簡易檢索 / 詳目顯示

研究生: 胡磊
Lei Hu
論文名稱: 以三氧化鉬修飾蜂窩狀奈米碳管陣列表面作為葡萄糖電化學生物感測器
Honeycomb-shaped carbon nanotubes decorated with MoO3 as an electrochemical sensor for glucose
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 李奎毅
Kuei-Yi Lee
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
林保宏
Pao-hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 86
中文關鍵詞: 三氧化鉬奈米碳管葡萄糖生物感測器
外文關鍵詞: MoO3, carbon nanotubes, glucose, biosensors
相關次數: 點閱:349下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗中,製作以過渡金屬氧化物之三氧化鉬 (MoO3)為主之電極,將其應用於生物電化學感測當中。在製作電極的過程中使用矽基板作為基底,並在其上方沉積奈米碳管 (Carbon nanotubes, CNTs)陣列,而後以化學氣相沉積法披覆 MoO3 至奈米碳管陣列上,以製作 MoO3/CNTs/Si 結構之三維生物電化學感測電極。為了提升所製作感測器之檢測靈敏度,在製作電極過程中使用黃光微影技術以定義所成長奈米碳管之生長形貌,其中蜂巢狀之奈米碳管陣列可將原有電極之比表面積進一步提升,增加電解液與電極之接觸面積,從而提高所製作電極之量測靈敏度。相較於生物電化學酶感測器,非酶之生物電化學感測器有著高穩定性,高再現性,低成本及不易受環境影響等多項優勢,因此在本實驗中將所做電極應用於非酶葡萄糖電化學感測當中。在量測過程中,以 0.1 M 氫氧化鈉水溶液做為實驗之電解液,而氫氧化鈉之氫氧根及MoO3 在與葡萄糖接觸後進行化學反應,從而使量測之峰值電流提升。本實驗以 20 uM 至 7 mM 進行分段量測,其中在 20 uM 到 100 uM 濃度範圍內量測到本實驗最高之 11 uA/uM 的靈敏度,線性響應之相關係數 (R2)則為 0.9929,從而顯示 MoO3/CNTs/Si 為一優異之非酶葡萄糖電化學感測器。


    In this experiment, an electrode based on transition metal oxide molybdenum trioxide (MoO3) was fabricated and applied to electrochemical biosensing. In the process of making electrodes, a silicon substrate was used as a substrate, and an array of carbon nanotubes (CNTs) was deposited on it, and then MoO3 was coated on the array of carbon nanotubes by chemical vapor deposition to produce MoO3/CNTs/Si structure three-dimensional electrochemical biosensing electrode. In order to improve the detection sensitivity of the manufactured sensor, photolithography was used in the process of manufacturing electrodes to define the growth morphology of the grown carbon nanotubes, in which the honeycomb-shaped carbon nanotube array can increase the specific surface area and the contact area between the electrolyte and the electrode, thereby improving the measurement sensitivity of the fabricated electrode. Compared with electrochemical enzyme biosensors, non-enzyme electrochemical biosensors have many advantages such as high stability, high reproducibility, low cost and less susceptible to environmental influences. In this experiment, the fabricated electrode was applied to non-enzymatic glucose electrochemical sensing. During the measurement process, 0.1 M sodium hydroxide aqueous solution was used as the electrolyte of the experiment, and the hydroxide ions of sodium hydroxide and MoO3 reacted chemically after contacting with glucose, thereby increasing the peak current of the measurement. In this experiment, the measurement was carried out in sections from 20 uM to 7 mM, and the highest sensitivity of 11 uA/uM was measured in the concentration range of 20 uM to 100 uM. The correlation coefficient of linear response (R2) was 0.9929, thus showing that MoO3/CNTs/Si is an excellent non enzymatic glucose electrochemical sensor.

    論文摘要 (中文) .........................................................................I Abstract .....................................................................................II 致謝 ...........................................................................................III 目錄 ...........................................................................................IV 圖目錄 ..................................................................................... VII 表目錄 .........................................................................................X Chapter 1 緒論.......................................................................... 1 1.1 奈米碳管 ......................................................................................................2 1.1.1 材料歷史 ...........................................................................................2 1.1.2 材料結構 ...........................................................................................3 1.1.3 材料特性 ...........................................................................................5 1.2 三氧化鉬 (MoO3)........................................................................................6 1.3 電化學電容 ..................................................................................................7 1.3.1 電雙層電容 (Electric double-layer capacitor, EDLC).....................7 1.3.2 偽電容 (Pseudo-capacitance)...........................................................8 1.4 生物感測器 ..................................................................................................9 1.5 葡萄糖生物感測器 ....................................................................................13 1.5.1 葡萄糖 (Glucose)............................................................................13 1.5.2 葡萄糖生物感測器 .........................................................................14 1.6 研究動機 ....................................................................................................16 Chapter 2 實驗方法與儀器介紹............................................ 18 2.1 實驗流程圖 ................................................................................................18 2.2 電極製作流程............................................................................................ 19 2.2.1 清洗基板......................................................................................... 19 2.2.2 黃光微影技術................................................................................. 20 2.2.3 電子束蒸鍍..................................................................................... 22 2.2.4 奈米碳管成長................................................................................. 23 2.2.5 披覆三氧化鉬................................................................................. 25 2.3 特性量測儀器介紹.................................................................................... 27 2.3.1 拉曼光譜分析儀............................................................................. 27 2.3.2 掃描式電子顯微鏡......................................................................... 29 2.3.3 X 射線能量色散分析儀.................................................................. 30 2.3.4 穿透式電子顯微鏡......................................................................... 31 2.3.5 X 射線繞射分析儀.......................................................................... 32 2.4 電化學檢測分析........................................................................................ 33 2.4.1 實驗設置......................................................................................... 33 2.4.2 循環伏安法..................................................................................... 35 2.4.3 充放電量測法................................................................................. 36 2.4.4 電化學阻抗分析............................................................................. 37 Chapter 3 結果與討論.............................................................38 3.1 電極材料分析............................................................................................ 38 3.1.1 CNTs 表面樣貌之 SEM 分析 ......................................................... 38 3.1.2 MoO3/CNTs 表面樣貌之 SEM 分析 .............................................. 41 3.1.3 MoO3/CNTs 之 TEM 樣貌晶格分析.............................................. 43 3.1.4 MoO3/CNTs 之 XRD 分析.............................................................. 47 3.1.5 MoO3/CNTs 之拉曼光譜分析......................................................... 48 3.1.6 MoO3/CNTs 之 EDS 分析............................................................... 50 3.2 電化學量測................................................................................................ 51 3.2.1 循環伏安法量測分析 .....................................................................51 3.2.2 充放電量測分析 .............................................................................52 3.2.3 電極之阻抗量測分析 .....................................................................53 3.3 葡萄糖量測分析 ........................................................................................54 3.3.1 不同掃描速率之比較分析 .............................................................54 3.3.2 循環伏安法量測分析 .....................................................................56 3.4 量測分析與討論 ........................................................................................59 Chapter 4 結論........................................................................ 61 參考文獻................................................................................... 62

    [1] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, no.
    6348, pp. 56-58, 1991.
    [2] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm
    diameter," Nature, vol. 363, no. 6430, pp. 603-605, 1993.
    [3] J. W. Mintmire and C. T. White, "Electronic and structural properties of
    carbon nanotubes," Carbon, vol. 33, no. 7, pp. 893-902, 1995.
    [4] G. Dresselhaus, M. S. Dresselhaus, and R. Saito, Physical properties of
    carbon nanotubes. World Scientific, 1998.
    [5] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H.
    Dai, "Nanotube molecular wires as chemical sensors," Science, vol. 287, no.
    5453, pp. 622-625, 2000.
    [6] J. Kong, M. G. Chapline, and H. Dai, "Functionalized carbon nanotubes for
    molecular hydrogen sensors," Advanced Materials, vol. 13, no. 18, pp.
    1384-1386, 2001.
    [7] P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen
    sensitivity of electronic properties of carbon nanotubes," Science, vol. 287,
    no. 5459, pp. 1801-1804, 2000.
    [8] S. Saito, "Carbon nanotubes for next-generation electronics devices,"
    Science, vol. 278, no. 5335, pp. 77-78, 1997.
    [9] P. Kim and C. M. Lieber, "Nanotube nanotweezers," Science, vol. 286, no.
    5447, pp. 2148-2150, 1999.
    [10] Z. Zhu, W. Song, K. Burugapalli, F. Moussy, Y. L. Li, and X. H. Zhong,
    "Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor,"
    Nanotechnology, vol. 21, no. 16, p. 165501, 2010.
    [11] A. Tyagi, S. Banerjee, J. Cherusseri, and K. K. Kar, "Characteristics ofTransition Metal Oxides," Handbook of Nanocomposite Supercapacitor
    Materials I: Characteristics, pp. 91-123, 2020.
    [12] G. Andersson and A. Magneli, "On the crystal structure of molybdenum
    trioxide," Acta Chemica Scandinavica, vol. 4, pp. 793-797, 1950.
    [13] N. Wooster, "The crystal structure of molybdenum trioxide, MoO3,"
    Zeitschrift für Kristallographie-Crystalline Materials, vol. 80, pp. 504-512,
    1931.
    [14] V. Madhavi, P. Kondaidh, S. S. Rayudu, O. M. Hussain, and S. Uthanna,
    "Properties of MoO3 films by thermal oxidation: Annealing induced phase
    transition," Materials Express, vol. 3, no. 2, pp. 135-143, 2013.
    [15]J. Scarminio, A. Lourenco, and A. Gorenstein, "Electrochromism and
    photochromism in amorphous molybdenum oxide films," Thin Solid Films,
    vol. 302, pp. 66-70, 1997.
    [16] W. C. Chang, X. Qi, J. C. Kuo, S. C. Lee, S. K. Ng, and D. Chen,
    "Post-deposition annealing control of phase and texture for the sputtered
    MoO3 films," CrystEngComm, vol. 13, no. 16, pp. 5125-5132, 2011.
    [17] S. S. Sunu, E. Prabhu, V. Jayaraman, K. I. Gnanaseker, T. K. Seshagiri, and
    T. Gnanasekaran, "Electrical conductivity and gas sensing properties of
    MoO3," Sensors and Actuators B: Chemical, vol. 101, pp. 161-174, 2004.
    [18] X. Fan, G. Fang, N. Sun, N. Liu, Q. Zheng, F. Cheng, L. Yuan, and X. Zhao,
    "Deposition temperature effect of RF magnetron sputtered molybdenum
    oxide films on the power conversion efficiency of bulk-heterojunction solar
    cells," Journal of Physics D: Applied Physics, vol. 44, no. 4, p. 045101,
    2011.
    [19] H. Kageyama, H. Kajii, and Y. Shirota, "MoO3 as a cathode buffer layer
    material for the improvement of planar pn-heterojunction organic solar cell performance," Applied Physics Express, vol. 4, no. 3, p. 032301, 2011.
    [20] M. K. Sunkara, C. Pendyala, D. Cummins, P. Meduri, J. Jasinski, V. Kumar,
    H. B. Russell, E. L. Clark, and J. H. Kim, "Inorganic nanowires: a
    perspective about their role in energy conversion and storage applications,"
    Journal of Physics D: Applied Physics, vol. 44, no. 17, p. 174032, 2011.
    [21] R. Liu, R. Biswas, J. Shinar, and R. Shinar, "MoO3 as combined hole
    injection layer and tapered spacer in combinatorial multicolor microcavity
    organic light emitting diodes," Applied Physics Letters, vol. 99, no. 9, p.
    184, 2011.
    [22] P. S. Wang, I. W. Wu, W. H. Tseng, M. H. Chen, and C. I. Wu,
    "Enhancement of current injection in organic light emitting diodes with
    sputter treated molybdenum oxides as hole injection layers," Applied
    Physics Letters, vol. 98, no. 17, p. 80, 2011.
    [23] M. Sharma, A. Gangan, B. Chakraborty, and C. S. Rout, "Non-enzymatic
    glucose sensing properties of MoO3 nanorods: experimental and density
    functional theory investigations," Journal of Physics D: Applied Physics,
    vol. 50, no. 47, p. 475401, 2017.
    [24] H. Du, X. Lin, Z. Xu, and D. Chu, "Electric double-layer transistors: a
    review of recent progress," Journal of Materials Science, vol. 50, no. 17, pp.
    5641-5673, 2015.
    [25] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P.
    Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended
    graphene," Solid State Communications, vol. 146, pp. 351-355, 2008.
    [26] F. Bonaccorso, Z. Sun, and A. C. Ferrari, "Graphene photonics and
    optoelectronics," Nature Photonics, vol. 4, no. 9, pp. 611-622, 2010.
    [27] F. Schwierz, "Graphene transistors," Nature Nanotechnology, vol. 5, no. 7,pp. 487-496, 2010.
    [28] M. Zhang, J. H. Zhao, Z. Wu, J. Liang, D. H. Wu, L. M. Cao, Y. F. Xu, and
    W. K. Wang, "Large-area synthesis of carbon nanofiber films," Journal of
    Materials Science Letters, vol. 17, pp. 2109-2111, 1998.
    [29] L. Q. Mai, X. C. Tian, X. Xu, L. Chang, and L. Xu, "Nanowire electrodes
    for electrochemical energy storage devices," Chemical Reviews, vol. 114,
    pp. 11828-11862, 2014.
    [30] B. E. Conway, V. Birss, and J. Wojtowicz, "The role and utilization of
    pseudocapacitance for energy storage by supercapacitors," Journal of
    Power Sources, vol. 66, pp. 1-14, 1997.
    [31] Y. M. Chen, J. H. Cai, Y. S. Huang, K. Y. Lee, and D. S. Tsai, "Preparation
    and characterization of iridium dioxide – carbon nanotube nanocomposites
    for supercapacitors," Nanotechnology, vol. 22, pp. 1-7, 2011.
    [32] S. Trasatti and G. Buzzanca, "Ruthenium dioxide: a new interesting
    electrode material. Solid state structure and electrochemical behavior,"
    Journal of Electroanalytical Chemistry, vol. 29, pp. 4-8, 1971.
    [33] M. C. K. Sellers, B. M. Castle, and C. P. Marsh, "Three-dimensional
    manganese dioxide-functionalined carbon nanotube electrodes for
    electrochemical supercapacitors," Journal of Solid State Electrochemistry,
    pp. 175-182, 2013.
    [34] S. P. Jahromi, A. Pandikumar, B. T. Goh, Y. S. Lim, W. J. Basirun, H. N.
    Lim, and N. M. Huang, "Influence of particle size on performance of a
    nickle oxide nanoparticle-based supercapacitor," RSC Advances, vol. 5, pp.
    14010-14019, 2015.
    [35] F. Béguin, E. Raymundo-Piñero, and E. Frackowiak, "Electrical
    double-layer capacitors and pseudocapacitors," CRC Press, 2009.
    [36] A. P. Turner, "Biosensors: sense and sensibility," Chemical Society Reviews,
    vol. 42, no. 8, pp. 3184-3196, 2013.
    [37] L. C. Clark and C. Lyons, "Electrode systems for continuous monitoring in
    cardiovascular surgery," Annals of the New York Academy of Sciences, vol.
    102, no. 1, pp. 29-45, 1962.
    [38] K. M. Millan and S. R. Mikkelsen, "Sequence-selective biosensor for DNA
    based on electroactive hybridization indicators," Analytical Chemistry, vol.
    65, no. 17, pp. 2317-2323, 1993.
    [39] N. J. Ronkainen, H. B. Halsall, and W. R. Heineman, "Electrochemical
    biosensors," Chemical Society Reviews, vol. 39, no. 5, pp. 1747-1763, 2010.
    [40] C. Jimenez-Jorquera, J. Orozco, and A. Baldi, "ISFET based microsensors
    for environmental monitoring," Sensors, vol. 10, no. 1, 2010.
    [41] P. Georgiou and C. Toumazou, "A piecewise linear approximating ISFET
    readout," 2013 IEEE Biomedical Circuits and Systems Conference
    (BioCAS), pp. 37-40, 2013.
    [42] D. K. Han, C. A. Li, S. H. Song, K. Cho, J. S. Choi, S. E. Son, and G. H.
    Seong, "Electroanalytical biosensor based on GOx/FCA/PEG-modified
    SWCNT electrode for determination of glucose," Journal of Analytical
    Science and Technology, vol. 14, no. 1, p. 9, 2023.
    [43] M. Urbanowicz, K. Sadowska, B. Lemieszek, A. Paziewska-Nowak, A.
    Sołdatowska, M. Dawgul, and D. G. Pijanowska, "Effect of
    dendrimer-based interlayers for enzyme immobilization on a model
    electrochemical sensing system for glutamate," Bioelectrochemistry, vol.
    152, p. 108407, 2023.
    [44] S. J. Lee, H. S. Yoon, J. Y. Park, S. J. Paik, and M. G. Allen, "A patch type
    non-enzymatic biosensor based on 3D SUS micro-needle electrode arrayfor minimally invasive continuous glucose monitoring," Sensors and
    Actuators B: Chemical, vol. 222, pp. 1144-1151, 2016.
    [45] S. Zhang, G. Zhang, P. He, W. Lei, F. Dong, D. Yang, and Z. Suo, "Novel
    one-pot hydrothermal fabrication of cuprous oxide-attapulgite/graphene for
    non-enzyme glucose sensing," Analytical Methods, vol. 7, no. 6, pp.
    2747-2753, 2015.
    [46] X. Wang, T. Hou, M. Chen, and F. Li, "Highly sensitive and selective
    electrochemical identification of d-glucose based on specific concanavalin
    A combined with gold nanoparticles signal amplification," Sensors and
    Actuators B: Chemical, vol. 185, pp. 105-109, 2013.
    [47] P. Chen, Y. Peng, Y. Hao, Q. Huang, Y. N. Liu, and C. Deng, "A high
    selective disposable biosensor based on screen-printed technique with two
    working electrodes for eliminating interference signals," Sensors and
    Actuators B: Chemical, vol. 183, pp. 589-593, 2013.
    [48] F. Li, Y. Feng, L. Yang, C. Tang, and B. Tang, "A selective novel
    non-enzyme glucose amperometric biosensor based on lectin–sugar binding
    on thionine modified electrode," Biosensors and Bioelectronics, vol. 26, no.
    5, pp. 2489-2494, 2011.
    [49] F. Gao, J. Yin, Z. Yao, M. Li, and L. Wang, "A nanocomposite modified
    electrode: Electrocatalytic properties and its sensing applications to
    hydrogen peroxide and glucose," Journal of The Electrochemical Society,
    vol. 157, no. 3, p. F35, 2010.
    [50] S. J. Updike and G. P. Hicks, "The enzyme electrode," Nature, vol. 214, no.
    5092, pp. 986-988, 1967.
    [51] G.G. Guilbault and G.J. Lubrano, "An enzyme electrode for the
    amperometric determination of glucose," Analytica Chimica Acta, vol. 64, no. 3, pp. 439-455, 1973.
    [52] A. E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J.
    Higgins, E. V. Plotkin, L. D. L. Scott, and A. P. F. Turner,
    "Ferrocene-mediated enzyme electrode for amperometric determination of
    glucose," Analytical Chemistry, vol. 56, no. 4, pp. 667-671, 1984.
    [53]J. E. Frew and H. A. O. Hill, "Electrochemical biosensors," Analytical
    Chemistry, vol. 59, no. 15, pp. 933A-944A, 1987.
    [54] P. I Hilditch and M. J. Green, "Disposable electrochemical biosensors,"
    Analyst, vol. 116, no. 12, pp. 1217-1220, 1991.
    [55] D. R. Matthews, R. R. Holman, E. Bown, J. Steemson, A. Watson, S.
    Hughes, and D. Scott, "Pen-sized digital 30-second blood glucose meter,"
    Lancet, vol. 1, no. 8536, pp. 778-779, 1987.
    [56] R. W. Murray, A. G. Ewing, and R. A. Durst, "Chemically modified
    electrodes. Molecular design for electroanalysis," Analytical Chemistry, vol.
    59, no. 5, pp. 379A-390A, 1987.
    [57] Y. Degani and A. Heller, "Direct electrical communication between
    chemically modified enzymes and metal electrodes. 1. Electron transfer
    from glucose oxidase to metal electrodes via electron relays, bound
    covalently to the enzyme," Journal of Physical Chemistry, vol. 91, no. 6, pp.
    1285-1289, 1987.
    [58] T. J. Ohara, R. Rajagopalan, and A. Heller, ""Wired" enzyme electrodes for
    amperometric determination of glucose or lactate in the presence of
    interfering substances," Analytical Chemistry, vol. 66, no. 15, pp.
    2451-2457, 1994.
    [59] I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, A. F. Bückmann,
    and A. Heller, "Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes," Journal of the
    American Chemical Society, vol. 118, no. 42, pp. 10321-10322, 1996.
    [60] G. G. Kumar, G. Amala, and S. M. Gowtham, "Recent advancements, key
    challenges and solutions in non-enzymatic electrochemical glucose sensors
    based on graphene platforms," RSC Advances, vol. 7, pp. 36949-36976,
    2017.
    [61] X. Niu, X. Li, J. Pan, F. Qiu, and Y. Yan, "Recent advances in
    non-enzymatic electrochemical glucose sensors based on non-precious
    transition metal materials: opportunities and challenges," RSC Advances,
    vol. 6, no. 88, pp. 84893-84905, 2016.
    [62] M. Adeel, M. M. Rahman, I. Caligiuri, V. Canzonieri, F. Rizzolio, and S.
    Daniele, "Recent advances of electrochemical and optical enzyme-free
    glucose sensors operating at physiological conditions," Biosensors and
    Bioelectronics, vol. 165, p. 112331, 2020.
    [63] N. Thakur, D. Mandal, and T. C. Nagaiah, "A novel NiVP/Pi based flexible
    sensor for direct electrochemical ultrasensitive detection of cholesterol,"
    Chemical Communications, 2022.
    [64] M. Sharma, A. Gangan, B. Chakraborty, and C. S. Rout, " Non-enzymatic
    glucose sensing properties of MoO3 nanorods: Experimental and density
    functional theory investigations," Journal of Physics D: Applied Physics,
    vol. 50, no. 47, p. 475401, 2017.
    [65] M. Pohanka, "Glucose electrochemical biosensors: The past and current
    trends," Hemoglobin, vol. 44, no. 1, p. 47, 2021.
    [66] F. W. Campbell and R. G. Compton, "The use of nanoparticles in
    electroanalysis: an updated review," Analytical and Bioanalytical
    Chemistry, vol. 396, pp. 241-259, 2010.
    [67] P. M. Ajayan, "Nanotubes from carbon," Chemical Reviews, vol. 99, no. 7,
    pp. 1787-1799, 1999.
    [68]J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H.
    Dai, "Nanotube molecular wires as chemical sensors," Science, vol. 287, no.
    5453, pp. 622-625, 2000.
    [69]J. Kong, M. G. Chapline, and H. Dai, "Capillary force lithography,"
    Advanced Materials, vol. 13, no. 18, pp. 1386-1389, 2001.
    [70] P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen
    sensitivity of electronic properties of carbon nanotubes," Science, vol. 287,
    no. 5459, pp. 1801-1804, 2000.
    [71] S. Saito, "Carbon nanotubes for next-generation electronics devices,"
    Science, vol. 278, no. 5335, pp. 77-78, 1997.
    [72] P. Kim and C. M. Lieber, "Nanotube nanotweezers," Science, vol. 286, no.
    5447, pp. 2148-2150, 1999.
    [73]J. Kong, A. M. Cassell, and H. Dai, "Chemical vapor deposition of methane
    for single-walled carbon nanotubes," Chemical Physics Letters, vol. 292, no.
    4-6, pp. 567-574, 1998.
    [74] C. C. Moura, R. S. Tare, R. O. Oreffo, and S. Mahajan, "Raman
    spectroscopy and coherent anti-Stokes Raman scattering imaging:
    prospective tools for monitoring skeletal cells and skeletal regeneration,"
    Journal of The Royal Society Interface, vol. 13, no. 118, p. 20160182, 2016.
    [75] E. Smith and G. Dent, "Modern Raman spectroscopy: a practical approach,"
    John Wiley & Sons, 2019.
    [76] K. Kikuchi, K. Yamamoto, N. Nomura, and A. Kawasaki, "Synthesis of
    n-type Mg2Si/CNT thermoelectric nanofibers," Nanoscale Research Letters,
    vol. 12, no. 1, pp. 1-6, 2017.
    [77] T. H. Chiang and H. C. Yeh, "The synthesis of α-MoO3 by ethylene glycol,"
    Materials, vol. 6, no. 10, pp. 4609-4625, 2013.
    [78] K. A. Wepasnick, B. A. Smith, K. E. Schrote, H. K. Wilson, S. R.
    Diegelmann, and D. H. Fairbrother, "Surface and structural characterization
    of multi-walled carbon nanotubes following different oxidative treatments,"
    Carbon, vol. 49, no. 1, pp. 24-36, 2011.
    [79] O. Lupan, V. Trofim, V. Cretu, I. Stamov, N. N. Syrbu, I. Tiginyanu, Y. K.
    Mishra, and R. Adelung, "Investigation of optical properties and electronic
    transitions in bulk and nano-microribbons of molybdenum trioxide,"
    Journal of Physics D: Applied Physics, vol. 47, no. 8, p. 085302, 2014.
    [80] C. Karaman, O. Karaman, N. Atar, and M. L. Yola, "A molecularly
    imprinted electrochemical biosensor based on hierarchical Ti2Nb10O29
    (TNO) for glucose detection," Microchimica Acta, vol. 189, no. 1, p. 24,
    2022.
    [81] H. Fatemi, A. A. Khodadadi, A. A. Firooz, and Y. Mortazavi,
    "Apple-biomorphic synthesis of porous ZnO nanostructures for glucose
    direct electrochemical biosensor," Current Applied Physics, vol. 12, no. 4,
    pp. 1033-1038, 2012.
    [82] F. A. Gulotta, M. A. Montenegro, L. V. Diaz, J. A. Badano, N. F. Ferreyra,
    and V. I. P. Zanini, "Chitosan-based maillard products for enzyme
    immobilization in multilayers structure: Its application in electrochemical
    sensing," Microchemical Journal, vol. 190, p. 108689, 2023.
    [83] A. Mubarakali, S. Gopinath, P. Parthasarathy, U. A. Kumar, and A. A.
    Basha, "Highly efficient and sensitive non-enzymatic glucose biosensor
    based on flower-shaped CuO-colloid nanoparticles decorated with
    graphene-modified nanocomposite electrode," Measurement, vol. 217, p. 113145, 2023.
    [84] T. M. Alfareed, A. Almofleh, S. M. Asiri, J. M. Alghamdi, S. T. Gunday,
    and E. Cevik, "Molybdenum-cobalt micro-nano interface assisted
    ultrasensitive and selective non-enzymatic glucose biosensor,"
    Microchemical Journal, vol. 191, p. 108923, 2023.
    [85] S. Deepapriya, J. D. Rodney, J. F. John, S. Joshi, N. K. Udayashankar, S. L.
    Devi, and S. J. Das, "A novel effective immobilization of glucose oxidase
    on Ni0.25Zn0.25Cu0.25Co0.25La0.06Fe1.94O4–Chitosan nanocomposite as an
    enzymatic glucose biosensor," Inorganic Chemistry Communications, vol.
    153, p.110822, 2023.
    [86] L. Y. Gai, X. R. Gong, S. Z. Wang, C. T. Lin, R. J. Zhao, and W. F. Xie,
    "Synthesis of hierarchical trimetal oxide nanocomposites and their
    enzyme-free glucose sensing performances," Journal of Materials Science:
    Materials in Electronics, vol. 34, no. 16, p. 1278, 2023.
    [87] M. Solhi, M. Rahsepar, A. A. K. Asl, and H. Kim, "Synthesis and
    characterization of a high-performance enzyme-free glucose sensor based
    on mesoporous copper oxide nanoparticles," Materials Research Bulletin,
    vol. 164, p. 112240, 2023.
    [88] S. Muqaddas, H. Asalm, S. U. Hassan, A. R. Ashraf, M. A. Asghar, M.
    Ahmad, A. Nazir, R. Shoukat, M. Kaleli, S. M. Ibrahim, S. kyürekli, A.
    Haider, and A. Ali, "Electrochemical sensing of glucose and ascorbic acid
    via POM-based CNTs fiber electrode," Materials Science and Engineering:
    B, vol. 293, p. 116446, 2023.
    [89] S. D. Wijayanti, F. Schachinger, R. Ludwig, and D. Haltrich,
    "Electrochemical and biosensing properties of an FAD-dependent glucose
    dehydrogenase from trichoderma virens," Bioelectrochemistry, vol. 153, p. 108480, 2023.
    [90] S. Kim, G. Lee, K. Ahm, and J. Kim, "Damage-free remote SF6
    plasma-treated CNTs for facile fabrication of electrochemical enzyme
    biosensors," Applied Surface Science, vol. 628, p. 157386, 2023.
    [91] M. Hilal and J. I. Han, "Facile preparation of three-dimensional hierarchical
    MgO microstructures for non-enzymatic glucose sensor," Applied Surface
    Science, vol. 619, p. 156750, 2023.

    無法下載圖示 全文公開日期 2028/07/24 (校內網路)
    全文公開日期 2028/07/24 (校外網路)
    全文公開日期 2028/07/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE