簡易檢索 / 詳目顯示

研究生: 陳宏基
Horng-ji Chen
論文名稱: SF6型電力設備絕緣氣體含水量之量測與分析
The measurement and analysis of the insulating gas moisture content in SF6 type power equipment
指導教授: 蕭弘清
Horng-Ching Hsiao
口試委員: 楊金石
none
郭政謙
none
辜志承
Jyh-Cherng Gu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 88
中文關鍵詞: 電纜終端匣絕緣強度含水量
外文關鍵詞: cable sealing end., insulation strength, moisture content
相關次數: 點閱:133下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 含水量引發的絕緣強度減低,其嚴重程度影響著電力設備運轉之性能。本論文以現場量測與實驗方法,分析相關變電所內電力設備之SF6氣體含水量,並探討水分與氣體分解所造成絕緣物之劣化現象。
    目前台電變電所僅提供氣體壓力異常之監視警報回路,並未針對SF6氣體之含水量超出安全限制值作監視警報回路。本文首先以現場量測的方式,分析相關變電所161 kV氣體絕緣開關設備(GIS)的斷路器氣室及其它氣室之含水量,並從中挑選345 kV SF6氣體絕緣輸電線路(GIL)、161 kV & 23 kV 斷路器(CB)、匯流排(BB)及電纜終端匣(CHD)之含水量,利用實測資料及實驗結果,探討含水量對絕緣物劣化之影響,並提出降低電力設備含水量之改善方法以供應用、運轉、維護參考。有關國外最新電力設備的SF6氣體含水量之量測方式,針對其含水量、氣體壓力、運轉溫度及絕緣強度之影響亦納入本研究進行分析與探討。
    本研究除選定台灣數個變電所之345 kV SF6氣體絕緣輸電線路(GIL)作含水量實測外,同時並針對數個配電變電所161 kV GIS各區間主要氣室之含水量實測值與計算值作分析比較。藉本論文研究之分析結果,將可避免不必要的停電檢修,期能提供有價值的數據供運轉單位之維護及製造設計工程師之參考。


    The moisture content of insulation materials caused insulation strength decreased which related to operating characteristics of power equipments. This thesis analyzes the Sulphur Hexafluoride (SF6) gas moisture content of power equipment by field measurement and experiment analysis in related substations, and discuss the deteriorated phenomenon of insulating spacer caused by moisture and SF6 gas decomposition.
    At present, only the gas pressure alarm is provided in Taipower’s substations. Some 161 kV substations equipment were chosen for this study. By field measurement, the moisture content in the circuit breaker and associate gas compartment of the GIS were analyzed. Also, Some measurement and experiment data in 345 kV gas insulated transmission line (GIL), 161 kV& 23 kV circuit breaker, busbar, and cable sealing end gas compartments were chosen to study the influence of the moisture content to the insulation deterioration. The improvement method for minimization of the moisture content is suggested for the reference of the operation and maintenance. This study also includes the relationship among the moisture content, gas pressure, operating temperature and the insulation strength by the new moisture measurement method for the SF6 gas.
    Several 345 kV extra high-voltage substations are selected to measure SF6 gas moisture content of 345 kV GIL, meanwhile and 161 kV GIS in addition, are also chosen to compare the moisture content differences between actual measured value and estimated value. The research provides valuable information for maintenance and manufacture project engineers in future designs.

    中文摘要(Ι) 英文摘要(Π) 誌謝(Ⅲ) 目錄(Ⅳ) 符號索引(Ⅵ) 圖表索引(Ⅷ) 第一章 緒論(1) 1.1 研究動機與背景(1) 1.2 研究目的與方法(2) 1.3 論文內容概述(3) 第二章 SF6氣體之特性及含水量之管制(5) 2.1 前言(5) 2.2 六氟化硫特性(5) 2.3 含水量之濃度換算(8) 2.4 含水量、壓力、溫度、体積及絕緣強度之相互關係(9) 2.5 SF6氣體含水量產生原因(10) 2.6 電力設備含水量之管制(11) 第三章 含水量量測原理與量測方式(13) 3.1 前言(13) 3.2 文獻回顧(13) 3.3 量測系統之架構(18) 3.3.1 資料擷取(18) 3.3.2 訊號處理(19) 3.4 量測裝置之種類與差異(20) 3.4.1 含水量量測裝置(20) 3.4.2 氣體分解物含量之量測裝置(22) 3.5 局部放電之基本概念(24) 3.5.1 局部放電等效電路(26) 3.5.2 局部放電發生時電荷轉移和能量損失(27) 3.5.3 表面放電(29) 3.6 局部放電之量測方法(30) 第四章 SF6氣體含水量及分解物之實測與計算(32) 4.1 前言(32) 4.2 台電變電所系統概述(32) 4.3 電力設備各區間氣室之含水量實測結果(33) 4.4 電力設備SF6氣體之分解物實測結果(34) 4.5 電力設備之含水量計算(37) 第五章 含水量量測分析與改善對策(40) 5.1 前言(40) 5.2 乾燥劑之封入量(40) 5.3 含水量與絕緣特性(45) 5.4 SF6氣體分解與絕緣物之影響(47) 5.5 SF6氣體含水量與絕緣實驗(50) 5.6 含水量與電樹絕緣物之形成分析(51) 5.7 抑低含水量之改善對策(71) 第六章 結論與未來研究方向(73) 6.1 結論(73) 6.2 具體研究成果(74) 6.3 未來研究方向(74)

    [1]S. Mukherji, A. K. Adikesavulu, H. S. Jain, “Characterisation of typical defects in GIS under different gas pressures using computerized discharge analysis,”International Symposium on High Voltage Engineering, Netherlands 2003.
    [2]M.Farahani, E. Gockenbach, H. Borsi, “Dielectric response measurement to evaluate the moisture content in insulating systems of high voltage rotating machines,” International Symposium on High Voltage Engineering University of Ljubljana, Slovenia, August 27-31, 2007.
    [3]Shigenmitsu Okabe, Shuhei Kaneko, Tadao Minagawa, and Chieko Nishida, “Solid state ionic sensor of detecting SF6 decomposition gases for GIS diagnosis,” International Symposium on High Voltage Engineering University of Ljubljana, Slovenia, August 27-31, 2007.
    [4]日本電氣協同研究:「ガス絕緣開閉裝置の標準化」,電氣協同研究,第39卷第6號 (昭和59年2月)。
    [5]日本電氣協同研究:「SF6氣體絕緣機器保守基準」,電氣協同研究,第33卷第4號 (昭和52年10月)。
    [6]Bob Hardy, “Trust but verify-practical approaches to humidity generation and measurement,” RH System, Albuquerque, NM, USA Copyright 2000.
    [7]Bob Hardy, “Determination of relative humidity in Subzero temperature”, RH System, Albuquerque, New Mexico, USA Copyright 1998.
    [8]Bob Hardy, “ITS-90 formulations for vapor pressure, frostpoint temperature, dewpoint temperature, and enhancement factors in the range -100 ℃ to +100 ℃”, Thunder Scientific Corporation, Albuquerque, NM, USA April 1998.
    [9]Martin Wember, Dirk Peier, “On-site diagnostic of the decompositions of sulfurhexafluoride due to partial discharge,” International Symposium on High Voltage Engineering, Netherlands 2003.
    [10]台灣電力公司,動態離子分析儀應用於斷路器預防維護之研究,民國92年5月。
    [11]顏世雄、溫坤禮、粘孝先,高壓電工程,全華科技圖書,Vol.1,April 2003。
    [12]陳銘毅,部分放電量測方法在GIS上之應用, 中原大學 機工程學系 碩士學位論文,民國96年6月。
    [13]Huang, P. H., “Determining uncertainties of relative humidity, dew/frost-point temperature, and mixing ratio in a humidity standard generator,” the third International Symposium on Humidity and Moisture, vol. 1, pp. 149-158, April 1998.
    [14]K. Itaka, T. Hara, “Improved structure avoiding local field intensification on spacers in SF6 gas,” Sumitomo Electric Industries, Ltd. Osaka, Japan 82SM 406-7, 1982.
    [15]日本電氣協同研究,電力設備へのセンサ技術適用,電氣協同研究,第46卷第4號 (平成2年9月)。

    QR CODE