簡易檢索 / 詳目顯示

研究生: 蘇宥榛
Yu-chen Su
論文名稱: 二氧化釕/奈米碳管復合結構之製備與特性分析並探討其在電化學電容可能之應用
Preparation and Characterization of RuO2/CNT Composites and Their Possible Applications on Electrochemical Capacitors
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 李奎毅
Kuei-Yi Lee
何清華
Ching-Hwa Ho
程光蛟
Kwong-Kau Tiong
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 75
中文關鍵詞: 二氧化釕反應式磁控濺鍍奈米碳管拉曼場發射電子顯微鏡
外文關鍵詞: RuO2, reactive magnetron sputtering, carbon nanotubes, Raman scattering, FESEM
相關次數: 點閱:268下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要利用純度為99.95%釕靶材,藉由反應式射頻磁控濺鍍系統來研究二氧化釕成長於奈米碳管上之複合物分析,和對於此複合物做初步電容測試探討。利用不同的濺鍍條件,基板成長的溫度不同,可控制晶系結構和成長速率;及不同氧流量可控制晶體大小,也能影響成長速率。使用場發射式電子顯微鏡(FESEM)、顯微拉曼散射儀(Micro-Raman Scattering System)、X光繞射分析(X-ray Diffraction)、穿透式電子顯微鏡(TEM)及X光光電子能譜儀(XPS)對二氧化釕晶體做結構和特性分析。從FESEM中可看到可看到二氧化釕形貌隨著氧流量增加,從奈米顆粒狀演變到管狀結構。從拉曼譜線中有變寬與紅移的現象,推測二氧化釕的大小結構關係與異質材料之間有應力存在所導致。從X光繞射分析可知道二氧化釕有晶面優選項上之細微變化。從TEM影像與繞射圖中可證實二氧化釕如何疊在單根奈米碳管上,同時也對單根二氧化釕晶柱做細微放大穿透觀察,並以繞射圖案確定碳管上為二氧化釕晶體。至於成分分析部分以X光光電子能譜儀來做鑑定。此外,試著以反應式射頻磁控濺鍍系統,對二氧化釕/奈米碳管復合物做初步的電容測試。了解在循環伏安中有電容應答行為,初步整理以反應式射頻磁控濺鍍系統濺鍍二氧化釕於奈米碳管上之複合物,並比較二氧化釕/奈米碳管複合物的單位重量電容值(140 F/g)比單純奈米碳管的(30 F/g)高,這是由於二氧化釕成長於奈米碳管上造成作用面積大量增加,電化學電容值因此提升,初步證實以此方法製備之二氧化釕/奈米碳管複合物是有電容效用。


    RuO2 nanocrystals (NCs) were deposited on carbon nanotubes (CNTs) by reactive radio frequency magnetron sputtering using a Ru target with 99.95% purity under different conditions. The surface morphology, structural and spectroscopic properties of the as-deposited NCs were characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. FESEM micrographs showed that the surface morphology of the as-deposited RuO2 varied from nanoparticle-like to tube-like NCs as the oxygen flux increased from 2 to 10 sccm. XRD pattern confirmed the formation of pure rutile RuO2 NCs on CNTs. The TEM image of RuO2-coated CNTs revealed that RuO2 NCs had been deposited onto the surface of the CNTs with uniform size distribution and random directions. XPS spectra showed the coexistence of higher oxidation states of ruthenium in the as-deposited RuO2 NCs. The lattice vibrational properties were studies by micro-Raman spectroscopy. The red-shifts of the peak positions and broadening of linewidths of the Raman features were attributed to both the size and residual stress effects.
    In addition, a preliminary study has been carried out to understand the potential application of the RuO2/CNT composites as the electrode materials in electrochemical capacitors. The average specific capacitance obtained for the RuO2/CNT composites reaches to a value of about 140 F/g, which is much larger than that of the pure CNTs (30 F/g). The enhancement of the specific capacitance can be attributed to the presence of RuO2 on the surface of CNTs. This in turn modifies the structure and morphology of CNTs, allowing the RuO2 to be available for the electrochemical reactions and improves the efficiency of the composites. The progressive redox reactions occurring at the surface and bulk of RuO2 through faradic charge transfer between electrolyte and electrode results in the enhancement of the specific capacitance of RuO2/CNT composites comparing to pure CNTs. This preliminary study demonstrates the potential applications of the RuO2/CNT composites as the electrode material in electrochemical capacitors.

    中文摘要 I 英文摘要 III 致謝 V 目錄 VI 圖索引 IX 表索引 XIII 第一章 緒論 1 1-1 研究簡介 1 1-2 奈米碳管 2 1-3 二氧化釕 3 1-4 實驗動機 6 第二章 實驗方法與步驟 7 2-1 實驗流程 7 2-2 實驗器材 8 2-3 實驗步驟 10 2-3-1 基板清潔 10 2-3-2 金屬薄膜沉積 11 2-3-3 奈米碳管成長 12 2-3-4 二氧化釕濺鍍 13 2-4 反應式射頻磁控濺鍍系統及原理 15 2-4-1 反應式射頻磁控濺鍍系統 15 2-4-2 反應式射頻磁控濺鍍簡介 18 2-5 分析儀器 21 第三章 二氧化釕/奈米碳管之成長特性分析 31 3-1 不同基板溫度之FESEM影像圖分析 33 3-2 不同基板溫度之Micro-Raman譜線分析 37 3-3 不同基板溫度之X-ray diffraction譜線分析 43 3-4 不同氧流量之FESEM影像圖分析 47 3-5 10 sccm氧流量之Micro-Raman譜線分析 49 3-6 不同的氧流量Transmission electron microscopy影像圖分析 51 3-7 10 sccm氧流量之X-ray photoelectron spectroscopy成分分析 53 第四章 二氧化釕/奈米碳管/碳纖維布電極之初步特性分析 55 4-1 不同濺鍍時間之FESEM影像圖分析 57 4-2 不同濺鍍時間之Cyclic voltammetry分析 62 4-3 不同濺鍍時間之Charge/discharge分析 67 4-4 不同濺鍍時間之Electrochemical impedance spectroscopy分析 69 第五章 結論 71 參考文獻 72

    1. Iijima, S., ”Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, pp. 56-58 (1991).
    2. Zhou, O., Fleming, R. M., Murphy, D. W., Chen, C. H., Haddon, R. C., Ramirez, A. P., and Glarum, S. H., ”Defects in Carbon Nanotubes,” Science, Vol. 263. No. 5154, pp. 1744-1747 (1994).
    3. Wong, E. W., Sheehan, P. E., and Lieber, C. M., ”Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, Vol. 277, No. 5334, pp. 1971-1975 (1997).
    4. Lee, N. S., Chung, D. S., Han, I. T., Kang, J. H., Choi, Y. S., Kim, H. Y., Park, S. H., Jin, Y. W., Yi, W. K., Yun, M. J., Jung, J. E., Lee, C. J., You, J. H, , Jo, S. H., Lee, C. G. and Kim, J. M., “Application of Carbon Nanotubes to Field Emission Displays,” Diamond and Related Materials, Vol. 10, pp. 265-270 (2001).
    5. Wilson, N. R., and Macpherson, J. V., “Carbon Nanotube Tips for Atomic Force Microscopy,” Nature Nanotechnology, Vol. 4, pp. 483-491 (2009).
    6. Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., Dresselhaus, M. S., ”Hydrogen Storage in Dingle-Walled Carbon Nanotubes at Room Temperature,” Science, Vol. 286, No. 5442, pp. 1127-1129 (1999).
    7. Deqesnes, M., Rotkin, S. V., and Aluru, N. R., ”Calculation of Pull-in Voltages for Carbon-nanotube-based Nanoelectromechanical Switches,” Nanotechnology, Vol. 13, pp. 120-131 (2002).
    8. Poncharal, P., Wang, Z. L., Ugarte, D., and Walt., A. de Heer, ”Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes,” Science, Vol. 283, No. 5407, pp. 1513-1516 (1999).
    9. Böttcher, A., Conrad, H., and Niehus, H., ”Characterization of Oxygen Phases Created During Oxidation of Ru(0001),” Journal of Chemical Physics, Vol. 112, No. 10, pp. 4779-4787 (2000).
    10. Ryden, W. D., Lawson, A. W., and Sartain, C. C., ”Electrical Transport Properties of IrO2 and RuO2,” Physics Review B, Vol. 1, pp. 1494-1500 (1970).
    11. Kuhn, A. T., and Mortimer, C. J., “The Kinetics of Chlorine Evolution and Reduction on Titanium-Supported Metal Oxides Especially RuO2 and IrO2,” Electrochemical society, Vol. 120, No. 2, pp. 231-236 (1973).
    12. Jia, Q. X., Shi, Z. Q., Jiao, K. L., Anderson, W. A., and Collins, F. M., ”Reactively Sputtered Thin Film Resistor with Near Zero Temperature Coefficient of Resistance,” Thin Solid Films, Vol. 196, pp. 29-34 (1991).
    13. Jia, Q. X., Shi Z. Q., Jiao K. L., Anderson W. A., and Collins, F. M., ”Reactively Sputtered RuO2 Thin Film Resistor with Near Zero Temperature Coefficient of Resistance,” Thin Solid Films, Vol.196, pp. 29-34 (1991).
    14. Gujar, T. P., Kim, W. Y., Puspitasari, I., Jung, K. D., and Joo, O. S., “Electrochemically Deposited Nanograin Ruthenium Oxide as a Pseudocapacitor Electrode,” International Journal of Electrochemical Science, Vol. 2, pp. 666-673 (2007).
    15. Lin, K. M., Chang, K. H., Hu, C. C., and Li, Y. Y., “Mesoporous RuO2 for the Next Generation Supercapacitors with an Ultrahigh Power Density,” Electrochemica Acta, Vol. 54, pp. 4574-4581 (2009).
    16. Huang, Y. S., and Pollak, F. H., “Raman Investigation of Rutile RuO2,”, Solid State Communicaitons, Vol. 43, No. 12, pp. 921-924 (1982).
    17. 李威德,「以反應性濺鍍選擇性成長氧化釕奈米桿」,碩士論文,國立台灣科技大學,台北 (1997)。
    18. Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, and G., Saito, S., “Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy,” Nano Letters, Vol.10, pp. 751-758 (2010).
    19. Huang, Y. S., and Pollak, F. H., “Raman Investigation of Rutile RuO2,”, Solid State Communicaitons, Vol. 43, No. 12, pp. 921-924 (1982).
    20. 簡翰中,「化學分析電子儀在分析技術上的最新應用」,電子月刊,第十卷,第七期,第123-132頁 (2004)。
    21. Wen, T. C., asd Chang, C. C., “An Investigation of Thermally Prepared Electrodes for Oxygen Reduction in Alkaline Solution,” Materials Chemistry and physics, Vol. 47, pp. 203-210 (1997).
    22. Korotcov, A., Hsu, H. P., Huang, Y. S., Tsai, D. S., and Tiong K. K., “Growth and Characterization of Well Aligned RuO2 Nanocrystals on Oxide Substrates via Reactive Sputtering,” Crystal Growth and Design, Vol. 6, pp. 2501-2506 (2006).
    23. Mar, S. Y., Chen, C. S., Huang, Y. S., and Tiong, K. K., “Characterization of RuO2 thin films by Raman spectroscopy,” Applied Surface Science, Vol. 90, pp. 497-504 (1995).

    無法下載圖示 全文公開日期 2013/07/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE