簡易檢索 / 詳目顯示

研究生: 楊昀潔
Yun-Jie Yang
論文名稱: 丙烯腈基共聚高分子/聚偏氟乙烯/鋰鑭鋯鉭氧化物之複合固態高分子電解質在固態鋰離子電池之應用
Application of acrylonitrile-based copolymer /polyvinylidene fluoride/lithium lanthanum zirconium tantalum oxide composite solid polymer electrolyte in solid-state lithium-ion batteries
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 范國泰
Quoc-Thai Pham
許榮木
Jung-Mu Shu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 102
中文關鍵詞: 聚丙烯腈基共聚合高分子聚偏氟乙烯複合高分子電解質鋰離子電池電化學性能
外文關鍵詞: polyacrylonitrile-based copolymer, polyvinylidene fluoride, composite polymer electrolyte, lithium-ion battery, electrochemical performance
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 III Abstract IV 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 1 第一章 緒論 1 1.1 前言 1 1.2 研究動機與方向 3 1.2.1 鋰離子電池工作原理 3 1.2.2 正極活性材料 4 1.2.3 電解質 5 1.2.4 負極材料 7 2 文獻回顧 9 2.1 固態電解質 9 2.1.1 無機固態電解質 10 2.1.2 有機固態電解質 11 2.1.3 固體複合電解質 13 2.2 高分子基質 14 2.3 修飾聚合物基質 17 2.3.1 聚合物共混 17 2.3.2 混和固體電解質 19 2.4 溶劑化電解質 22 2.5 高分子合成機制 26 3 實驗藥品、器材與方法 28 3.1 實驗藥品 28 3.1.1 實驗儀器與器材 29 3.2 電解質製備 30 3.2.1 高分子合成 30 3.2.2 複合固體電解質製備 30 3.3 物性測試樣品製備 32 3.3.1 GPC樣品製備 32 3.3.2 DSC樣品製備 32 3.3.3 TGA樣品製備 32 3.3.4 FT-IR樣品製備 32 3.3.5 機械性能製備 33 3.4 電化學測試樣品製備 34 3.4.1 離子電導率樣品製備 34 3.4.2 LSV樣品製備 35 3.4.3 鋰離子遷移常數、鋰離子擴散係數及介面穩定性樣品製備 36 3.4.4 正極製備 37 3.4.5 固態電池製備 38 4 實驗結果與討論 39 4.1 凝膠滲透層分析 39 4.2 差示掃描量熱分析 40 4.3 熱重分析 44 4.4 傅立葉轉換紅外光譜分析 46 4.5 機械性能測試 48 4.6 鋰離子電導率 50 4.7 線性掃描伏安法 57 4.8 鋰離子遷移常數 59 4.9 鋰離子擴散係數 61 4.10 鋰金屬固態電解質之界面穩定性 63 4.11 固態鋰離子電池性能測試 65 4.11.1 充放電循環之長期穩定性測試 65 4.11.2 不同倍率下之循環穩定性測試 72 5 結論 74 參考資料 75 附錄A 83 附錄B 83 附錄C 87

    參考文獻
    1. S. Mahmud et al., "Recent advances in lithium-ion battery materials for improved electrochemical performance: A review," Results in Engineering, p. 100472, 2022.
    2. S. Xin, Y. You, S. Wang, H.-C. Gao, Y.-X. Yin, and Y.-G. Guo, "Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects," ACS Energy Letters, vol. 2, no. 6, pp. 1385-1394, 2017.
    3. N. W. Li, Y. X. Yin, C. P. Yang, and Y. G. Guo, "An artificial solid electrolyte interphase layer for stable lithium metal anodes," Advanced materials, vol. 28, no. 9, pp. 1853-1858, 2016.
    4. N. W. Li, Y. X. Yin, J. Y. Li, C. H. Zhang, and Y. G. Guo, "Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping," Advanced Science, vol. 4, no. 2, p. 1600400, 2017.
    5. Y. Lu et al., "Ultrasensitive detection of electrolyte leakage from lithium-ion batteries by ionically conductive metal-organic frameworks," Matter, vol. 3, no. 3, pp. 904-919, 2020.
    6. D. Wieboldt, M. Hahn, and I. Ruff. "Techniques for raman analysis of lithium-ion batteries." (accessed.
    7. C. M. Julien, A. Mauger, K. Zaghib, and H. Groult, "<Comparative Issues of Cathode Materials for Li-Ion Batteries.pdf>," 2014, doi: 10.3390/inorganics2020132.
    8. K. Mizushima, P.C. Jones, P. J. Wiseman, and J. B. Goodenough, "<LixCoO2 A new cathode material for batteries of high energy density.pdf>," 1980.
    9. H. Xia, Z. Luo, and J. Xie, "Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries," Progress in Natural Science: Materials International, vol. 22, no. 6, pp. 572-584, 2012, doi: 10.1016/j.pnsc.2012.11.014.
    10. Z.-m. Yu and L.-c. Zhao, "Structure and electrochemical properties of LiMn2O4," Transactions of Nonferrous Metals Society of China, vol. 17, no. 3, pp. 659-664, 2007, doi: 10.1016/s1003-6326(07)60152-6.
    11. J. Yao et al., "Characterisation of olivine-type LiMnxFe1−xPO4 cathode materials," Journal of Alloys and Compounds, vol. 425, no. 1-2, pp. 362-366, 2006, doi: 10.1016/j.jallcom.2006.01.038.
    12. B. Zhang et al., "Review: Phase transition mechanism and supercritical hydrothermal synthesis of nano lithium iron phosphate," Ceramics International, vol. 46, no. 18, pp. 27922-27939, 2020, doi: 10.1016/j.ceramint.2020.08.105.
    13. B. N and D. H, "Review on Synthesis, Characterizations, and Electrochemical Properties of Cathode Materials for Lithium Ion Batteries," Journal of Material Science & Engineering, vol. 5, no. 4, 2016, doi: 10.4172/2169-0022.1000258.
    14. W. Teng et al., "Designing Advanced Liquid Electrolytes for Alkali Metal Batteries: Principles, Progress, and Perspectives," Energy & Environmental Materials, vol. 6, no. 2, 2022, doi: 10.1002/eem2.12355.
    15. W. Ping et al., "A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics," Energy Storage Materials, vol. 21, pp. 246-252, 2019, doi: 10.1016/j.ensm.2019.06.024.
    16. H. Zhang et al., "Single lithium-ion conducting solid polymer electrolytes: advances and perspectives," Chem Soc Rev, vol. 46, no. 3, pp. 797-815, Feb 6 2017, doi: 10.1039/c6cs00491a.
    17. D. Zhou et al., "Stable Conversion Chemistry-Based Lithium Metal Batteries Enabled by Hierarchical Multifunctional Polymer Electrolytes with Near-Single Ion Conduction," Angew Chem Int Ed Engl, vol. 58, no. 18, pp. 6001-6006, Apr 23 2019, doi: 10.1002/anie.201901582.
    18. Y. Liu et al., "Electro‐Chemo‐Mechanical Modeling of Artificial Solid Electrolyte Interphase to Enable Uniform Electrodeposition of Lithium Metal Anodes," Advanced Energy Materials, vol. 12, no. 9, 2022, doi: 10.1002/aenm.202103589.
    19. Z. Zhang et al., "Review on composite solid electrolytes for solid-state lithium-ion batteries," Materials Today Sustainability, vol. 21, 2023, doi: 10.1016/j.mtsust.2023.100316.
    20. H. Cheng, "<Nanofiber-Reinforced Quasi-Solid-State Polymer Electrolyte Design for High-Performance Li Metal Batteries.pdf>," 2022.
    21. R. Chen, Q. Li, X. Yu, L. Chen, and H. Li, "Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces," Chem Rev, vol. 120, no. 14, pp. 6820-6877, Jul 22 2020, doi: 10.1021/acs.chemrev.9b00268.
    22. S. Chen, K. Wen, J. Fan, Y. Bando, and D. Golberg, "Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes," Journal of Materials Chemistry A, vol. 6, no. 25, pp. 11631-11663, 2018, doi: 10.1039/c8ta03358g.
    23. C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, "Recent advances in all-solid-state rechargeable lithium batteries," Nano Energy, vol. 33, pp. 363-386, 2017, doi: 10.1016/j.nanoen.2017.01.028.
    24. H. Cheng, J. G. Shapter, Y. Li, and G. Gao, "Recent progress of advanced anode materials of lithium-ion batteries," Journal of Energy Chemistry, vol. 57, pp. 451-468, 2021, doi: 10.1016/j.jechem.2020.08.056.
    25. H. Chang, Y.-R. Wu, X. Han, and T.-F. Yi, "Recent developments in advanced anode materials for lithium-ion batteries," Energy Materials, vol. 1, no. 1, 2022, doi: 10.20517/energymater.2021.02.
    26. W. Xu et al., "Lithium metal anodes for rechargeable batteries," Energy Environ. Sci., vol. 7, no. 2, pp. 513-537, 2014, doi: 10.1039/c3ee40795k.
    27. X. Li et al., "Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries," Nano Energy, vol. 77, 2020, doi: 10.1016/j.nanoen.2020.105143.
    28. J. B. Goodenough and K. S. Park, "The Li-ion rechargeable battery: a perspective," J Am Chem Soc, vol. 135, no. 4, pp. 1167-76, Jan 30 2013, doi: 10.1021/ja3091438.
    29. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, "Review on recent progress of nanostructured anode materials for Li-ion batteries," Journal of Power Sources, vol. 257, pp. 421-443, 2014, doi: 10.1016/j.jpowsour.2013.11.103.
    30. Y. Jin, B. Zhu, Z. Lu, N. Liu, and J. Zhu, "Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery," Advanced Energy Materials, vol. 7, no. 23, 2017, doi: 10.1002/aenm.201700715.
    31. L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang, "Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries," Energy & Environmental Science, vol. 4, no. 8, 2011, doi: 10.1039/c0ee00699h.
    32. N. Takami, H. Inagaki, Y. Tatebayashi, H. Saruwatari, K. Honda, and S. Egusa, "High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications," Journal of Power Sources, vol. 244, pp. 469-475, 2013, doi: 10.1016/j.jpowsour.2012.11.055.
    33. L. Liu, K. Chen, L. Zhang, B.-K. Ryu, and D. Osinkin, "Prospects of Sulfide-Based Solid-State Electrolytes Modified by Organic Thin Films," International Journal of Energy Research, vol. 2023, pp. 1-7, 2023, doi: 10.1155/2023/2601098.
    34. C. Zhang, Q. Hu, Y. Shen, and W. Liu, "Fast‐Charging Solid‐State Lithium Metal Batteries: A Review," Advanced Energy and Sustainability Research, vol. 3, no. 6, 2022, doi: 10.1002/aesr.202100203.
    35. S. Li et al., "Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries," Adv Sci (Weinh), vol. 7, no. 5, p. 1903088, Mar 2020, doi: 10.1002/advs.201903088.
    36. C. Wang et al., "Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries," Chem Rev, vol. 120, no. 10, pp. 4257-4300, May 27 2020, doi: 10.1021/acs.chemrev.9b00427.
    37. L. Chen, Y.-F. Huang, J. Ma, H. Ling, F. Kang, and Y.-B. He, "Progress and Perspective of All-Solid-State Lithium Batteries with High Performance at Room Temperature," Energy & Fuels, vol. 34, no. 11, pp. 13456-13472, 2020, doi: 10.1021/acs.energyfuels.0c02915.
    38. Y. Li et al., "Hybrid Polymer/Garnet Electrolyte with a Small Interfacial Resistance for Lithium-Ion Batteries," Angew Chem Int Ed Engl, vol. 56, no. 3, pp. 753-756, Jan 16 2017, doi: 10.1002/anie.201608924.
    39. X. Yu and A. Manthiram, "Electrode–electrolyte interfaces in lithium-based batteries," Energy & Environmental Science, vol. 11, no. 3, pp. 527-543, 2018, doi: 10.1039/c7ee02555f.
    40. S. Luo et al., "Artificially transformed ultra-stable Li6.75La3Zr1.75Ta0.25O12 incorporated composite solid electrolyte towards high voltage solid lithium metal batteries," Chemical Engineering Journal, vol. 454, 2023, doi: 10.1016/j.cej.2022.140251.
    41. H. Pan, Z. Cheng, P. He, and H. Zhou, "A Review of Solid-State Lithium–Sulfur Battery: Ion Transport and Polysulfide Chemistry," Energy & Fuels, vol. 34, no. 10, pp. 11942-11961, 2020, doi: 10.1021/acs.energyfuels.0c02647.
    42. S. Yu et al., "Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)," Chemistry of Materials, vol. 28, no. 1, pp. 197-206, 2015, doi: 10.1021/acs.chemmater.5b03854.
    43. J.-S. Kim et al., "Origin of intergranular Li metal propagation in garnet-based solid electrolyte by direct electronic structure analysis and performance improvement by bandgap engineering," Journal of Materials Chemistry A, vol. 8, no. 33, pp. 16892-16901, 2020, doi: 10.1039/d0ta04947f.
    44. J. Yi, C. Yan, D. Zhou, and L.-Z. Fan, "A robust solid electrolyte interphase enabled by solvate ionic liquid for high-performance sulfide-based all-solid-state lithium metal batteries," Nano Research, 2022, doi: 10.1007/s12274-022-5304-4.
    45. Y. Zheng et al., "A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures," Chem Soc Rev, vol. 49, no. 23, pp. 8790-8839, Dec 7 2020, doi: 10.1039/d0cs00305k.
    46. Z. Ma, H.-G. Xue, and S.-P. Guo, "Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance," Journal of Materials Science, vol. 53, no. 6, pp. 3927-3938, 2017, doi: 10.1007/s10853-017-1827-6.
    47. Y. Wang et al., "Functional Applications of Polymer Electrolytes in High‐Energy‐Density Lithium Batteries," Macromolecular Chemistry and Physics, vol. 223, no. 8, 2022, doi: 10.1002/macp.202100410.
    48. J.-C. Daigle et al., "Lithium battery with solid polymer electrolyte based on comb-like copolymers," Journal of Power Sources, vol. 279, pp. 372-383, 2015, doi: 10.1016/j.jpowsour.2014.12.061.
    49. D. Song, W. Cho, J. H. Lee, and Y. S. Kang, "Toward Higher Energy Conversion Efficiency for Solid Polymer Electrolyte Dye-Sensitized Solar Cells: Ionic Conductivity and TiO2 Pore-Filling," J Phys Chem Lett, vol. 5, no. 7, pp. 1249-58, Apr 3 2014, doi: 10.1021/jz5002727.
    50. J. Feng, L. Wang, Y. Chen, P. Wang, H. Zhang, and X. He, "PEO based polymer-ceramic hybrid solid electrolytes: a review," Nano Converg, vol. 8, no. 1, p. 2, Jan 10 2021, doi: 10.1186/s40580-020-00252-5.
    51. A. Manuel Stephan, "Review on gel polymer electrolytes for lithium batteries," European Polymer Journal, vol. 42, no. 1, pp. 21-42, 2006, doi: 10.1016/j.eurpolymj.2005.09.017.
    52. D. E. Fenton, "<Complexes of alkali metal ions with poly(ethylene oxide).pdf>," 1973.
    53. 林月微 and 方家振. "鋰離子電池用高分子電解質." https://www.materialsnet.com.tw/DocView.aspx?id=21391 (accessed.
    54. G. Feuillade, "<Ion-conductive macromolecular gels and membranes for solid lithium cells.pdf>," 1975.
    55. M. Dirican, C. Yan, P. Zhu, and X. Zhang, "Composite solid electrolytes for all-solid-state lithium batteries," Materials Science and Engineering: R: Reports, vol. 136, pp. 27-46, 2019, doi: 10.1016/j.mser.2018.10.004.
    56. P. Yao et al., "Review on Polymer-Based Composite Electrolytes for Lithium Batteries," Front Chem, vol. 7, p. 522, 2019, doi: 10.3389/fchem.2019.00522.
    57. L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, and J. B. Goodenough, "PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”," Nano Energy, vol. 46, pp. 176-184, 2018, doi: 10.1016/j.nanoen.2017.12.037.
    58. L. Li, Y. Deng, and G. Chen, "Status and prospect of garnet/polymer solid composite electrolytes for all-solid-state lithium batteries," Journal of Energy Chemistry, vol. 50, pp. 154-177, 2020, doi: 10.1016/j.jechem.2020.03.017.
    59. K. K. Fu et al., "Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries," Proc Natl Acad Sci U S A, vol. 113, no. 26, pp. 7094-9, Jun 28 2016, doi: 10.1073/pnas.1600422113.
    60. L. Yue et al., "All solid-state polymer electrolytes for high-performance lithium ion batteries," Energy Storage Materials, vol. 5, pp. 139-164, 2016, doi: 10.1016/j.ensm.2016.07.003.
    61. G. Zhou, F. Li, and H.-M. Cheng, "Progress in flexible lithium batteries and future prospects," Energy Environ. Sci., vol. 7, no. 4, pp. 1307-1338, 2014, doi: 10.1039/c3ee43182g.
    62. G. Xi, M. Xiao, S. Wang, D. Han, Y. Li, and Y. Meng, "Polymer‐Based Solid Electrolytes: Material Selection, Design, and Application," Advanced Functional Materials, vol. 31, no. 9, 2020, doi: 10.1002/adfm.202007598.
    63. X. Judez et al., "Review—Solid Electrolytes for Safe and High Energy Density Lithium-Sulfur Batteries: Promises and Challenges," Journal of The Electrochemical Society, vol. 165, no. 1, pp. A6008-A6016, 2017, doi: 10.1149/2.0041801jes.
    64. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, and G. Wang, "Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects," Chem, vol. 5, no. 9, pp. 2326-2352, 2019, doi: 10.1016/j.chempr.2019.05.009.
    65. P. Hu, J. Chai, Y. Duan, Z. Liu, G. Cui, and L. Chen, "Progress in nitrile-based polymer electrolytes for high performance lithium batteries," Journal of Materials Chemistry A, vol. 4, no. 26, pp. 10070-10083, 2016, doi: 10.1039/c6ta02907h.
    66. R.-A. Tong, L. Chen, B. Fan, G. Shao, R. Liu, and C.-A. Wang, "Solvent-Free Process for Blended PVDF-HFP/PEO and LLZTO Composite Solid Electrolytes with Enhanced Mechanical and Electrochemical Properties for Lithium Metal Batteries," ACS Applied Energy Materials, vol. 4, no. 10, pp. 11802-11812, 2021, doi: 10.1021/acsaem.1c02566.
    67. Q. Zhang, K. Liu, F. Ding, and X. Liu, "Recent advances in solid polymer electrolytes for lithium batteries," Nano Research, vol. 10, no. 12, pp. 4139-4174, 2017, doi: 10.1007/s12274-017-1763-4.
    68. Q.-Y. Wu, H.-Q. Liang, L. Gu, Y. Yu, Y.-Q. Huang, and Z.-K. Xu, "PVDF/PAN blend separators via thermally induced phase separation for lithium ion batteries," Polymer, vol. 107, pp. 54-60, 2016, doi: 10.1016/j.polymer.2016.11.008.
    69. J. Lu et al., "Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries," Chemical Engineering Journal, vol. 367, pp. 230-238, 2019, doi: 10.1016/j.cej.2019.02.148.
    70. W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, and J. B. Goodenough, "Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte," J Am Chem Soc, vol. 138, no. 30, pp. 9385-8, Aug 3 2016, doi: 10.1021/jacs.6b05341.
    71. C. Zhou, S. Bag, B. Lv, and V. Thangadurai, "Understanding the Role of Solvents on the Morphological Structure and Li-Ion Conductivity of Poly(vinylidene fluoride)-Based Polymer Electrolytes," Journal of The Electrochemical Society, vol. 167, no. 7, 2020, doi: 10.1149/1945-7111/ab7c3a.
    72. Y. Wang, Y. Tian, D. Estevez, H.-X. Peng, and F. Qin, "Complementary hybrid design of solvated electrolyte membranes enabled by porous carbon reinforcement for high-performance lithium batteries," Journal of Power Sources, vol. 506, 2021, doi: 10.1016/j.jpowsour.2021.230127.
    73. C.-Y. Chiang, Y. J. Shen, M. J. Reddy, and P. P. Chu, "Complexation of poly(vinylidene fluoride):LiPF6 solid polymer electrolyte with enhanced ion conduction in ‘wet’ form," Journal of Power Sources, vol. 123, no. 2, pp. 222-229, 2003, doi: 10.1016/s0378-7753(03)00514-7.
    74. Y. Laxmayyaguddi et al., "Modified Thermal, Dielectric, and Electrical Conductivity of PVDF-HFP/LiClO(4) Polymer Electrolyte Films by 8 MeV Electron Beam Irradiation," ACS Omega, vol. 3, no. 10, pp. 14188-14200, Oct 31 2018, doi: 10.1021/acsomega.8b01097.
    75. X. Tang, R. Muchakayala, S. Song, Z. Zhang, and A. R. Polu, "A study of structural, electrical and electrochemical properties of PVdF-HFP gel polymer electrolyte films for magnesium ion battery applications," Journal of Industrial and Engineering Chemistry, vol. 37, pp. 67-74, 2016, doi: 10.1016/j.jiec.2016.03.001.
    76. K. Xu, C. Xu, Y. Jiang, J. Cai, J. Ni, and C. Lai, "Sandwich structured PVDF-HFP-based composite solid electrolytes for solid-state lithium metal batteries," Ionics, vol. 28, no. 7, pp. 3243-3253, 2022, doi: 10.1007/s11581-022-04599-z.
    77. X. Zhang et al., "Synergistic Coupling between Li(6.75)La(3)Zr(1.75)Ta(0.25)O(12) and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes," J Am Chem Soc, vol. 139, no. 39, pp. 13779-13785, Oct 4 2017, doi: 10.1021/jacs.7b06364.
    78. W. He, H. Ding, X. Chen, and W. Yang, "Three-dimensional LLZO/PVDF-HFP fiber network-enhanced ultrathin composite solid electrolyte membrane for dendrite-free solid-state lithium metal batteries," Journal of Membrane Science, vol. 665, 2023, doi: 10.1016/j.memsci.2022.121095.
    79. R. Wang et al., "High rate lithium slurry flow batteries enabled by an ionic exchange Nafion composite membrane incorporated with LLZTO fillers," Nano Energy, vol. 108, 2023, doi: 10.1016/j.nanoen.2023.108174.
    80. W. Kam, C.-W. Liew, J. Y. Lim, and S. Ramesh, "Electrical, structural, and thermal studies of antimony trioxide-doped poly(acrylic acid)-based composite polymer electrolytes," Ionics, vol. 20, no. 5, pp. 665-674, 2013, doi: 10.1007/s11581-013-1012-0.
    81. R. Deivanayagam and R. Shahbazian‐Yassar, "Electrochemical Methods and Protocols for Characterization of Ceramic and Polymer Electrolytes for Rechargeable Batteries," Batteries & Supercaps, vol. 4, no. 4, pp. 596-606, 2021, doi: 10.1002/batt.202000221.
    82. 華新要聞. "拓寬聚合物電解質電化學窗口(ESW)的三種方法." https://www.newmediamax.com/article/1ip4x546hzs3v.html (accessed.
    83. J. E. a, "<Electrochemical measurement of transference numbers in polymer electrolytes.pdf>," 1987.
    84. T. Jiang et al., "Improved High-Potential Property of Ni-Rich LiNi0.8Co0.1Mn0.1O2 with a Garnet Ceramic LLZTO Surface Modification in Li-Ion Batteries," ACS Applied Energy Materials, vol. 5, no. 1, pp. 305-315, 2021, doi: 10.1021/acsaem.1c02841.

    無法下載圖示 全文公開日期 2025/08/01 (校內網路)
    全文公開日期 2025/08/01 (校外網路)
    全文公開日期 2025/08/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE