簡易檢索 / 詳目顯示

研究生: 黃浚銘
Chun-Min Huang
論文名稱: 相容互補金屬氧化半導體製程用於矽光電元件技術之研發
The CMOS Compatible Process Development for Silicon Photonics Components Technology
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 劉政光
Cheng-Kuang Liu
張勝良
Sheng-Lyang Jan
莊敏宏
Miin-Horng Juang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 110
中文關鍵詞: 絕緣層上覆矽晶圓陣列波導光柵互補金屬氧化半導體光波導六氟化硫三氟甲烷
外文關鍵詞: microphotonics, optical waveguide, silicon-on-insulator, SOI, AWG, SF6, CHF3
相關次數: 點閱:313下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽光電將成為下世代的光電、通訊及電子產業帶來革新。這個新技術因能提供與現有的互補金屬氧化半導體製程相容的優勢,許多的團隊對此研究感到關切。近幾年來的進展將使得商用化的矽光電應用產品於不久的將來出現。基於研究的角度,建立矽光電的基礎架構是一個必要的開始。因此,藉由以絕緣層上覆矽晶圓為平台的的波導設計及應用標準的互補金屬氧化半導體製程將在本文中詳細探討。

    我們設計工作波段於1550奈米的單模脊狀光波導,此微米級的絕緣層上覆矽晶圓之波導結構高為5微米,寬為5微米,板高為2.5微米藉由互補金屬氧化半導體中的乾式蝕刻以六氟化硫、三氟甲烷和氧的電漿所製作而成的。此脊狀波導擁有近90度的側壁結構、約12奈米粗糙度的蝕刻表面及蝕刻非均勻度僅0.07微米的標準差,而側壁的粗糙度藉掃描電子顯微鏡的觀察約僅數十奈米。在此波段上實現此波導的傳輸損耗約為1.1dB/cm。陣列波導光柵也藉此製程量測得約有23.9 dB的串音。


    Silicon photonics is considered to be the next leap in optoelectronics, telecommunication, and electronics industries. This technology has gained its tremendous attention and research interests due to its capability in compatible with existing CMOS fabrication process. The advances in the recent years have made it possible to commercialize many newly developed components and systems in the very near future. In engaging in this research, the establishment of fundamental building blocks is mandatory. The silicon-on-insulator (SOI) waveguides were designed and fabricated within a standard CMOS research context.

    The single mode optical ridge waveguide was designed at the wavelength of 1550 nm. This micrometer size SOI ridge waveguides with height of 5.0 μm, width of 4.5 μm, and slab height of 2.5 μm were realized with dry etching on CMOS compatible SF6/CHF3/O2 reactive ion etching system. The ridge waveguide providing the profile angle at nearly 90°, etched surface roughness of 12 nm, and etched wafer non-uniformity of μm was fabricated. Sidewall roughness of several tens of nanometer is determined with scanning electron microscope inspection. The propagation loss of 1.1 dB/cm was determined for the fundamental mode at the wavelength of 1550 nm. The arrayed waveguide grating was implemented with this process to yield a crosstalk of 23.9 dB.

    1 Introduction 1 1.1 Telecommunication and Photonics 2 1.2 Waveguide and Photonics ICs 2 1.3 Objectives and Conclusion 5 2 Silicon-on-Insulator Waveguide Design 6 2.1 Silicon at a Glance 6 2.2 Silicon-on-Insulator 8 2.3 Previous Works 12 2.4 SOI Ridge Waveguide 14 2.5 Waveguide Designs 19 2.6 Waveguide Simulations 22 2.7 Arrayed Waveguide Grating 29 3 Fabrication Technology 34 3.1 Process Flow Overview 34 3.2 Lithography Properties 36 3.3 Etch Process 38 3.4 Design of Experiment 43 3.5 Data Acquisition 47 3.6 Wafer Dicing 54 3.7 Die Lapping 56 3.8 Post Cleaning 59 4 Measurements 60 4.1 Measurement Setup 60 4.2 Power Budget 62 4.3 Arrayed Waveguide Grating Measurement 62 5 Perspective and Conclusion 70 5.1 Inaccuracy Discussion 70 5.2 Perspective 74 5.3 Conclusion 79 References 81 Appendix 88 Bibliography 100

    [1] T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-Based Waveguide-Type 16×16 Optical Switch Module Incorporating Driving Circuits,” IEEE Photon. Technol. Lett., vol. 15, no. 9, pp. 1300-1302, Sep. 2003.
    [2] G.-L. Bona, R. Germann, and B. J. Offrein, “SiON High Refractive-index Waveguide and Planar Lightwave Circuits,” IBM J. Res. Develop., vol. 47, no. 2, pp. 239, 2003.
    [3] R. Soref and J. Lorenzo, “All-Silicon Active and Passive Guided-Wave Components for λ = 1.3 and 1.6 μm,” IEEE J. Quantum Electron., vol. QE-22, no. 6, pp. 873-879, Jun. 1986.
    [4] M. Lipson,” Guiding, Modulating, and Emitting Light on Silicon—Challenges and Opportunities,” IEEE J. Lightwave Technol., vol.23, no. 12, pp. 4222-4238, Dec. 2005.
    [5] B. Jalali, and S. Fathpour, “Silicon Photonics,” IEEE J. Lightwave Technol., vol. 24, no. 12, pp.4600-4615, Dec. 2006.
    [6] K. Izumi, M. Doken, and H. Ariyoshi, “CMOS Devices Fabricated on Buried SiO2 Layers Formed by Oxygen Implantation into Silicon,” Electron. Lett., vol. 14, no. 18, pp. 593-594, Aug. 1978.
    [7] http://www.ibis.com/assets/pdf/intro-simox-100.pdf
    [8] G. K. Cellera and S. Cristoloveanu, “Frontiers of Silicon-on-Insulator,” J. Appl. Phys., vol. 93, no. 9, pp. 4955-4978, May. 2003.
    [9] J. Schmidtchen, A. Splett, B. Schuppert, K. Petermann, G. Burbach, “Low Loss Singlemode Optical Waveguides with Large Cross-Section in Silicon-on-Insulator,” Electron. Lett., vol. 27, no. 16, pp. 1486-1488, Aug. 1991.
    [10] A. Rickman, G. T. Reed, B. L. Weiss, and F. Namavar, “Low-Loss Planar Optical Waveguides Fabricated in SIMOX Material,” IEEE Photon. Technol. Lett., vol. 4, no. 6, pp. 633-635, Jun. 1992.
    [11] A. G. Rickman, G. T. Reed, and F. Namavar, “Silicon-on-Insulator Optical Rib
    Waveguide Loss and Mode Characteristics,” IEEE J. Lightwave Technol., vol.12, no. 10, pp. 1771-1776, Oct. 1994.
    [12] P.D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated Optical Directional Couplers in Silicon-on-Insulator,” Electron. Lett., vol. 31, no. 24, pp. 2097-2098, Nov. 1995.
    [13] B. Jalali, P. D. Trinh, S.Yegnanarayanan, and F. Coppinger, “Guided-Wave Optics in Silicon-on-Insulator Technology,” IEE Proc.-Optoelectron., vol. 143, no. 5, pp. 307-311, Oct. 1996.
    [14] U. Fischer, T. Zinke, J.-R. Kropp, F. Amdt, and K. Petermann, “0.1 dB/cm Waveguide Losses in Single-Mode SOI Rib Waveguides,” IEEE Photon. Technol. Lett., vol. 8, no. 5, pp. 647-648, May. 1996.
    [15] M. A. Rosa, N. Q. Ngo, D. Sweatman, S. Dimitrijev, and H. B. Harrison, “Self-Alignment of Optical Fibers with Optical Quality End-Polished Silicon Rib Waveguides Using Wet Chemical Micromachining Techniques,” IEEE J. Sel. Top. Quantum Electron., vol. 5, no. 5, pp. 1249-1254, Sep. 1999.
    [16] T.W. Ang, G.T. Reed, A. Vonsovici, A.G.R. Evans, P.R. Routley and M.R. Josey, “0.15dB/cm Loss in Unibond SO1 Waveguides,” Electron. Lett., vol. 35, no. 12, pp. 977-978, Jun. 1999.
    [17] Y. Wang, Z. Lin, C. Zhang, and F. Zhang, “Large Cross Section Y-Branch with New Fiber-Waveguide Endface in Silicon-on-Insulator,” IEEE Photon. Technol. Lett., vol. 16, no. 11, pp. 2493-2495, Nov. 2004.
    [18] K. Solehmainen, T. Aalto, J. Dekker, M. Kapulainen, M. Harjanne, K. Kukli, P. Heimala, K. Kolari, and M. Leskelä, “Dry-Etched Silicon-on-Insulator Waveguides With Low Propagation and Fiber-Coupling Losses,” IEEE J. Lightwave Technol., vol. 23, no. 11, pp. 3875-3880, Nov. 2005.
    [19] Z. Wu, S. Honda, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, Y. Wada, “Tunable Wavelength-Band Switch using Large Coupling-Coefficient Bragg Grating on SOI Rib Waveguide,” PS’2006 - Photonics in Switching Conference, 2006.
    [20] S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui and Y. Wada, “Largely-Tunable Wideband Bragg Gratings Fabricated on SOI Rib Waveguides Employed by Deep-RIE,” Electron. Lett., vol. 43, no. 11, pp. 630-631, May. 2007.
    [21] S-H Hsu, “A 5-μm-Thick SOI Waveguide with Low Birefringence and Low Roughness and Optical Interconnection Using High Numerical Aperture Fiber,” IEEE Photon. Technol. Lett., vol. 20, no. 12, Jun. 2008.
    [22] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi and Si-on-SiO2,” IEEE J. Quantum Electron., vol. 27, no. 8, pp. 1971-1974, Aug. 1991.
    [23] Timo Aalto, “Microphotonic Silicon Waveguide Components,” PhD thesis, VTT, 2004.
    [24] Olly Powell, “Single-Mode Condition for Silicon Rib Waveguides,” IEEE J. Lightwave Technol., vol. 20, no. 10, pp. 1851-1855, Oct. 2002.
    [25] J. Xia, J. Yu, “Single-Mode Condition for Silicon Rib Waveguides with Trapezoidal Cross-Section,” Opt. Comm., no. 230, pp. 253–257, Nov. 2004.
    [26] M. K. Smit, C. V. Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 2, pp. 236-250, Jun. 1996.
    [27] H. Takahashi, K. Oda, Member, H. Toba, and Y. Inoue, “Transmission Characteristics of Arrayed Waveguide N × N Wavelength Multiplexer,” IEEE J. Lightwave Technol., vol. 13, no. 3, pp. 447-455, Mar. 1995.
    [28] G. S. May, C. J. Spanos, “Fundamentals of Semiconductor Manufacturing and Process Control,” John Wiley & Sons, 2006 pp. 38, ISBN-13: 978-0-471-78406-7
    [29] Y. A. Vlasov and S. J. McNab, “Losses in Single-Mode Silicon-on-Insulator Strip
    Waveguides and Bends,” Opt. Express, vol. 12, no. 8, pp. 1622-1631.
    [30]G. S. Oehrlein, and J. F. Rembetski, “Plasma-Based Dry Etching Techniques in the Silicon Integrated Circuit Technology,” IBM J. Res. Develop., vol. 36, no. 2, Mar. 1992.
    [31] R. Legtenberg, H. Jansen, M. de Boer, and M. Elwenspoek, “Anisotrapic Reactive Ion Etching of Silicon Using SF6/O2/CHF3 Gas Mixtures,” J. Electrochem. Soc., vol. 142, no. 6, pp. 2020-2028, Jun. 1995.
    [32] S. Grigoropoulos, E. Gogolides, A. D. Tserepi, and A. G. Nassiopoulos,” Highly Anisotropic Silicon Reactive Ion Etching for Nanofabrication Using Mixtures of SF6/CHF3 gases,” J. Vac. Sci. Technol. B, vol. 15, no. 3, pp. 640-645, May. 1997.
    [33] T. Syau, B. J. Baliga, and R. W. Hamaker, “Reactive Ion Etching of Silicon Trenches Using SF6/O2 Gas Mixtures,” J. Electrochem. Soc., vol. 138, no. 10, pp. 3076-3081, Oct. 1991.
    [34] F. Gao, Y. Wang, G. Cao, X. Jia, and F. Zhang, “Reduction of Sidewall Roughness in Silicon-on-Insulator Rib Waveguides,” App. Surf. Sci., no. 252, pp. 5071-5075, Sep. 2006.
    [35] K. K. Lee, D. R. Lim, H-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of Size and Roughness on Light Transmission in a Si/SiO2 Waveguide: Experiments and Model,” Appl. Phys. Lett., vol. 77, no. 77, pp. 1617-1619, Sep. 2000.
    [36] R. Hsiao, and J. Carr, “Si/SiO2 etching in high density SF6/CHF3/O2 plasma,” Mater. Sci. and Eng. B, no. 52, pp. 63-77, Sep. 1998.
    [37] M. J. de Boer, J. G. E. Gardeniers, H. V. Jansen, E. Smulders, M.-J. Gilde, G. Roelofs, J. N. Sasserath, and M. Elwenspoek, “Guidelines for Etching Silicon MEMS Structures Using Fluorine High-Density Plasmas at Cryogenic Temperatures,” J. Microelec. Mech. Syst., vol. 11, no. 4, pp. 385-401, Aug. 2002.
    [38] S. Hsu and J. Chan, “Photonics Bus with Loop Signal Routing and Multichannel Wavelength Selection on a Single Silicon-on-Insulator Platform,” Opt. Lett., vol. 31, no. 14, pp. 2142-2144, Jul. 2006.
    [39] R. L. Espinola, M. Tsai, T. Izuhara, and R. M. Osgood, Jr., “Thermo-Optic Switching Devices in Thin Silicon-on-Insulator,” CWH5, Tech. Dig., CLEO, 2003.
    [40] R. L. Espinola, M.-C. Tsai, James T. Yardley, and R. M. Osgood, “Fast and Low-Power Thermooptic Switch on Thin Silicon-on-Insulator,” IEEE Photon. Technol. Lett., vol. 15, no. 10, pp. 1366-1368, Oct. 2003.
    [41] Q. Fang, F. Li, C. Wang, H. Xin, and Y. Liu, “A Low Power Consumption Thermo-Optic Variable Optical Attenuator Based on SOI Material,” Solid-State and Integrated Circuits Technol., in Proc. 7th Int. Conf., vol. 3, pp. 2018-2020, Oct. 2004.
    [42] A. Sakai, G. Hara, and T. Baba, “Propagation Characteristics of Ultrahigh -Δ Optical Waveguide on Silicon-on-Insulator Substrate,” Jpn. J. Appl. Phys., Part 2, 4B, L383-L385, 2001.
    [43] R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr.,”Ultracompact Corner-Mirrors and T-Branches in Silicon-on-Insulator”, IEEE Photon. Techn. Lett., vol. 14, no. 1, pp. 65-67, Jan. 2002.
    [44] R. A. Soref and B. R. Bennett, “Electrooptical Effects in Silicon,” IEEE J. Quantum Electron., vol. 23, no. 1, pp. 123-129, Jan. 1987.
    [45] D.S.-R., L. Liao, A. Liu, R Jones, M. Paniccia, O. Cohen, and D. Rubin,”A Gigahertz Silicon-on-Insulator Mach-Zehnder Modulator,” in Optical Fiber Comm. Conf., OFC 2004, vol.2, 2004.
    [46] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A High-Speed Silicon Optical Modulator Based on a Metal-Oxide-Semiconductor Capacitor.” Nature, vol. 427, pp. 615-618, Feb. 2004.
    [47] L. Liao, D. Samara-Rubio, M. Morse, A. Liu, and D. Hodge, “High Speed Silicon Mach-Zehnder Modulator,” Opt. Express, vol. 13, no. 8, pp. 3129-3135, Apr. 2005.
    [48] L. Liao, A. Liu, R. Jones, D. Rubin, D. Samara-Rubio, O. Cohen, M. Salib, and M. Paniccia, “Phase Modulation Efficiency and Transmission Loss of Silicon Optical Phase Shifters,” IEEE J Quantum Electron., vol. 41, no. 2, pp. 250-257, Feb. 2005.
    [49] D. Samara-Rubio, U. D. Keil, L. Liao, T. Franck, A. Liu, D. W. Hodge, D. Rubin, and R. Cohen, “Customized Drive Electronics to Extend Silicon Optical Modulators to 4 Gb/s,” J. Lightwave Technol., vol. 23, no. 12, pp. 4305-4314, Dec. 2005.
    [50] G. V. Treyz, Paul G. May, and Jean-Marc Halbout, “Silicon Optical Modulators at 1.3 μm Based on Free-Carrier Absorption,” IEEE Electron. Device Lett., vol. 12, no. 6, pp. 276-278, Jun. 1991.
    [51] W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-Compact, Low RF Power, 10 Gb/s Silicon Mach-Zehnder Modulator,” Opt. Express, vol. 15, no. 25, pp. 17106-17113, Dec. 2007.
    [52] Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s Carrier-Injection-Based Silicon Micro-Ring Silicon Modulators,” Opt. Express, vol. 15, no.2, pp. 430-436, Jan. 2007.
    [53] A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-Speed Optical Modulation Based on Carrier Depletion in a Silicon Waveguide,” Opt. Express, vol. 15, no. 2, pp. 660–668, Jan. 2007.
    [54] L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky and M. Paniccia, “40 Gbit/s Silicon Optical Modulator for High-Speed Applications,” Electron. Lett., vol. 43, no. 22, Oct. 2007.
    [55] A. Narasimha, B. Analui, Y. Liang, T. J. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner, D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet, “A Fully Integrated 4×10-Gb/s DWDM Optoelectronic Transceiver Implemented in a Standard 0.13 μm CMOS SOI Technology,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2736-2744, Dec. 2007.
    [56] B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A Fully Integrated 20-Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13-m CMOS SOI Technology” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2945-2955, Dec. 2006.

    QR CODE