optical waveguide 52 3.5 Optical loss of the flexible waveguide 55 3.5.1 Alignment setup of optical waveguide 55 3.5.2 Propagation loss 56 3.5.3 Bending loss 57 3.5.4 Alignment tolerance 58 3.5.5 Coupling loss 60 3.6 Reliability of flexible waveguide 65 3.7 High speed measurement 67 3.8 Total internal reflection method for optical vertical coupling 73 3.8.1 Conceptual Structure 73 3.8.2 Optical Interconnection Loss Estimates 75 3.8.3 Fabrication and Measurement 78 Chapter 4 Silicon Photonics Waveguides 81 4.1 Overview 81 4.2 Types of waveguide structure 83 4.3 Single Mode Condition 86 4.4 Optical Ring Resonator 90 4.5 Microwave Phase Shifter 95 4.7 Birefrigence of optical waveguide 103 Chapter 5 Conclusions 108 5.1 Conclusions regarding fiber-optics sensors 108 5.2 Conclusions regarding OEPCB 110 5.3 Conclusions regarding Silicon Photonics Waveguides 114 Chapter 6 Discussions and Future Works 116 6.1 High Resolution Fiber Sensor 116 6.2 Interconnection Between Silicon and Polymer Waveguides 116 6.3 Silicon Waveguides and Their Applications 117 Copyright Permission 134 Author Publication List 136

    [1] S. Berdague and P. Facq, “Mode division multiplexing in optical fibers, ” Applied Optics, vol. 21, No. 11, pp. 1950-1955 (1982)
    [2] B. H. Kim, S. H. Lee, D. H. Son, T. J. Ahn, S. E. Kim, and W. T. Han, “Optical properties of the fiber-optic temperature sensor based on the side-hole fiber filled with indium,” Applied Optics, Vol. 52, No.4, pp. 666-673 (2013)
    [3] S. Rota-Rodrigo, L. Rodriguez-Cobo, M. A. Quintela, J. M. Lopez-Higuera, and M. Lopez-Amo, “A switchable erbium doped fiber ring laser system for temperature sensors multiplexing,” IEEE Sensors Journal, Vol. 13, No. 6, pp. 2279-2283, (2013)
    [4] J. Lim, Q. P. Yang, B. E. Jones, and P. R. Jackson, “Strain and temperature sensors using multimode optical fiber Bragg gratings and correlation signal processing,” IEEE Transactions on Instrumentation and Measurement, Vol. 51, No. 4, pp. 622-627 (2002)
    [5] J. Wo, Q. Sun, H. Liu, X. Li, J. Zhang, D. Liu, and P. P. Shum, “Sensitivity-enhanced fiber optic temperature sensor with strain response suppression,” Optical Fiber Technology, Vol. 19, No. 4, pp. 289-292 (2013)
    [6] L. Wang, B. Zhou, C. Shu, and S. He, “Stimulated Brillouin scattering slow-light-based fiber-optic temperature sensor,” Optics Letters, Vol. 36, No. 3, pp. 427-429 (2011)
    [7] Y. Zou and X. Dong, “Demodulation of the FBG temperature sensor with the tunable twin-core fiber,” Microwave and Optical Technology Letters, Vol. 53, No. 1, pp. 81-84 (2011)
    [8] E. Li and G. D. Peng, “Wavelength-encoded fiber-optic temperature sensor with ultra-high sensitivity,” Optics Communications, Vol. 281, No. 23, pp. 5768-5770 (2008)
    [9] H. Y. Choi, K. S. Pack, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Optics Letters, Vol. 33, No. 21, pp. 2455-2457 (2008)
    [10] S. H. Hsu, C. Y. Tsou, M. S. Hsieh, and C. Y. Lin, “Low-coherence interferometric fiber sensor with improved resolution using stepper motor assisted optical ruler,” Optical Fiber Technology, Vol. 19, No. 3, pp. 223-226 (2013)
    [11] A. Abang and D. J. Webb, “Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors,” Optics Letters, Vol. 38, No. 9, pp. 1376-1378 (2013)
    [12] G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Optics Express, Vol. 13, No. 7, pp. 2377–2384 (2005)
    [13] Y. Peled, A. Motil, I. Kressel, and M. Tur, “Monitoring the propagation of mechanical waves using an optical fiber distributed and dynamic strain sensor based on BOTDA,” Optics Express, Vol. 21, No. 9, pp. 10697-10705 (2013)
    [14] Y. N. Tan, Y. Zhang, L. Jin, and B. O. Guan, “Simultaneous strain and temperature fiber grating laser sensor based on radio-frequency measurement,” Optics Express, Vol. 19, No. 21, pp. 20650-20656 (2011)
    [15] M. A. Soto, G. Bolognini, and F. Di Pasquale, “Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding,” IEEE Photonics Technology Letters, Vol. 21, No. 7, pp. 450-452 (2009)
    [16] O. Frazao, R. Oliveira, and I. Dias, “A simple smart composite using fiber Bragg grating sensors for strain and temperature discrimination,” Microwave and Optical Technology Letters, Vol. 51, No.1, pp. 235-239 (2009)
    [17] M. S. Muller, L. Hoffmann, A. Sandmair, and A. W. Koch, “Full strain tensor treatment of fiber Bragg grating sensors," IEEE Journal of Quantum Electronics, Vol. 45, No.5, pp. 547-553 (2009)
    [18] G. Durana, M. Kirchhof, M. Luber, I. S. De Ocariz, H. Poisel, J. Zubia, and C. Vazquez, “Use of a novel fiber optical strain sensor for monitoring the vertical deflection of an aircraft flap,” IEEE Sensors Journal, Vol. 9, No. 10, pp. 1219-1225 (2009)
    [19] S. Liehr, P. Lenke, M. Wendt, K. Krebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, and J. C. Munich, “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sensors Journal, Vol. 9, No. 11, pp. 1330-1338 (2009)
    [20] Q. Wu, A. M. Hatta, Y. Semenova, and G. Farrell, “Use of a single-multiple-single-mode fiber filter for interrogating fiber Bragg grating strain sensors with dynamic temperature compensation,” Applied Optics, Vol. 48, No. 29, pp. 5451-5458 (2009)
    [21] K. Li and Z. Zhou, “A high sensitive fiber Bragg grating strain sensor with automatic temperature compensation,” Chinese Optics Letters, Vol. 7, No. 3, pp. 191-193 (2009)
    [22] J. L. Tang and J. N. Wang, “Error analysis and measurement uncertainty for a fiber grating strain-temperature sensor,” Sensors, Vol. 10, No. 7, pp. 6582-6593 (2010)
    [23] W. Shin, Y. L. Lee, B. A. Yu, Y. C. Noh, and T. J. Ahn, “Highly sensitive strain and bending sensor based on in-line fiber Mach-Zehnder interferometer in solid core large mode area photonic crystal fiber,” Optics Communications, Vol. 283, No. 10, pp. 2097-2101 (2010)
    [24] W. Yuan, A. Stefani, and O. Bang, “Tunable polymer fiber Bragg grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technology Letters, Vol. 24, No. 5, pp. 401-403, (2012)
    [25] K. Y. Song and K. Hotate, “Distributed fiber strain sensor with 1-kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photonics Technology Letters, Vol. 19, No.23, pp. 1928-1930 (2007)
    [26] C. R. Dennison and P. M. Wild, “Superstructured fiber-optic contact force sensor with minimal cosensitivity to temperature and axial strain,” Applied Optics, Vol. 51, No. 1, pp. 1188-1197 (2012)
    [27] D. H. C. Wang, N. Blenman, S. Maunder, V. Patton, and J. Arkwright, “An optical fiber Bragg grating force sensor for monitoring sub-bandage pressure during compression therapy,” Optics Express, Vol. 21, No. 17, pp. 19799-19807 (2013)
    [28] X. Liu, I. I. Iordachita, X. He, R. H. Taylor, and J. U. King, “Miniature fiber-optic force sensor based on low-coherence Fabry-perot interferometry for vitreoretinal microsurgery,” Biomedical Optics Express, Vol. 3 No. 5, pp. 1062-1076, (2012)
    [29] L. Y. Shao and J. Albert, “Lateral force sensor based on a core-offset tilted fiber Bragg grating," Optics Communications, Vol. 284, No. 7, pp. 1855-1858 (2011)
    [30] A. Kulkarni, J. Na, Y. J. Kim, S. Baik, and T. Kim, “An evaluation of the optical fiber beam as a force sensor,” Optical Fiber Technology, Vol. 15, No. 2, pp. 131-135 (2009)
    [31] Y. Liu, K. S. Chiang, and P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switching actively mode-locked erbium-doped fiber laser,” Applied Optics, Vol. 44, No. 23, pp. 4822-4829 (2005)
    [32] W. Zhang, F. Li, and Y. Liu, “Fiber Bragg grating pressure sensor with ultrahigh sensitivity and reduced temperature sensitivity," Optical Engineering, Vol. 48, No. 2, pp. 024402 (2009)
    [33] Q. Wang, L. Zhang, C. Sun, and Q. Yu, “Multiplexed fiber-optic pressure and temperature sensor system for down-hole measurement,” IEEE Sensors Journal, Vol. 8, No. 11, pp. 1879-1883 (2008)
    [34] M. Jiang, “A fiber optic faint pressure sensor used in high-temperature environment,” Microwave and Optical Technology Letters, Vol. 55, No. 8, pp. 1891-1893 (2013)
    [35] L. Jin, B. O. Guan, and H. Wei, “Sensitivity characteristics of fabry-perot pressure sensors based on hollow-core microstructured fibers,” Journal of Lightwave Technology, Vol. 31, No. 15, pp. 2526-2532 (2013)
    [36] Y. Jiang, J. Zhao, D. Yang, and D. Tang, “High-sensitivity pressure sensors based on mechanically induced long-period fiber gratings and fiber loop ring-down,” Optics Communications, Vol. 283, No. 20, pp. 3945-3948 (2010)
    [37] J. Gan, L. Shen, Q. Ye, Z. Pan, H. Cai, and R. Qu, “Orientation-free pressure sensor based on π-shifted single-mode-fiber Sagnac interferometer,” Applied Optics, Vol. 49, No. 27, pp. 5043-5048 (2010)
    [38] H. Y. Fu, C. Wu, M. L. V. Tse, L. Zhang, K. C. D. Cheng, H. Y. Tam, Bai-Ou Guan, and C. Lu, “High pressure sensor based on photonic crystal fiber for downhole application,” Applied Optics, Vol. 49, No. 14, pp. 2639-2643 (2010)
    [39] L. Li, X. Dong, L. Shao, C. L. Zhao, and Y. Sun, “Temperature-independent acceleration measurement with a strain-chirped fiber Bragg grating,” Optoelectronics and Advanced Materials, Rapid Communications, Vol. 4, No. 7, pp. 943-946 (2010)
    [40] L. Q. Sun, B. Dong, Y. X. Wang, E. Lally, and A. B. Wang, “Temperature-insensitive fibre-optic acceleration sensor based on intensity-referenced fibre bragg gratings,” Chinese Physics Letters, Vol. 25, No. 10, pp. 3593-3596 (2008)
    [41] H. H. Xie, X. F. Jiang, H. Yan, and Y. Q. Huang, “Study of temperature decoupling fiber acceleration sensor based on the dual-FP structure,” Applied Mechanics and Materials, Vol. 201-202, pp. 226-229 (2012)
    [42] S. Tai, K. Kyuma, and M. Nunoshita, “Fiber-optic acceleration sensor based on the photoelastic effect,” Applied Optics, Vol. 22, No. 11, pp. 1771-1774 (1983)
    [43] O. H. Waagaard, G. B. Havsgard, and G. Wang, “An investigation of the pressure-to-acceleration responsivity ratio of fiber-optic mandrel hydrophones,” Journal of Lightwave Technology, Vol. 19, No. 7, pp. 994-1003 (2001)
    [44] J. Wang, H. Liang, X. Dong, and Y. Jin, “A temperature-insensitive relative humidity sensor by using polarization maintaining fiber-based sagnac interferometer,” Microwave and Optical Technology Letters, Vol. 55, No. 10, pp. 2305-2307 (2013)
    [45] X. Wang, C. L. Zhao, J. Li, Y. Jin, M. Ye, and S. Jin, “Multiplexing of PVA-coated multimode-fiber taper humidity sensors,” Optics Communications, Vol. 308, No. 1, pp. 11-14 (2013)
    [46] G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sensors and Actuators, B: Chemical, Vol. 177, pp. 94-102 (2013)
    [47] Z. Zhao and Y. Duan, “A low cost fiber-optic humidity sensor based on silica sol-gel film,” Sensors and Actuators, B: Chemical, Vol. 160, No. 1, pp. 1340-1345 (2011)
    [48] B. Gu, M. Yin, A. P. Zhang, J. Qian, and S. He, “Optical fiber relative humidity sensor based on FBG incorporated thin-core fiber modal interferometer,” Optics Express, Vol. 19, No. 5, pp. 4140-4146 (2011)
    [49] T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Characterisation of a polymer-coated fibre Bragg grating sensor for relative humidity sensing,” Sensors and Actuators, B: Chemical, Vol. 110, No. 1, pp. 148-156 (2005)
    [50] M. A. Haidekker, W. J. Akers, D. Fischer, and E. A. Theodorakis, “Optical fiber-based fluorescent viscosity sensor,” Optics Letters, Vol. 31, No.17, pp. 2529-2531 (2006)
    [51] M. Ohashi, M. Tateda, K. Shiraki, and K. Tajima, “Imperfection loss reduction in viscosity-matched optical fibers,” IEEE Photonics Technology Letters, Vol. 5, No. 7, pp. 812–814 (1997)
    [52] R. Garg, S. M. Tripathi, K. Thyagarajan, and W. J. Bock, “Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications,” Sensors and Actuators, B: Chemical, Vol. 176, pp. 1121-1127 (2013)
    [53] Z. Rosenzweig and R. Kopelman, “Analytical Properties and Sensor Size Effects of a Micrometer-Sized Optical Fiber Glucose Biosensor,” Analytical Chemistry, Vol. 68, No.8, pp. 1408-1413 (1996)
    [54] S. M. Gautier, L. J. Blum, and P. R. Coulet, “Bioluminescence-based fibre-optic sensor with entrapped co-reactant: An approach for designing a self-contained biosensor,” Analytica Chimica Acta, Vol. 243, No. 2, pp. 149-156 (1991)
    [55] M. H. Chiu, S. F. Wang, and R. S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Optics Letters, Vol. 30, No. 3, pp. 233-235 (2005)
    [56] Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Optics Letters, Vol. 30, No. 9, pp. 1021-1023 (2005)
    [57] P. Wei, X. Shan, and X. Sun, “Frequency response of distributed fiber-optic vibration sensor based on nonbalanced Mach-Zehnder interferometer,” Optical Fiber Technology, Vol. 19, No. 1, pp. 47-51 (2013)
    [58] K. Wada, H. Narui, D. Yamamoto, T. Matsuyama, and H. Horinaka, “Balanced polarization maintaining fiber Sagnac interferometer vibration sensor,” Optics Express, Vol. 19, No.22, pp. 21467-21474 (2011)
    [59] L. Gao, S. Liu, Z. Yin, L. Zhang, L. Chen, and X. Chen, “Fiber-optic vibration sensor based on beat frequency and frequency-modulation demodulation techniques,” IEEE Photonics Technology Letters, Vol. 23, No. 1, pp. 18-20 (2011)
    [60] I. Lujo, P. Klokoc, T. Komljenovic, M. Bosiljevac, and Z. Sipus, “Fiber-optic vibration sensor based on multimode fiber,” Radioengineering, Vol. 17, No. 2, pp. 93-97 (2008)
    [61] A. W. Domański, T. Poczesny, K. Prokopczuk, and P. Makowski, “An optical fiber loop sensor for vibration monitoring,” Photonics Letters of Poland, Vol. 2, No. 2, pp. 58-60 (2010)
    [62] K. T. V. Grattan and T. Sun, “Fiber optic sensor technology: An overview,” Sensors and Actuators, A: Physical, Vol. 82, No. 1, pp. 40-61 (2000)
    [63] Y. J. Rao, “Recent progress in applications of in-fibre Bragg grating sensors,” Optics and Lasers in Engineering, Vol. 31, No. 4, pp. 297-324 (1999)
    [64] G. Pereira, C. Frias, H. Faria, O. Frazao, and A. T. Marques, “On the improvement of strain measurements with FBG sensors embedded in unidirectional composites,” Polymer Testing, Vol. 32, No. 1, pp. 99-105 (2013)
    [65] W. Zhang, X. Dong, Q. Zhao, G. Kai, and S. Yuan, “FBG-type sensor for simultaneous measurement of force (or displacement) and temperature based on bilateral cantilever beam,” IEEE Photonics Technology Letters, Vol. 13, No. 12, pp. 1340-1342 (2001)
    [66] Y. Chen, L. J. Chen, H. L. Liu, and K. Wang, “Research on FBG sensor signal wavelength demodulation based on improved wavelet transform,” Optik, Vol. 124 No. 21, pp. 4802-4804 (2013)
    [67] Q. Zhang, T. Zhu, J. Zhang, and K. S. Chiang, “Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature,” IEEE Photonics Technology Letters, Vol. 25, No. 18, pp. 1751-1753 (2013)
    [68] X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Applied Physics Letters, Vol. 90, No. 15, pp. 151113 (2007)
    [69] J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Applied Physics Letters, Vol. 91, No. 9, pp. 091109, 2007
    [70] M. Silva-Lopez, A. Fender, W. N. MacPherson, J. S. Barton, J. D. C. Jones, D. Zhao, H. Dobb, D. J. Webb, L. Zhang, and I. Bennion, “Strain and temperature sensitivity of a single-mode polymer optical fiber,” Optics Letters, Vol. 30, No. 23, pp. 3129-3131 (2005)
    [71] M. Pozzi, D. Zonta, H. Wu, and D. Inaudi, “Development and laboratory validation of in-line multiplexed low-coherence interferometric sensors,” Optical Fiber Technology, Vol. 14, No. 4, pp. 281-293 (2008)
    [72] Y. Hu, S. Chen, L. Zhang, and I. Bennion, “Multiplexing Bragg gratings using combined wavelength and spatial division techniques with digital resolution enhancement,” Electronics Letters, Vol. 33, No. 23, pp. 1973-1975 (1997)
    [73] J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Optics Letters, Vol. 34, No. 16, pp. 2441-2443 (2009)
    [74] Z. Huang, Y. Zhu, X. Chen, and A. Wang, “Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements,” IEEE Photonics Technology Letters, Vol. 17, No. 11, pp. 2403-2405 (2005)
    [75] X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Applied Optics, Vol. 45, No. 30, pp. 7760-7766 (2006)
    [76] B. Dong, D. P. Zhou, L. Wei, W. K. Liu, and J. W. Y. Lit, “Temperature-and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Optics Express, Vol. 16, No. 23, pp. 19291-19296 (2008)
    [77] S. Liehr, P. Lenke, K. Krebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, J. C. Munich, and L. Stempniewski, “Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles,” Proceedings of SPIE - The International Society for Optical Engineering, Strasbourg, France, p. 700302 (2008)
    [78] Y. Mizuno, W. Zou, Z. He, and K. Hotate, “Proposal of Brillouin optical correlation-domain reflectometry (BOCDR),” Optics Express, Vol. 16, No. 16, pp. 12148-12153 (2008)
    [79] M. Jedrzejewska-Szczerska, M. Gnyba, and B. B. Kosmowski, “Low-coherence fibre-optic interferometric sensors,” Acta Physica Polonica A, Vol. 120, No. 4, pp. 621-624 (2011)
    [80] L. Yuan, J. Yang, L. Zhou, W. Jin, and X. Ding, “Low-coherence Michelson interferometric fiber-optic multiplexed strain sensor array: A minimum configuration,” Applied Optics, Vol. 43, No. 16 , pp. 3211-3216 (2004)
    [81] G. Cumunel, S. Delepine-Lesoille, and P. Argoul, “Long-gage optical fiber extensometers for dynamic evaluation of structures,” Sensors and Actuators, A: Physical, Vol. 184, pp. 1-15 (2012)
    [82] Y. J. Rao and D. A. Jackson, “Recent progress in fibre optic low-coherence interferometry,” Measurement Science and Technology, Vol. 7, No. 7, pp. 981-999 (1996)
    [83] F. Xie, J. Wang, S. Ma, and Y. Liu, “Research on an optical fiber low-coherence interferometric sensing system with dual-interferometry,” Optik, Vol. 124, No. 16, pp. 2349-2353 (2013)
    [84] J. Schmit and A. Olszak, “High-precision shape measurement by white-light interferometry with real-time scanner error correction,” Applied Optics, Vol. 41, No. 28, pp. 5943-5950 (2002)
    [85] Z.C. Zhuo, B.S. Ham, “A temperature-insensitive strain sensor using a fiber Bragg grating,” Optical Fiber Technology, Vol. 15, No. 5-6 , pp. 442-444 (2009)
    [86] M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, “Optical fiber component characterization by high-intensity and high-spatial-resolution interferometric optical-time-domain reflectometer,” IEEE Photonics Technology Letters, Vol. 3, No. 6, pp. 564-566 (1991)
    [87] M. Laubscher, L. Froehly, B. Karamata, R. P. Salathe, and T. Lasser, “Self-referenced method for optical path difference calibration in low-coherence interferometry,” Optics Letters, Vol. 28, No. 24, pp. 2476-2478 (2003)
    [88] C. D. Butter and G. B. Hocker, “Fiber optics strain gauge,” Applied Optics, Vol. 17, No. 18, pp. 2867-2869 (1978)
    [89] A. Bertholds and R. Dandliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” Journal of Lightwave Technology, Vol. 6, No. 1 , pp. 17-20 (1988)
    [90] A. Iadicicco, A. Cutolo and A. Cusano, “Fiber Bragg grating sensors advancements and industrial applications,” Advances in Science and Technology, Vol. 55, pp. 213-222 (2008)
    [91] R. Youngquist, S. Carr, and D. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Optics Letters, Vol. 12, No. 3, pp. 158-60 (1987)
    [92] H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, “Submillimeter optical reflectometry,” IEEE Journal of Lightwave Technology, Vol. 7, No. 8, pp. 1225-1233 (1989)
    [93] K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Applied Optics, Vol. 26, No. 9, pp. 1603-1608 (1987)
    [94] Paul R. Herz, “Minimally Invasive Diagnostic Imaging using High Resolution Optical Coherence Tomography,” Ph.D dissertation, Massachusetts Institute of Technology, Massachusetts, USA (2004)
    [95] T. Vo-Dinh, “Biomedical Photonics Handbook,” CRC Press, (2003)
    [96] E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Optics Letters, Vol. 17, No. 2, pp. 151-153 (1992)
    [97] M. Kobayashi, H. F. Taylor, K. Takada, and J. Noda, “Optical Fiber Component Characterization by High-Intensity and High-Spatial-Resolution Interferometric Optical-Time-Domain Reflectometer,” IEEE Photonics Technology Letters, Vol. 3, No. 6, pp. 564-566 (1991)
    [98] A. Sun, Y. Semenova, G. Farrell, B. Chen, G. Li, and Z. Lin, “BOTDR integrated with FBG sensor array for distributed strain measurement,” Electronics Letters, Vol. 46, No. 1, pp. 66-68 (2010)
    [99] Z. Yang, H. Xu, K. Ni, and X. Dong, “Simultaneous measurement of force and temperature with a single FBG partially encapsulated with a metal cannula,” Microwave and Optical Technology Letters, Vol. 53, No. 7, pp. 1656-1658 (2011)
    [100] A. Mendez and T. F. Morse, “Specialty optical fibers handbook,” Elsevier, pp. 243-275 (2007)
    [101] Y. Yang, W. Duan, and M. Ye, “High precision measurement technology for beat length of birefringence optical fiber,” Measurement Science and Technology, Vol. 24, No. 2, pp.025201 (2013)
    [102] S. Uhlig and M. Robertsson, “Limitations to and solutions for optical loss in optical backplanes,” Journal of Lightwave Technology, Vol. 24, No. 4, pp. 1710-1724 (2006)
    [103] D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proceedings of the IEEE, Vol. 88, No. 6, pp. 728-749 (2000)
    [104] B. S. Rho, W. J. Lee, J. W. Lim, G. W. Kim, C. H. Cho, and S. H. Hwang, “High-reliability flexible optical printed circuit board for opto-electric interconnections,” Optical Engineering, Vol. 48, No. 1, pp. 015401 (2009)
    [105] R. Bruck, P. Muellner, N. Kataeva, A. Koeck, S. Trassl, V. Rinnerbauer, K. Schmidegg, R. Hainberger, “Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process,” Applied Optics, vol. 52 (19), pp. 4510-4514 (2013)
    [106] J. J. Yang, A. S. Flores, and M. R. Wang, “Array waveguide evanescent ribbon coupler for card-to-backplane optical interconnects,” Optics Letters, Vol. 32, No. 1, pp. 14-16 (2007)
    [107] E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photonics Technology Letters, Vol. 22, No. 5, pp. 287-289 (2010)
    [108] S. Kopetz, E. Rabe, and A. Neyer, “High-temperature stable flexible polymer waveguide laminates,” Electronics Letters, Vol.42, No. 11, pp. 634-635 (2006)
    [109] J. J. Dumond and H. Y. Low, “Recent developments and design challenges in continuous roller micro and nanoimprinting,” Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures, Vol. 30, No. 1, pp. 010801 (2012)
    [110] C. Y. Tsou, S. H. Hsu, C. M. Wang, and S. C. Tseng, “12.5-Gb/s highly flexible 180° polymer waveguide on optical and electronic printed circuit board,” Microwave and Optical Technology Letters, Vol. 55, No. 9 , pp. 1999-2003 (2013)
    [111] B. S. Rho, W. J. Lee, J. W. Lim, K. Y. Jung, K. S. Cha, and S. H. Hwang, “Fabrication and reliability of rigid-flexible optical electrical printed circuit board for mobile devices,” IEEE Photonics Technology Letters, Vol. 20, No. 12, pp. 964-966 (2008)
    [112] C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” Journal of Lightwave Technology, Vol. 22, No. 9, pp. 2168-2176 (2004)
    [113] X. Wang, W. Jiang, L. Wang, H. Bi, and R. T. Chen, “Fully Embedded Board-Level Optical Interconnects From Waveguide Fabrication to Device Integration,” Journal of Lightwave Technology, Vol. 26, No. 2, pp. 243-250 (2008)
    [114] F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-cased transceivers,” IEEE Transactions on Advanced Packaging, Vol. 32, No. 2, pp. 345-359 (2009)
    [115] X. Dou, X. Wang, X. Lin, D. Ding, D. Z. Pan, R. T. Chen, and I, Fellow, “Highly flexible polymeric optical waveguide for out-of-plane optical interconnects,” Optics Express, Vol. 18, No. 15, pp. 16227-16233 (2010)
    [116] X. Dou, A. X. Wang, X. Lin, and R. T. Chen, “Photolithography-free polymer optical waveguide arrays for optical backplane bus,” Optics Express, Vol. 19, No. 15, pp. 14403-14410 (2011)
    [117] R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, D. R. Selviah, “FirstLight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” Journal of Lightwave Technology, Vol. 30, No. 21, pp. 3316-3329 (2012)
    [118] L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, and R. Chen, “45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Applied Physics Letters, Vol. 87, No. 14, pp. 1-3 (2005)
    [119] S. H. Hwang, W. J. Lee, J. W. Lim, K. Y. Jung, K. S. Cha, and B. S. Rho, “Chip- and board-level optical interconnections using rigid flexible optical electrical printed circuit boards,” Optics Express, Vol. 16, No. 11, pp. 8077-8083 (2008)
    [120] E. Bosman, G. Van Steenberge, P. Geerinck, W. Christiaens, J. Vanfleteren, and P. Van Daele, “Embedding of optical interconnections in flexible electronics,” Proceedings - Electronic Components and Technology Conference, No. 4250046, pp. 1281-1287 (2007)
    [121] E. Bosman, J. Missinne, B.V. Hoe, G.V. Steenberge, S. Kalathimekkad, J.V. Erps, I. Milenkov, K. Panajotov, T.V. Gijseghem, P. Dubruel, H. Thienpont, and P.V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE Journal on Selected Topics in Quantum Electronics, Vol. 17, No. 3, pp. 617-628 (2011)
    [122] W. J. Lee, S. H. Hwang, J. W. Lim, and B. S. Rho, “Polymeric Waveguide Film With Embedded Mirror for Multilayer Optical Circuits,” IEEE Photonics Technology Letters, Vol. 21, No. 1, pp. 12-14 (2009)
    [123] N. Hendrickx, J. U. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded Micromirror Inserts for Optical Printed Circuit Boards,” IEEE Photonics Technology Letters, Vol. 20, No. 20, pp. 1727-1729 (2008)
    [124] S. H. Hwang, M. H. Cho, S. K. Kang, H. H. Park, H. S. Cho, S. H. Kim, K.U. Shin, and S. W. Ha, “Passively assembled optical interconnection system based on an optical printed-circuit board,” IEEE Photonics Technology Letters, Vol. 18, No. 5, pp. 652-654 (2006)
    [125] J. S. Kim and J. J. Kim, “Fabrication of multimode polymeric waveguides and micromirrors using deep X-ray lithography,” IEEE Photonics Technology Letters, Vol. 16, No. 3 , pp. 798-800 (2004)
    [126] J. H. Kim and R. T. Chen, “A collimation mirror in polymeric planar waveguide formed by reactive ion etching,” IEEE Photonics Technology Letters, Vol. 15, No. 3, pp. 422-424 (2003)
    [127] Y. Matsuoka, D. Kawamura, K. Adachi, Y. Lee, S. Hamamura, T. Takai, T. Shibata, N. Chujo, and T. Sugawara, “20-Gb/s/ch high-speed low-power 1-Tb/s multilayer optical printed circuit board with lens-integrated optical devices and CMOS IC,” IEEE Photonics Technology Letters, Vol. 23, No. 18, pp. 1252-1354 (2011)
    [128] X. Dou, X. Wang, X. Lin, D. Ding, D. Z. Pan, R. T. Chen, and I. Fellow, “Highly flexible polymeric optical waveguide for out-of-plane optical interconnects,” Optics Express, Vol. 18, No. 15, pp. 16227-16233 (2010)
    [129] F. E. Doany, B. G. Lee, D. M. Kuchta, A. V. Rylyakov, C. Baks, C. Jahnes, F. Libsch, and C. L. Schow, “Terabit/Sec VCSEL-based 48-channel optical module based on holey CMOS transceiver IC,” Journal of Lightwave Technology, Vol. 31, No. 4, pp. 672-680 (2013)
    [130] C. -M. Huang “The CMOS Compatible Process Development for Silicon Photonics Components Technology,” Master dissertation, National Taiwan University of Science and Technology, Taiwan (2008)
    [131] B. Jalali and S. Fathpour,“Silicon photonics,” Journal of Lightwave Technology, vol. 24, No. 12, pp. 4600-4615 (2006)
    [132] R. Soref and J. Lorenzo, “All-Silicon Active and Passive Guided-Wave Components for λ = 1.3 and 1.6 μm,” IEEE Journal of Quantum Electronics, vol. 22, No. 6, pp. 873-879 (1986)
    [133] R. A Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE Journal of Quantum Electronics., vol.27, no.8, pp.1971-1974, 1991.
    [134] O. Powell, “Single-mode condition for silicon rib waveguides,” Journal of Lightwave Technology, vol. 20, No. 10, pp. 1851-1855 (2002)
    [135] S. H. Hsu, “SOI modal dispersion using Mach-Zehnder interferometer for mode-division multiplexing,” Electronics Letters, vol. 48, No.14, pp. 864-866, (2012)
    [136] Y. -L. Lin, “Coupling Efficiency Study on Silicon Wire Interface,” Master dissertation, National Taiwan University of Science and Technology, Taiwan (2010)
    [137] T. Aalto, “Microphotonics silicon waveguide components,” VTT, Finland, pp.27-28 (2004)
    [138] D. Dai, Y. Shi, and S. He, “Characteristic analysis of nanosilicon rectangular waveguides for planar light-wave circuits of high integration,” Applied Optics, vol. 45, No.20, pp. 4941-4946 (2006)
    [139] D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delage, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,”Optics Express, vol. 15, No. 6, pp. 3149-3155 (2007)
    [140] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi and J. -P. Laine, “Microring resonator channel dropping filters,” Journal of Lightwave Technology, Vol. 15, No. 6, pp. 998-1005 (1997).
    [141] A. Yalcin, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. Little O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. S. Unlu, “Optical sensing of biomolecules using microring resonators,” IEEE Journal on Selected Topics in Quantum Electronics, Vol. 12, No. 1, 148-154 (2006)
    [142] J. Niehusmann, A. Vockel, P. H. Bolivar, T. Wahlbrink and W. Henschel, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Optics Letters, Vol. 29, No. 24, pp. 2861-2863 (2004)
    [143] D. -X. Xu, S. Janz and P. Cheben, “Design of polarization-insensitive ring resonators in SOI using cladding stress engineering and MMI Couplers,” Photonics Technology Letters, Vol. 18, No.2, pp. 343-345 (2006).
    [144] P. Besse, E. Gini, M. Bachmann and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” Journal of Lightwave Technology, Vol. 14, No. 10, pp. 2286-2293 (1996)
    [145] D. J. Thomson, Y. Hu, G. T. Reed, J. M. Fedeli, “Low Loss MMI Couplers for High Performance MZI Modulators,” Photonics Technology Letters, Photonics Technology Letters, Vol. 22, No.20, pp.1485-14870 (2010)
    [146] A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technology Letters, Vol. 18, No. 1, pp. 208 -210 (2006)
    [147] W. Xue, S. Sales, J. Capmany, and J. Mork, “Microwave phase shifter with controllable power response based on slow- and fast-light effects in semiconductor optical amplifiers, ” Optics Letters, Vol. 34, No. 7, pp. 929–931 (2009)
    [148] M. R. Fisher, and S. L. Chuang, “A microwave photonic phase-shifter based on wavelength conversion in a DFB laser, ” IEEE Photonics Technology Letters, Vol. 18, No. 16, pp. 1714 - 1716 (2006)
    [149] Yi Dong, H. He, and W. Hu, “Photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a Mach–Zehnder interferometer, ” Optics Letters, Vol. 32, No. 7, pp. 745-747 (2007)
    [150] M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable microwave phase shifter based on silicon-on-insulator microring resonator, ” IEEE Photonics Technology Letters, Vol. 22, No. 12,pp. 869–871 (2010)
    [151] M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator, ” Optics Express, Vol. 18, No. 6,pp. 6172-6182 (2010)
    [152]S. H. Hsu, Y. C. Yang, C. Y. Tsou, C. T. Yang, S. M. Wang, and Y. S. Lai, “Microwave phase shifter with 25-GHz dense wavelength division multiplexing channel spacing tuning using multimode interferometer-coupled microring resonator,”Optical Engineering, Vol. 52, No. 10, pp. 100501 (2013)
    [153] E. Dulkeith, F. Xia, L. Schares, W. J. Green, and Y. A. Vlasov,“Group index and group velocity dispersion in silicon- on-insulator photonic wires,” Optics Express, Vol.14, No.9, pp.3853–3863 (2006)
    [154] T. -J. Lu, “Silicon Wire Study on Chromatic Dispersion and Group Birefringence,” Master dissertation, National Taiwan University of Science and Technology, Taiwan (2011)
    [155] W. N. Ye, D. X. Xu, S. Janz, P. Cheben, M. J. Picard, B. Lamontagne, and N. G. Tarr, “Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides,” Journal of Lightwave Technology, Vol. 23, No.3, pp. 1308-1318 (2005)
    [156] C.-T. Yang, “Microwave Phase Study by SOI Optical Ring Resonator,” Master dissertation, National Taiwan University of Science and Technology, Taiwan (2012)

    無法下載圖示 全文公開日期 2019/02/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE