簡易檢索 / 詳目顯示

研究生: 吳紹羽
SHAO-YU WU
論文名稱: 微波電漿系統沉積摻氮奈米鑽石薄膜製成葡萄糖感測器
Deposition of Nitrogen-doped Nano-Diamond Thin Film for Glucose Sensor by Microwave Plasma System
指導教授: 周賢鎧
Shyan-kay Jou
口試委員: 黃柏仁
BO-REN HUANG
章詠湟
YONG-HUANG ZHANG
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 132
中文關鍵詞: 摻氮奈米鑽石薄膜葡萄糖感測器電化學循環伏安法氧電漿表面改質
外文關鍵詞: Nitrogen-doped Nano-Diamond Thin Film, Glucose Sensor, Electrochemistry, Cyclic voltammetry, Oxygen plasma surface modification
相關次數: 點閱:208下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用微波電漿化學氣相沉積系統(Microwave plasma chemical vapor deposition, MPCVD)在CH4/Ar/N2氣體混合下合成氮摻雜的超奈米晶鑽石薄膜,藉由調整甲烷與氬氣的比例,分析鑽石薄膜外觀與特性的變化,固定甲烷的流量後再調整氮氣與氬氣的比例,得到CH4/Ar/N2為6/44/50具有良好導電率,導電率為1.17 x 101 (Ω.cm)-1。檢測鑽石薄膜品質的儀器包含場發射掃描式電子顯微鏡(Field emission scanning electron microscope)、顯微拉曼光譜儀(Raman spectrometer)、光放射光譜儀(OES)、X射線光電子能譜儀(X-ray Photoelectron Spectrum,XPS)以及霍爾量測分析儀(Hall effect measurement)來分析鑽石薄膜的特性。
    將摻氮奈米鑽石薄膜使用微波電漿系統進行表面改質,利用氧電漿使鑽石薄膜表面與氧相關基團產生鍵結,其中羧基基團(COOH)能與葡萄糖氧化酶(GOx)之游離氨基(-NH2)產生鍵結製成葡萄糖感測器,氧電漿改質結果使用X射線光電子能譜儀進行檢測分析。氧電漿處理時間為60秒時鑽石薄膜表面擁有最多的羧基基團,在C1s中相對百分比為1.85 %。
    將表面改質之摻氮奈米鑽石薄膜製成電化學工作電極,使用循環伏安法(Cyclic voltammetry, CV)使電極表面與葡萄糖氧化酶產生共價鍵結,經計算得到葡萄糖氧化酶表面覆蓋率為2.79 x 10-10 mol cm-2,以及使用不同掃描速率證明電極為擴散控制電子轉移。最後使用安培法(Amperometry)測量本研究之葡萄糖感測器的線性量測範圍區間、靈敏度、檢測極限值以及保存度測試。線性量測範圍為1.8–23.05 mM,靈敏度為0.348 μAmM-1cm-2,檢測極限為0.864 mM,存放一個禮拜與兩個禮拜後,其靈敏度則下降了88.94 %和97.18 %。


    In this study, nitrogen-doped ultra nano-diamond (UNCD) films were synthesized on a thermally oxidized silicon substrate by using a microwave plasma chemical vapor deposition (MPCVD) under CH4/Ar/N2 gas mixture. The ratios of methane to argon were varied to change the surface morphology and characteristics of the diamond films. With a constant flow rate of methane, the ratio of nitrogen to argon was adjusted, and diamond film with good electrical conductivity of 1.17 x 101 (Ω.cm)-1 was obtained with CH4/Ar/N2 of 6/44/50. Instruments for investigation of the quality of diamond films include Field Emission Scanning Electron Microscopy (FESEM), Raman spectrometer, Optical emission spectroscopy (OES), X-ray photoelectron spectroscopy (XPS), and Hall effect measurement to analyze the structure and properties of diamond films.
    The nitrogen-doped nano-diamond film is surface-modified with a microwave plasma system, and the surface of the diamond film is bonded with oxygen-related groups by oxygen plasma, wherein the carboxyl group (COOH) can be combined with the free amino group (-NH2) of glucose oxidase (GOx) for glucose sensors. The oxygen plasma modification result was detected by an XPS. When the oxygen plasma treatment time is 60 seconds, the surface of the diamond film has maximum amount of carboxyl group, and the relative percentage in C1s is 1.85 %.
    After the surface-modified nitrogen-doped nano-diamond film was made into an electrochemical working electrode, cyclic voltammetry (CV) was used to make the electrode surface covalently bondsd with glucose oxidase. The surface coverage of glucose oxidase was calculated to be 2.79 x 10-10 mol cm-2 and the electrode was proved for diffusion-controlled electron transfer using different scan rates.
    Finally, amperometry was used to measure the linear measurement range, sensitivity, limit of detection and preservation test of the glucose sensors. The linear measurement range was 1.8–23.05 mM, the sensitivity was 0.348 μA mM-1 cm-2, and the limit of detection was 0.864 mM. After one week of storage and two weeks later, the sensitivity decreased by 88.94 % and 97.18 %, respectively.

    目錄 摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究動機 第二章 文獻回顧 2.1 人造鑽石歷史 2.2 鑽石結構與特性 2.2.1碳材料簡介 2.2.2 鑽石結構 2.2.3 鑽石特性與應用 2.3 鑽石薄膜成長機制-化學氣相沉積法 2.3.1 熱燈絲化學氣相沉積法 2.3.2微波電漿化學氣相沉積法 2.3.3射頻電漿化學氣相沉積法 2.3.4直流電漿化學氣相沉積法 2.3.5電子迴旋微波放電系統 2.3.6 各化學氣相沉積系統比較 2.4 鑽石薄膜成核相關理論 2.4.1鑽石薄膜成核預先處理 2.4.2 鑽石薄膜成長類型 2.5 鑽石薄膜分類 2.5.1 微米晶鑽石薄膜 2.5.2奈米鑽石薄膜 2.5.3 超奈米鑽石薄膜 2.6 摻雜之鑽石薄膜 2.6.1 硼摻雜鑽石薄膜 2.6.2 氮摻雜鑽石薄膜 2.7 生物感測器 2.8 電化學簡介 2.8.1 循環伏安法 2.8.2 安培法 2.8.3 電化學反應系統 第三章 研究方法與實驗步驟 3.1 實驗藥品及材料 3.2 實驗流程 3.2.1 基板預處理 3.2.2 成長摻氮奈米鑽石薄膜 3.2.3 氧電漿處理 3.2.4 製作葡萄糖感測器 3.2.5 電化學量測 3.3 實驗設備 3.3.1 實驗儀器簡表 3.3.2 超音波震盪機(Ultrasonic steri-cleaner) 3.3.3 微波電漿化學氣相沉積系統(Microwave Plasma Chemical Vapor Deposition, MPCVD) 3.3.4 微波電漿系統(Microwave plasma,MWP) 3.4 分析及量測設備 3.4.1 量測及分析儀器簡表 3.4.2 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy,FESEM) 3.4.3顯微拉曼光譜儀(Raman spectrometer) 3.4.4 光放射光譜儀(OES) 3.4.5 X射線光電子能譜儀(X-ray Photoelectron Spectrum,XPS) 3.4.6 霍爾量測分析儀(Hall effect measurement) 3.4.7電化學量測系統(Electrochemical analyzer) 第四章 結果與討論 4.1 不同甲烷濃度之鑽石薄膜特性分析 4.1.1 鑽石薄膜之OES分析 4.1.2 不同甲烷濃度之鑽石薄膜表面形貌 4.1.3拉曼光譜品質分析 4.1.4甲烷濃度對鑽石薄膜沉積速率的影響 4.1.5甲烷與氬氣流量對薄膜導電率的影響 4.2不同氮氣濃度之摻氮鑽石薄膜特性分析 4.2.1 不同氮濃度鑽石薄膜之OES分析 4.2.2不同氮氣濃度之鑽石薄膜表面形貌 4.2.3拉曼光譜品質分析 4.2.4 氮氣濃度對鑽石薄膜沉積速率的影響 4.2.5 不同氮氣濃度之摻氮鑽石薄膜XPS分析 4.2.6不同氮氣濃度對薄膜導電率的影響 4.3 氧電漿對摻氮鑽石薄膜進行表面改質 4.3.1 氧電漿表面改質之XPS分析 4.4 電化學量測與分析 4.4.1 葡萄糖氧化酶與摻氮鑽石表面鍵結 4.4.2 葡萄糖氧化酶表面覆蓋含量計算 4.4.3 不同掃描速率電化學分析 4.4.4 安培法測定葡萄糖濃度分析 4.4.5 保存測試 第五章 結論 參考文獻 附錄 不同氮氣濃度的工作電極的安培響應 (葡萄糖濃度範圍為2.44 mM–14.88 mM) 不同氮氣濃度工作電極之葡萄糖濃度與電流響應值關係圖 (葡萄糖濃度範圍為2.44 mM–14.88 mM) Fundamental XPS Data from Pure Elements, Pure Oxides, and Chemical Compounds XPS C1s、N1s、O1s peak fitting parameters 0.1 M PBS緩衝溶液配置方法

    參考文獻
    [1] J. Wisniak, Smithson Tennant, Educación Química 26(3) (2015) 250-259.
    [2] P.K. Bachmann, R. Messier, Advances in material sciences are paving the way for use of synthetic diamond, Chemical & Engineering News 67(20) (1989) 24-37.
    [3] S. Chen, H. Li, J. Pang, The advance of luminescence dating, Journal of Northwest University (Natural Science Edition)(in Chinese with English abstract) 33(2) (2003) 209-212.
    [4] P.S. DeCarli, J.C. Jamieson, Formation of diamond by explosive shock, Science 133(3467) (1961) 1821-1822.
    [5] P. Bridgman, Synthetic diamonds, Scientific American 193(5) (1955) 42-47.
    [6] W. Eversole, US Patent No. 3030188, Apr, 1962.
    [7] B.V. Spitsyn, Chemical crystallization of diamond from the activated vapor phase, Journal of Crystal Growth 99(1-4) (1990) 1162-1167.
    [8] 梁嘉堯, 含氮奈米晶鑽石膜之光電特性及在太陽能電池之應用, 碩士論文, 臺北科技大學製造科技研究所 (2012) 1-70.
    [9] M. Tsuda, M. Nakajima, S. Oikawa, Epitaxial growth mechanism of diamond crystal in methane-hydrogen plasma, Journal of the American Chemical Society 108(19) (1986) 5780-5783.
    [10] O.H. Auciello, D.M. Gruen, A.R. Krauss, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N.A. Moldovan, A. Erdemir, D. Ersoy, Science and technology of ultrananocrystalline diamond (UNCD) thin films for multifunctional devices, Smart Structures and Devices, International Society for Optics and Photonics, 2001, pp. 10-21.
    [11] 黃柏翰, 以奈米鑽石的表面改質來提高鑽石薄膜之成核並應用於紫外光感測器, 碩士論文, 臺北科技大學機電整合研究所 (2014) 1-99.
    [12] 葉守圃, 氮摻雜奈米鑽石及其應用於生醫相容的電阻式加熱器, 碩士論文, 成功大學奈米科技暨微系統工程研究所 (2012) 1-81.
    [13] 羅睿永, 915MHz 微波電漿化學氣相沉積大面積鑽石薄膜及其特性, 碩士論文, 成功大學微電子工程研究所 (2012) 1-96.
    [14] P. Pehrsson, F. Celii, J. Butler, R. Davis, Diamond Films and Coating, Development, Prooperties, and Applications, RF Davis, Noyes Publications, Park Ridge, New Jersey, 1993.
    [15] M. Tsuda, M. Nakajima, S. Oikawa, The importance of the positively charged surface for the epitaxial growth of diamonds at low pressure, Japanese Journal of Applied Physics 26(5A) (1987) L527.
    [16] J.E. Field, The Properties of Diamond, Academic Press1979.
    [17] J.-K. Yan, L. Chang, Chemical vapour deposition of oriented diamond nanocrystallites by a bias-enhanced nucleation method, Nanotechnology 17(22) (2006) 5544.
    [18] 陳琮民, 反應氣體對於熱燈絲化學氣相沈積系統成長鑽石薄膜行為之研究, 碩士論文, 淡江大學物理學系碩士班 (2015) 1-95.
    [19] V. Raiko, R. Spitzl, B. Aschermann, D. Theirich, J. Engemann, N. Pupeter, T. Habermann, G. Mueller, Field emission observations from CVD diamond-coated silicon emitters, Thin Solid Films 290 (1996) 190-195.
    [20] P.M. Menon, A. Edwards, C. Feigerle, R. Shaw, D. Coffey, L. Heatherly, R. Clausing, L. Robinson, D. Glasgow, Filament metal contamination and Raman spectra of hot filament chemical vapor deposited diamond films, Diamond and Related Materials 8(1) (1999) 101-109.
    [21] 江惠芳, 石墨烯/硒化鎘/奈米碳管/幾丁聚醣複合薄膜的電化學性質及用於電化學感測之研究, 碩士論文, 國立高雄大學化學工程及材料工程學系碩士班 (2013) .1-80
    [22] A. Sowers, B. Ward, S. English, R. Nemanich, Field emission properties of nitrogen-doped diamond films, Journal of Applied Physics 86(7) (1999) 3973-3982.
    [23] P.W. May, Diamond thin films: a 21st-century material, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 358(1766) (2000) 473-495.
    [24] K. Chen, D. Bhusari, J. Yang, S. Lin, T. Wang, L. Chen, Highly transparent nano-crystalline diamond films via substrate pretreatment and methane fraction optimization, Thin Solid Films 332(1-2) (1998) 34-39.
    [25] 李政雄, 合成摻硼鑽石膜做為葡萄糖感測器之應用, 碩士論文, 臺北科技大學製造科技研究所 (2014) 1-89.
    [26] Y. Chakk, R. Brener, A. Hoffman, Mechanism of diamond formation on substrates abraded with a mixture of diamond and metal powders, Diamond and Related Materials 5(3-5) (1996) 286-291.
    [27] S.J. Harris, Mechanism for diamond growth from methyl radicals, Applied Physics Letters 56(23) (1990) 2298-2300.
    [28] B. Stoner, G.-H. Ma, S. Wolter, J. Glass, Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy, Physical Review B 45(19) (1992) 11067.
    [29] J. Robertson, Mechanism of bias-enhanced nucleation and heteroepitaxy of diamond on Si, Diamond and Related materials 4(5-6) (1995) 549-552.
    [30] M. Ohring, Materials science of thin films, Elsevier2001.
    [31] S. Kumar, D. Pant, K.D. Gupta, R. Varma, D. Misra, R. Bajpai, M. Jadhav, Growth of diamond by MPCVD process, DAE Symp. Nucl. Phys., 2013, pp. 918-919.
    [32] W. Kulisch, C. Petkov, E. Petkov, C. Popov, P.N. Gibson, M. Veres, R. Merz, B. Merz, J.P. Reithmaier, Low temperature growth of nanocrystalline and ultrananocrystalline diamond films: a comparison, Physica Status Solidi (a) 209(9) (2012) 1664-1674.
    [33] V. Konov, A. Smolin, V. Ralchenko, S. Pimenov, E. Obraztsova, E. Loubnin, S. Metev, G. Sepold, Dc arc plasma deposition of smooth nanocrystalline diamond films, Diamond and Related Materials 4(8) (1995) 1073-1078.
    [34] C.-S. Wang, G.-H. Tong, H.-C. Chen, W.-C. Shih, I.-N. Lin, Effect of N2 addition in Ar plasma on the development of microstructure of ultra-nanocrystalline diamond films, Diamond and Related Materials 19(2-3) (2010) 147-152.
    [35] 廖文祥, 以微波電漿噴射化學氣相沉積系統合成超奈米晶鑽石膜之研究, 碩士論文, 臺北科技大學製造科技研究所 (2009).1-93
    [36] L. Ren, J. Cui, Optical emission spectrum online diagnoses for CH4+ H2 discharge plasma system at atmospheric pressure, system 8(8) (2004) 2.
    [37] T. Sharda, S. Bhattacharyya, Advances in nanocrystalline diamond, Encyclopedia of Nanoscience and Nanotechnology, X 1 (2003).
    [38] C.C. Chang, L.C. Chen, S.J. Liu, H.C. Chang, The Electro‐Oxidation of Formaldehyde at a Boron‐Doped Diamond Electrode, Analytical Letters 39(13) (2006) 2581-2589.
    [39] K. Okano, H. Naruki, Y. Akiba, T. Kurosu, M. Iida, Y. Hirose, T. Nakamura, Characterization of boron-doped diamond film, Japanese Journal of Applied Physics 28(6R) (1989) 1066.
    [40] A. Ferrari, J. Robertson, Origin of the 1 1 5 0− cm− 1 Raman mode in nanocrystalline diamond, Physical Review B 63(12) (2001) 121405.
    [41] S.R. Sails, D.J. Gardiner, M. Bowden, J. Savage, D. Rodway, Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm, Diamond and Related Materials 5(6-8) (1996) 589-591.
    [42] 江佩玲, 導電性超奈米微晶鑽石薄膜之製備與用於多巴胺感測之研究, 碩士論文, 國立清華大學材料科學工程學系, (2016) 1-76.
    [43] K. Sankaran, J. Kurian, H. Chen, C. Dong, C. Lee, N. Tai, I. Lin, Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma, Journal of Physics D: Applied Physics 45(36) (2012) 365303.
    [44] S. Bhattacharyya, O. Auciello, J. Birrell, J. Carlisle, L. Curtiss, A. Goyette, D. Gruen, A. Krauss, J. Schlueter, A. Sumant, Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films, Applied Physics Letters 79(10) (2001) 1441-1443.
    [45] J.P. Chambers, B.P. Arulanandam, L.L. Matta, A. Weis, J.J. Valdes, Biosensor recognition elements, Texas Univ at San Antonio Dept of Biology, 2008.
    [46] D. Grieshaber, R. MacKenzie, J. Voeroes, E. Reimhult, Electrochemical biosensors-sensor principles and architectures, Sensors 8(3) (2008) 1400-1458.
    [47] 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司2002.
    [48] A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical methods: fundamentals and applications, Wiley, New York, 1980.
    [49] F. Scholz, Electroanalytical methods, Springer, 2010.
    [50] F. Hadish, S. Jou, B.-R. Huang, H.-A. Kuo, C.-W. Tu, Functionalization of CVD Grown Graphene with Downstream Oxygen Plasma Treatment for Glucose Sensors, Journal of The Electrochemical Society 164(7) (2017) B336-B341.
    [51] 楊勝凱, 透過奈米晶鑽石薄膜改善奈米碳管之電子場發射特性, 碩士論文, 大同大學電機工程研究所 (2017) 59-60.
    [52] 吳雅婷, 電漿氧化成長氧化鋁與氧化鋁-氧化銅介電層之單極式電阻切換研究, 國立台灣科技大學材料科學與工程學系(2012) 1-90.
    [53] Y. Jusman, S.C. Ng, A. Osman, N. Azuan, Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX, The Scientific World Journal 2014 (2014).
    [54] 毛姿穎, 氮摻雜石墨烯以及矽摻雜石墨烯之研究, 碩士論文, 國立台灣科技大學材料科學與工程學系, (2017) 1-110.
    [55] B.D. Cullity, Elements of X-ray Diffraction, (2001).
    [56] L.-J. Chen, N.-H. Tai, C.-Y. Lee, I.-N. Lin, Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond, Journal of Applied Physics 101(6) (2007) 064308.
    [57] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B 61(20) (2000) 14095.
    [58] H. Kuzmany, R. Pfeiffer, N. Salk, B. Günther, The mystery of the 1140 cm− 1 Raman line in nanocrystalline diamond films, Carbon 42(5-6) (2004) 911-917.
    [59] F. Tai, S.-C. Lee, J. Chen, C. Wei, S. Chang, Multipeak fitting analysis of Raman spectra on DLCH film, Journal of Raman Spectroscopy: 40(8) (2009) 1055-1059.
    [60] J. Birrell, J. Carlisle, O. Auciello, D. Gruen, J. Gibson, Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond, Applied Physics Letters 81(12) (2002) 2235-2237.
    [61] 彭詩翔, 氮摻雜超奈米晶鑽石膜光性與電性傳導研究, 碩士論文, 國立交通大學應用化學系碩博士班, (2011) 1-89.
    [62] O. Rosseler, M. Sleiman, V.N. Montesinos, A. Shavorskiy, V. Keller, N. Keller, M.I. Litter, H. Bluhm, M. Salmeron, H. Destaillats, Chemistry of NOx on TiO2 Surfaces Studied by Ambient Pressure XPS: Products, Effect of UV Irradiation, Water, and Coadsorbed K+, The Journal of Physical Chemistry Letters 4(3) (2013) 536-541.
    [63] A. Dementjev, A. De Graaf, M. Van de Sanden, K. Maslakov, A. Naumkin, A. Serov, X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films, Diamond and Related Materials 9(11) (2000) 1904-1907.
    [64] I. Kusunoki, M. Sakai, Y. Igari, S. Ishidzuka, T. Takami, T. Takaoka, M. Nishitani-Gamo, T. Ando, XPS study of nitridation of diamond and graphite with a nitrogen ion beam, Surface Science 492(3) (2001) 315-328.
    [65] Y. Shao, S. Zhang, M.H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I.A. Aksay, Y. Lin, Nitrogen-doped graphene and its electrochemical applications, Journal of Materials Chemistry 20(35) (2010) 7491-7496.
    [66] Z. Lin, M.-k. Song, Y. Ding, Y. Liu, M. Liu, C.-p. Wong, Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction, Physical Chemistry Chemical Physics 14(10) (2012) 3381-3387.
    [67] Z. Yang, M. Xu, Y. Liu, F. He, F. Gao, Y. Su, H. Wei, Y. Zhang, Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate, Nanoscale 6(3) (2014) 1890-1895.
    [68] Y. Wang, Y. Shao, D.W. Matson, J. Li, Y. Lin, Nitrogen-doped graphene and its application in electrochemical biosensing, ACS Nano 4(4) (2010) 1790-1798.
    [69] N. Karikalan, M. Velmurugan, S.-M. Chen, C. Karuppiah, K. Al-Anazi, M.A. Ali, B.-S. Lou, Flame synthesis of nitrogen doped carbon for the oxygen reduction reaction and non-enzymatic methyl parathion sensor, RSC Advances 6(75) (2016) 71507-71516.
    [70] Z. Xing, Z. Ju, Y. Zhao, J. Wan, Y. Zhu, Y. Qiang, Y. Qian, One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries, Scientific Reports 6 (2016) 26146.
    [71] K. Ma, J. Tang, Y. Zou, Q. Ye, W. Zhang, S. Lee, Photoemission spectroscopic study of nitrogen-incorporated nanocrystalline diamond films, Applied Physics Letters 90(9) (2007) 092105.
    [72] A.A. Sehat, A.A. Khodadadi, F. Shemirani, Y. Mortazavi, Fast immobilization of glucose oxidase on graphene oxide for highly sensitive glucose biosensor fabrication, Int. J. Electrochem. Sci 10(20145) (2015) 272-286.
    [73] H.-L. Guo, X.-F. Wang, Q.-Y. Qian, F.-B. Wang, X.-H. Xia, A green approach to the synthesis of graphene nanosheets, ACS Nano 3(9) (2009) 2653-2659.
    [74] P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang, C. Cai, Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection, Electrochimica Acta 55(28) (2010) 8606-8614.
    [75] Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: a review, Electroanalysis 22(10) (2010) 1027-1036.
    [76] J. Zhang, M. Feng, H. Tachikawa, Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes, Biosensors and Bioelectronics 22(12) (2007) 3036-3041.
    [77] Q. Liu, X. Lu, J. Li, X. Yao, J. Li, Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes, Biosensors and Bioelectronics 22(12) (2007) 3203-3209.
    [78] S. Liu, H. Ju, Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode, Biosensors and Bioelectronics 19(3) (2003) 177-183.
    [79] S. Deng, G. Jian, J. Lei, Z. Hu, H. Ju, A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes, Biosensors and Bioelectronics 25(2) (2009) 373-377.
    [80] J. Shalini, K.J. Sankaran, C.-Y. Lee, N.-H. Tai, I.-N. Lin, An amperometric urea bisosensor based on covalent immobilization of urease on N2 incorporated diamond nanowire electrode, Biosensors and Bioelectronics 56 (2014) 64-70.
    [81] Z. Xu, A. Kumar, A. Kumar, Amperometric detection of glucose using a modified nitrogen-doped nanocrystalline diamond electrode, Journal of Biomedical Nanotechnology 1(4) (2005) 416-420.
    [82] Y. Zou, L. He, K. Dou, S. Wang, P. Ke, A. Wang, Amperometric glucose sensor based on boron doped microcrystalline diamond film electrode with different boron doping levels, Rsc Advances 4(102) (2014) 58349-58356.
    [83] J. Wang, J.A. Carlisle, Covalent immobilization of glucose oxidase on conducting ultrananocrystalline diamond thin films, Diamond and Related Materials 15(2-3) (2006) 279-284.
    [84] X. Zhang, J. Zhu, R. Wang, X. Liu, Y. Yao, J. Wu, Diamond films as substrates for glucose sensors, Materials Letters 18(5-6) (1994) 318-319.
    [85] W. Zhao, J.-J. Xu, Q.-Q. Qiu, H.-Y. Chen, Nanocrystalline diamond modified gold electrode for glucose biosensing, Biosensors and Bioelectronics 22(5) (2006) 649-655.
    [86] Y.-F. Bai, T.-B. Xu, J.H. Luong, H.-F. Cui, Direct electron transfer of glucose oxidase-boron doped diamond interface: a new solution for a classical problem, Analytical Chemistry 86(10) (2014) 4910-4918.
    [87] S. Palanisamy, S. Cheemalapati, S.-M. Chen, Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite, Materials Science and Engineering: C 34 (2014) 207-213.

    QR CODE