簡易檢索 / 詳目顯示

研究生: 張威千
Wei-Chien Chang
論文名稱: 光波導耦合器波長響應對於頻域光學同調斷層掃描系統靈敏度之影響
Optical Waveguide Coupler Wavelength Response Effect on the Spectral-Domain Optical Coherence Tomography Sensitivity
指導教授: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-Hung Lin
口試委員: 徐世祥
Shih-Hsiang Hsu
林保宏
Pao-Hung Lin
黃升龍
Sheng-Lung Huang
蔡孟燦
Meng-Tsan Tsai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 70
中文關鍵詞: 光學同調斷層掃描光波導波長平坦度靈敏度
外文關鍵詞: Optical Coherence Tomography, Optical Waveguide, Wavelength Flatness, Sensitivity
相關次數: 點閱:317下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學同調斷層掃描(Optical coherence tomography, OCT) 有著高解析度、非侵入式即時成像的特點,可在不破壞樣品結構的情況下能在短時間內重建出掃描樣品的深度影像,目前廣泛運用於醫學方面的研究,如眼科、牙科和心臟外科等。OCT系統整體結構佔用較大的體積,本論文藉由絕緣體上覆矽(Silicon-on-insulator, SOI)技術作為縮小系統元件體積之應用,架設OCT時依實驗需求選擇適合的光源與元件,系統中光波導耦合器(Optical waveguide coupler)元件的功能將光源分成不同比例的光入射至樣品臂與參考臂,然而不同耦合器間有不同波長響應的平坦度(Flatness),因為平坦度愈佳表示不同波長下分光比愈保持相同的光強度,平坦度愈差則會影響到影像的品質,透過理論驗證出波導耦合器的非平坦波長響應會降低系統感測靈敏度,耦合器寬頻響應對於OCT系統檢測性能是最重要的。
    本論文中,首先架設光纖型SD-OCT系統,並量測系統的縱向解析度、橫向解析度與靈敏度,然後以不同波長響應平坦度的光波導耦合器各別取代SD-OCT系統中光纖耦合器部分進行實驗比較,觀察不同波長平坦度對於OCT系統靈敏度之影響,我們以標準差定義波長平坦度,實驗結果為若波長平坦度標準差越小則SD-OCT系統靈敏度越好,標準差越大則靈敏度下降。


    Optical coherence tomography (OCT) owns high-resolution, non-invasive real-time imaging characteristics, and can reconstruct the depth of the scanned samples in a short time without damage. The OCT system is currently widely utilized in medical research such as ophthalmology, dentistry, cardiac surgery, etc., but suffers from the bulky size. The on-chip level OCT in silicon-on-insulator (SOI) platforms is then studied in this thesis for a small footprint application.
    When setting up the OCT system, we should adopt the appropriate light source and components according to experimental needs. The optical waveguide coupler component in the system separates the light source into different portions of light, which will enter the sample and the reference arms, respectively. However, the non-flat wavelength response of waveguide couplers in OCT will degrade sensing sensitivity. The coupler broadband response is the current need to maintain the OCT performance.
    In this thesis, a fiber based spectral-domain OCT (SD-OCT) will first be studied to accurately demonstrate the sensitivity, axial, and lateral resolutions. And then the silicon-wire couplers with different bandwidth flatness will replace the fiber coupler for OCT performance characterization. The experimental results demonstrate that the smaller the standard deviation of the wavelength flatness is, the better the SD-OCT sensitivity is, and the larger the standard deviation is, the lower the sensitivity is.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 光學同調斷層掃描介紹 2 1.2.2 光學同調斷層掃描技術演進 3 1.2.3 矽晶片型光學同調斷層掃描系統 3 1.3 論文架構 4 第二章 光學同調斷層掃描原理 5 2.1 操作原理與基本設置 5 2.2 時域式光學同調斷層掃描技術(TD-OCT) 10 2.3 頻域式光學同調斷層掃描技術(SD-OCT) 11 2.4 掃頻式光學同調斷層掃描技術(SS-OCT) 12 2.5 光學同調斷層掃描技術之比較 13 2.6 物體空間掃描 13 2.7 影像解析度 14 2.7.1 縱向解析度 14 2.7.2 橫向解析度 17 2.8 生物組織光學特性 19 第三章 光波導耦合器與波長響應平坦度原理 21 3.1 波導理論 21 3.2 光波導耦合器介紹 22 3.3 系統靈敏度介紹 23 3.4 波長響應平坦度介紹 24 第四章 系統架構與實驗方法 26 4.1 實驗系統架構 26 4.2 波導耦合平台 28 4.3 光源與光學元件介紹 29 4.4 樣品臂掃描系統架構 31 4.5 參考臂架構 33 4.6 影像擷取系統 34 4.7 訊號處理流程 36 第五章 結果與討論 37 5.1 空間解析度量測 37 5.1.1 縱向解析度 37 5.1.2 系統靈敏度測試 38 5.1.3 橫向解析度 40 5.2 蓋玻片量測 41 5.3 光波導耦合器靈敏度量測 42 5.3.1 分光比與靈敏度量測結果 42 5.3.2 量測結果比較 48 第六章 結論與未來展望 53 6.1 結論 53 6.2 未來展望 54 參考文獻 55

    [1]J. Vaughan, C. Snyder, L. DelaBarre, J. Tian, C. Akgun, K. Ugurbil, C. Olson and A. Gopinath, "Current and future trends in magnetic resonance imaging (MRI)," 2006 IEEE MTT-S International Microwave Symposium Digest, 2006.
    [2]C. Beckmann and S. Smith, "Probabilistic independent component analysis for functional magnetic resonance imaging," IEEE Transactions on Medical Imaging, vol. 23, no. 2, pp. 137-152, 2004.
    [3]P. La Riviere, P. Vargas, G. Fu and L. Meng, "Accelerating X-ray fluorescence computed tomography," 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009.
    [4]V. Daeichin, K. Kooiman, I. Skachkov, J. Bosch, A. van der Steen and N. de Jong, "Optimization of ultrasound contrast agent for high frequency ultrasound molecular imaging using subharmonic oscillation," 2014 IEEE International Ultrasonics Symposium, 2014.
    [5]M. Rajadhyaksha, "Confocal microscopy of skin cancers: translational advances toward clinical utility," 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009.
    [6]S. Silva, A. Batista, J. Domingues, M. Quadrado and M. Morgado, "Fluorescence lifetime microscope for corneal metabolic imaging," 2015 IEEE 4th Portuguese Meeting on Bioengineering (ENBENG), 2015.
    [7]D. Winters, J. Speirs, E. Block, R. Bartels and J. Squier, "High-speed two-dimensional multiphoton microscope using spatial modulation," Conference on Lasers and Electro-Optics 2012, 2012.
    [8]D. Popescu, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif and M. Sowa, "Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications," Biophysical Reviews, vol. 3, no. 3, pp. 155-169, 2011.
    [9]D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito and J. G. Fujimoto, "Optical coherence tomography," Science, vol. 254, no. 5035, pp. 1178-1181, 1991.
    [10]W. Drexler and J. G. Fujimoto, "Optical coherence tomography: technology and applications." (Springer Science & Business Media, 2008).
    [11]R. C. Youngquist, S. Carr, and D. Davies, "Optical coherence domain reflectometry: a new optical evaluation technique, " Optics Letters, vol. 12, no. 3, pp. 158-160, 1987.
    [12]A. Fercher, W. Drexler, C. Hitzenberger and T. Lasser, "Optical coherence tomography - principles and applications," Reports on Progress in Physics, vol. 66, no. 2, pp. 239-303, 2003.
    [13]R. Leitgeb, C. Hitzenberger and A. Fercher, "Performance of Fourier domain vs time domain optical coherence tomography," Optics Express, vol. 11, no. 8, p. 889, 2003.
    [14]B. Akca, Van. Nguyen, J. Kalkman, N. Ismail, G. Sengo, F. Sun, A. Driessen, T. Leeuwen, M. Pollnau, K. Wörhoff and R. Ridder ,"Toward spectral-domain optical coherence tomography on a chip," IEEE Journal of Selected Topics in Quantum Electronics, vol. 18, no. 3, pp. 1223-1233, 2012.
    [15]G. Yurtsever, N. Weiss, J. Kalkman, T. van Leeuwen and R. Baets, "Ultra-compact silicon photonic integrated interferometer for swept-source optical coherence tomography," Optics Letters, vol. 39, no. 17, p. 5228, 2014.
    [16]K. Neuhaus, P. McNamara, S. Alexandrov, S. O’Gorman, J. Hogan, C. Wilson and
    M. Leahy, "Performance review of multiple reference versus time domain optical coherence tomography," IEEE Photonics Journal, vol. 10, no. 3, pp. 1-14, 2018.
    [17]P. Li, Y. He and H. Ma, "Spectral-domain optical coherence tomography and applications for biological imaging,"2006 International Symposium on Biophotonics, Nanophotonics and Metamaterials, 2006.
    [18]J. Zhang, B. Rao and Z. Chen, "Swept source based Fourier domain functional optical coherence tomography," 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005.
    [19]R. Leitgeb, C. Hitzenberger and A. Fercher, "Performance of Fourier domain vs time domain optical coherence tomography," Optics Express, vol. 11, no. 8, p. 889, 2003.
    [20]M. Choma, M. Sarunic, C. Yang and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Optics Express, vol. 11, no. 18, p. 2183, 2003.
    [21]Y. Qiao, C. Tan, M. Zhang, X. Sun and J. Chen, "Comparison of spectral domain and swept source optical coherence tomography for angle assessment of Chinese elderly subjects," BMC Ophthalmology, vol. 19, no. 1, 2019.
    [22]T. Fountoukidou, P. Raisin, D. Kaufmann, J. Justiz, R. Sznitman and S. Wolf, "Motion-invariant SRT treatment detection from direct M-scan OCT imaging," International Journal of Computer Assisted Radiology and Surgery, vol. 13, no. 5, pp. 683-691, 2018.
    [23]T. Latychevskaia, "Lateral and axial resolution criteria in incoherent and coherent optics and holography, near- and far-field regimes," Applied Optics, vol. 58, no. 13, p. 3597, 2019.
    [24]Spencer Bliven, https://commons.wikimedia.org/wiki/File:Airy_disk_spacing_
    near_Rayleigh_criterion.png
    [25]H. Imam, "Microscopy/ophthalmology/supercontinuum lasers: supercontinuum light empowers research, biomedicine," Biooptics world (2014).
    [26]B. Bouma and G.Tearney, "Handbook of optical coherence tomography, " Marcel Dekker Inc. (New York, USA), 2002.
    [27]D. Piston, "Choosing objective lenses: the importance of numerical aperture and magnification in digital optical microscopy," The Biological Bulletin, vol. 195, no. 1, pp. 1-4, 1998.
    [28]H. Subhash, "Full-field and single-shot full-field optical coherence tomography: a novel technique for biomedical imaging applications," Advances in Optical Technologies,
    vol. 1, pp. 1-26, 2012.
    [29]"Wavelengths used for cold laser therapy", Coldlasers.org, 2020. [Online]. Available: https://www.coldlasers.org/therapy/wavelength/.
    [30]J. Senior and M. Yousif Jamro, "Optical fiber communications: principles and practice, 3rd ed, " Financial Times/Prentice Hall, 2009.
    [31]H. Yamada, Tao Chu, S. Ishida and Y. Arakawa, "Optical directional coupler based on si-wire waveguides," IEEE Photonics Technology Letters, vol. 17, no. 3, pp. 585-587, 2005.
    [32]A. Agrawal, T. Pfefer, P. Woolliams, P. Tomlins and G. Nehmetallah, "Methods to assess sensitivity of optical coherence tomography systems," Biomedical Optics Express, vol. 8, no. 2, p. 902, 2017.
    [33]Thorlabs Inc. (New Jersey, USA). Online in 31 Mar. 2020. http://www.thorlabs.com/
    [34]J. Harvey and R. Pfisterer, "Understanding diffraction grating behavior: including conical diffraction and Rayleigh anomalies from transmission gratings," Optical Engineering, vol. 58, no. 08, p. 1, 2019.
    [35]Y. Rao, N. Sarwade and R. Makkar, "Signal processing of spectral domain optical coherence tomography," 2015 International Conference on Communication, Information & Computing Technology (ICCICT), 2015.

    無法下載圖示 全文公開日期 2025/08/06 (校內網路)
    全文公開日期 2035/08/06 (校外網路)
    全文公開日期 2040/08/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE