簡易檢索 / 詳目顯示

研究生: 陳俊良
CHUN-LIANG CHEN
論文名稱: 低損耗矽線光波導製程研發與量測
Fabrication and Measurement on Low Loss Silicon Wire Waveguide
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 張勝良
Sheng-Lyang Jang
莊敏宏
Miin-Horng Juang
葉秉慧
Ping-Hui Yeh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 81
中文關鍵詞: 光波導
外文關鍵詞: Waveguide
相關次數: 點閱:149下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中主要利用完善的次微米波導原理、I-Line微影技術以及0.02 高解析度光學步進馬達來證實我們所製作出來的高效率矽線波導。損耗造成的主要原因為表面的射散問題,所以最佳的蝕刻氣體流量控制以及硬罩幕光罩的選擇可以得到較佳的光波導側壁。
    在光通訊裡,資料、聲音以及影像等資訊可以編碼到光通訊裡,經由光調制器傳送訊號到目的地。在本論文中,Mach-Zehnder interferometer (MZI)將被設計及製造在SOI平臺上。
    由於次微米尺寸所佔用資源少,因此新竹國家奈米元件實驗室(NDL)廣大的研發相容於CMOS製程的光學微影技術。而在台灣大學奈米機電系統研究中心完整的研發晶圓切割技術。對性能的研究設計、特性以及後端的研磨製程等所有的研發技術均在台灣科技大學光電積體電路實驗室。
    來自於矽線波導上層覆蓋層的應力將會造成光波導的雙折射效應和極化相依損耗(PDL)。薄膜沉積來自電漿輔助化學氣相沉積(PECVD)以及低壓化學氣相沉積(LPCVD),在經由完整的研究後成功地證實出40MP的低應力的反應氣體成分SiOx
    矽線波導我們蝕刻深度為0.21 後,分別驗證出傳播損耗為10.14dB/cm及極化相依損耗5dB。將一p-i-n二極體塗佈金屬電極在MZI其中一臂,經由順偏產生擴散電流,載子動態分佈主導調制效率 和元件速度響應。從實驗資料的IV和CV曲線圖得知, 的順偏驅動電壓約為0.82V。最後我們估算出我們順偏頻率響應速度約為1.7GHz。


    The main research in this dissertation is to demonstrate the high quality silicon wire waveguide using the well-developed submicron waveguide theory, I-Line lithography, and 0.02 high resolution optical mode characterization. Due to the main loss effect on the surface scattering issue, the etch gas flow and the mask selection were optimized for better sidewall roughness of the optical waveguide.
    In the optical telecommunications, the information of data, voice, and video can be encoded into the optical domain by optical modulation and transmitted to the destination. In this dissertation, the Mach-Zehnder interferometer (MZI) was also designed and fabricated on SOI platforms.
    Due to the small footprint in the submicron dimension, the photolithography was extensively developed at National Nano Device Laboratories (NDL) in Hsinchu city for full compatibility with CMOS. The wafer dicing was accomplished in the Nano-Electro-Mechanical-Systems Research Center of National Taiwan University. The research on the performance design, characterization, and the back-end polishing processing were all developed in the OEIC group of National Taiwan University of Science and Technology.
    The stress from the top cladding layer of the silicon wire will be another important issue on the birefringence and polarization dependent loss (PDL) of optical waveguides. The deposited film from the plasma enhanced chemical vapor deposition (PECVD) and low pressure chemical vapor deposition (LPCVD) was thoroughly studied and successfully demonstrated for stress as low as 40 MPa using reactive gas compositions, SiOx.
    The silicon wire was demonstrated as 10.14 dB/cm and 5 dB, respectively, for the propagation loss and PDL on a waveguide width of 0.5 and etch depth of 0.21 . A p-i-n diode coated with metal pads on one arm of MZI was generating drift currents by forward biases, which dynamically dominate carriers distribution in a diode and furthermore illustrate the modulator efficiency and speed response. From the experimental data of IV and CV curves, the can be derived to be 0.82 V for forward bias. Finally the speed response of our silicon wire optical modulator can also be estimated as 1.7GHz in forward bias.

    摘要I ABSTRACTII 致謝III 目錄IV 第一章緒論1 1-1簡介1 1-2研究動機2 1-3論文架構3 第二章 矽線波導理論與特性5 2.1二維平板波導理論5 2-1-1幾何光學5 2-1-2波動光學7 2-2單模波導幾何結構與雙折射效應13 2-2-1矽線波導之單多模條13 2-2-2雙折射效應17 2-2-3 極化相依損耗19 第三章波導傳播損耗20 3-1彎曲波導20 3-2側壁粗糙度25 3-3逸漏式模態31 3-4材料吸收損耗31 第四章矽線光波導製程33 4-1光學微影技術34 4-1-1 上HMDS(塗底,Priming)35 4-1-2 阻劑旋轉塗佈(Resust Coating)35 4-1-3 軟烤(Soft Bake)38 4-1-4 曝光39 4-1-5 硬烤41 4-2 蝕刻的定義41 4-2-1 機台參數42 4-2-2 實驗參數43 4-3 氧電漿乾式去光阻(ASHER)50 4-4應力51 4-4-1 應力種類52 4-4-2薄膜應力分析53 第五章 矽光調制器55 5-1光相位和振幅調制之原理55 5-1-1光相位調制之工作原理55 5-1-2光振幅調制之工作原理57 5-2光調制器58 5-2-1 Pockels effect[10]58 5-2-2 Kerr effect[10]58 5-2-3自由載子注入效應[10]59 5-3順向偏壓調制61 第六章 光波導量測65 6-1邊緣耦合65 6-2反射量計算68 第七章 結論70 參考文獻72

    [1] S. J. McNab, et al., "Ultra-low loss photonic integrated circuit with
    membrane-type photonic crystal waveguides," Optics Express, vol. 11, pp.
    2927-2939, 2003.
    [2] K. Okamoto, Fundamentals of Optical Waveguide, Academic Press, 2006
    [3] 莊達人, VLSI製造技術, 高立圖書, 民國九十七年九月
    [4] G. T. Reed and A. P. Knights, “Silicon Photonics An Introduction,” John
    Wiley and Sons, 2004
    [5] 徐懋騰,” 應用矽基板製做與分析光波導調制元件”,國立成功大學微機電
    系統工程研究所碩士論文,民國九十五年六月
    [6] A. Yariv and P. Yeh , “Photonics: Optical Electronics in Modern
    Communications,” Oxford, 2007
    [7] S. P. Pogossian, L. Vescan, A. Vonsovici, “The single-mode condition for
    semiconductor rib waveguides with large cross section” Journal of
    Lightwave Technology, Vol. 16, No. 10, pp. 1851-1853, 1998
    [8] 劉凱文,”矽線波導在設計與製程方面的研究”,國立台灣科技大學電子工
    學系碩士論文,民國九十八年七月
    [9] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size
    influence on the propagation loss induced by sidewall roughness in
    ultrasmall SOI waveguides”IEEE Photonics Technology Letters, Vol. 16,
    No.7, pp. 1661-1663, 2004
    [10] G. T. Reed, “Silicon Photonics The State of The Art” John Wiley and
    Sons, 2008
    [11] S.O. Kasap, “Fundamentals of Optical Waveguide”, Prentice Hall, 2001
    [12] Y. A. Vlasov and S. J. McNab, “Losses in Single-Mode Silicon-on-
    Insulator Strip Waveguides and Bends,” Optics Express, Vol. 12, No. 8,
    pp. 1622-1631, 2004
    [13] M. Heiblum and J. H. Harris, "ANALYSIS OF CURVED OPTICAL WAVEGUIDES BY
    CONFORMAL TRANSFORMATION," IEEE Journal of Quantum Electronics, vol. QE-
    11, pp. 75-83, 1975.
    [14] F. P. Payne, and J. P. R. Lacey, “A theoretical analysis of scattering
    loss from planar optical waveguides” Optical and Quantum Electronics,
    Vol. 26, No. 10, pp. 977-986, 1994
    [15] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout,
    D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets,
    “Low-loss SOI photonic wires and ring resonators fabricated with deep UV
    lithography” IEEE Photonics Technology Letters, Vol. 16, No. 5, pp.
    1328-1330, 2004
    [16] 楊金成、吳政三、柯富祥,”TEL MK-8自動化阻劑旋轉塗佈及顯影系統介
    紹”,國家奈米元件實驗室-奈米通訊期刊第八卷第一期,pp.41-49
    [17] N. Shiraishi, et al, ”Microlithography World” , pp. 7, 1992
    [18] 蔡文洲,”矽鍺異質源/汲極結構與pn 二極體之研製”,國立中央大學電機
    工程學系碩士論文,民國九十三年七月
    [19] Bogaerts, W., P. Dumon, et al. (2005). Silicon-on-insulator nanophotonics.
    [20] Cardenas, J., C. B. Poitras, et al. (2009). Low loss etchless silicon
    photonic waveguides.
    [21] Yamada, H., T. Chu, et al. (2006). "Si photonic wire waveguide devices."
    IEEE Journal on Selected Topics in Quantum Electronics 12(6): 1371-1378.
    [22] Watanabe, T., K. Yamada, et al. (2007). Si wire waveguide devices.
    [23] Sakai, A., G. Hara, et al. (2001). Sharply bent optical waveguide on
    silicon-on-insulator substrate.
    [24] Lardenois, S., D. Pascal, et al. (2003). "Low-loss submicrometer silicon-
    on-insulator rib waveguides and corner mirrors." Optics Letters 28(13):
    1150-1152.
    [25] Vlasov, Y. A. and S. J. McNab (2004). "Losses in single-mode silicon-on
    -insulator strip waveguides and bends." Optics Express 12(8): 1622-1631.
    [26] Fan, Z., W. Han, et al. (2009). Inductively coupled plasma etching of SOI
    and its applications in submicron optical waveguide devices.

    無法下載圖示 全文公開日期 2015/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2015/07/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE