簡易檢索 / 詳目顯示

研究生: Maina Moses Mburu
Maina Moses Mburu
論文名稱: 利用具有或無氫鍵之聚異戊二烯高分子分選及穩定分散單壁奈米碳管暨其在薄膜電晶體和突觸記憶元件中之應用
Single-Walled Carbon Nanotubes Sorting and Stability Enhancement by Polyisoprene with or without H-bonding and Application in Thin-Film Transistors and Synaptic Memory Devices.
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 江偉宏
Wei-Hung Chiang
葉旻鑫
Min-Hsin Yeh
石健忠
Chien-Chung Shih
李文亞
Wen-Ya Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 189
外文關鍵詞: polyisoprene, physical interactions,, PFO, block copolymer, Sorting, SWCNTs, conjugated polymer, SWCNTs, photonic,, electric, fully modulated synaptic TFT device, stable SWCNTs sorting, low molecular weight, conjugated polymer, polyisoprene, H-bonding.
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 共軛高分子分選得到具有可調窄手性的單壁奈米碳管 (SWCNT)是近年來最佳方法的方法之一。芴基高分子最常被研究作為分選SWCNT的共軛高分子,因為它們具有優異的相互作用、分散和隔離半導體奈米碳管的能力。高分子主鏈和奈米碳管壁之間的 π-π 相互作用對促進分選起著關鍵作用,因此,共軛部分通常設計於分選的嵌段高分子之主鏈,以保持合適的結構取向和相互作用。然而,目前分選大直徑奈米碳管的高分子局限於具有高分子量(> 10000 Da)和10個或更多碳的烷基側鏈之芴高分子。此外,雖然壽命長和品質高對於元件都至關重要,但在許多研究中都忽略了分選 sc-SWCNT 的穩定性。在本研究中,我們展示如何利用凡得瓦力和氫鍵等物理作用力在低分子量和短烷基側鏈聚芴中實現大直徑 sc-SWCNTs 的分選,從而獲得高純度和穩定的sc-SWCNTs 解決方案,應用於薄膜電晶體和突觸記憶元件之製造。在實驗的第一部分,我們利用了天然橡膠聚異戊二烯 (PI) 的物理作用力,通過合理設計二嵌段高分子,使具有1208個異戊二烯單元的PFO可以顯著增強單壁奈米碳管的分選,並在溶液中維持直徑為~0.83-1.1 nm的窄手性單壁奈米碳管超過一年,實現單壁奈米碳管的分選之高度穩定。在本研究的第二部分中,我們利用在分選過程後,聚 (9,9-二辛基芴)-b-聚異戊二烯 (PF-b-PI) 自發包裹在 SWCNT 周圍的優勢,設計了一種 TFT 突觸裝置,該裝置包括單層狀 PF-b-PI 包裹的 SWCNT,同時提供半導體和駐極體層功能,簡化了元件結構和製造步驟。由於 SWCNTs 強大的電荷載流子遷移率,(~ 11.3 cm2 V-1 s-1) 實現了高輸出電流 (10-4-10-3 A),並且由於 PF 是一種光活性共軛高分子,該元件可以由光子和電信號調製。在研究的第三部分,證明了具有氫鍵的聚異戊二烯(側鏈)在低 Mw 共軛高分子中誘導有效的分選和優異的溶液穩定性。研究利用聚 (9,9-二辛基芴) (vinyl-PFO, Mw 4500) 及其與聚異戊二烯 (PI) 的高分子用於分選大直徑 SWCNT。從結果來看,沒有引入含氫鍵的側鏈時,高分子並沒有分選效果;聚(2[[(丁基氨基)羰基]氧基]丙烯酸乙酯(PBACO)和PI可使大直徑(1.17 nm)的半導體SWCNT被分選,在低溫4 ℃、-20 ℃和-80 ℃的環境中溶液的sc-SWCNTs可保持穩定一年以上。此外,sc-SWCNTs溶液可以被製成具有高遷移率的雙極電晶體:p型為48 cm2 V-1 s-1,n 型為32 cm2 V-1 s-1,穩定性 > 6000 s。PI-PBACO 物理作用力改善了SWCNTs相互作用並抑制了奈米管的再聚集,從而實現了出色的分選和溶液穩定性。


    The use of Conjugated polymer is currently the best method for selectively sorting single‐walled carbon nanotubes (SWCNTs) with tunable narrow chiralities. Among the conjugated polymers, Fluorene-based (co)polymers are mostly investigated due to their superior ability to interact, disperse, and isolate semiconducting nanotubes. The π – π interaction between the polymer backbone and nanotubes walls plays a key role to facilitate sorting and therefore, conjugated moieties usually form the main chain in the block copolymers designed for sorting to maintain suitable structure orientation and interaction. However, selection of large-diameter nanotubes is only limited to the fluorene polymers with high molecular weight (> 10000 Da), and alkyl side chain of 10 or more carbons. Additionally, though critical for long-life and high-quality devices, stability of the sorted sc-SWCNTs is overlooked in many studies. In the present study, we demonstrate how sorting of large diameter sc-SWCNTs can be achieved in low molecular weight and short alkyl side chains polyfluorene by use of physical forces such as van der Waal forces, and hydrogen bonding, resulting into highly pure and stable sc-SWCNTs solution, that applied in fabrication of thin-film transistors and synaptic memory devices. In the first part of the work, the natural rubber polyisoprene (PI) physical forces are utilized. Through the rational design of diblock copolymer, PFO with ~1208 isoprene units could remarkably enhance SWCNTs sorting and selected few chiralities with a diameter of ~ 0.83 – 1.1 nm in a highly stable solution for more than one year. In the second part of this study, we took advantage of spontaneous wrapping of poly(9,9-dioctylfluorene)-b-polyisoprene (PF-b-PI) around the SWCNTs after sorting process to design a TFT-synaptic device comprising single-layered PF-b-PI-wrapped-SWCNTs, that serves both semiconductor and electret layer functions, simplifying device structure and fabrication procedure. Due to the robust charge carrier mobility of the SWCNTs, (~ 11.3 cm2 V-1 s-1) high output current (10-4 – 10-3 A) was achieved, and since PF is a photoactive conjugated polymer, the device could be modulated by the both photonic and electric signals. In the third part of the study, the effectiveness of polyisoprene with hydrogen-bonding, to induce superior sorting and solution stability in a low Mw conjugated polymer, even when used as a side-chain was demonstrated. Vinyl-terminated poly(9,9-dioctylfluorene) (vinyl-PFO, Mw 4500) and its copolymer with polyisoprene (PI) were investigated for sorting large-diameter SWCNT. From the result, they had no sorting effects but on introduction of hydrogen-bond containing pendant; Poly(2[[(Butylamino)carbonyl]oxy]ethyl-acrylate (PBACO) to the PI moiety, semiconducting nanotubes with large-diameter (1.17 nm) were sorted and the sc-SWCNTs in solution remained stable for over a year and at low temperatures; 4 ℃, −20 ℃ and −80 ℃. Additionally, solution could fabricate ambipolar transistors with high averaged charge carrier mobility; 48 cm2 V-1 s-1 for p-type, and 32 cm2 V-1 s-1 for n-type, with retention stability > 6000 s. The PI-PBACO physical forces improve interaction and inhibit nanotube reaggregation, resulting in superior sorting and solution stability.

    Table of Contents Abstract iv Acknowledgement vi Table of Contents vii List of Abbreviations. x Table of Figures xiii List of Tables xxi 1.0 Introduction 1 1.1. Background 1 1.1.1. SWCNTs Synthesis, classification, and Characterization 1 1.2. Literature Review 3 1.2.1. SWCNTs sorting/purification survey 3 1.3. Motivation 36 1.4. Objectives of the study 39 2.0 The Impacts of Polyisoprene Physical Interactions on Sorting of Single-Wall Carbon Nanotubes 41 2.1. Introduction 41 2.2. Experimental Methods 44 2.2.1. Materials / Chemicals 44 2.2.2. Methods 45 2.2.3. Characterization 45 2.3. Result and Discussion 46 2.3.1. Impact of PI on the dispersion of semiconducting-SWCNTs 46 2.3.2. Diblock copolymer interactions with SWCNTs 57 2.3.3. Stability testing on the sorted small and large-diameter sc-SWCNTs 59 2.3.4. SWCNTs – Thin Film Transistor (TFT) Fabrication 62 2.4. Conclusion 65 3.0 Conjugated Polymer-Wrapped Single-Wall Carbon Nanotubes for High-Mobility Photonic/Electrical Fully Modulated Synaptic Transistor 66 3.1. Introduction 66 3.2. Experimental section 69 3.2.1. Materials 69 3.2.2. Preparation of SWCNT/PF-b-PI solution 69 3.2.3. Device fabrication 70 3.2.4. Device characterization 70 3.3. Results and Discussion 70 3.3. Conclusion 95 4.0 Highly Stable Single-walled Carbon Nanotube Sorting by Random Copolymer of a Low Molecular Weight Conjugated Polymer with Hydrogen bond containing Polyisoprene. 97 4.1. Introduction 97 4.2. Experimental Section 100 4.2.1. Materials 100 4.2.2. Sorting Procedure 101 4.2.3. AFM and TEM samples preparation 101 4.2.4. TFT device preparation 102 4.2.5. Characterization 102 4.3. Results and discussion 102 4.3.1. Polymer Structure Design and the Sorting Effects. 102 4.3.3. Purity Assessment and Morphology of the Sorted sc-SWCNTs 108 4.3.4. Thin-Film Transistor Fabrication and Analysis 111 4.3.5. Formation of Hydrogen-Bonded Supramolecular Structure and its Sorting Effect 114 4.3.6. Stability Testing on the Sorted sc-SWCNTs 116 4.4. Conclusion 122 5.0 General Conclusion and Future Work 124 5.1. General Conclusion 124 5.2. Future Outlooks 125 References 128 Appendices 158  

    1. Endo, M.; Iijima, S.; Dresselhaus, M. S., Carbon nanotubes. Elsevier: 1996, 33, 129.
    2. Yang, F.; Wang, M.; Zhang, D.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693-2758.
    3. Maruyama, T.; Kondo, H.; Ghosh, R.; Kozawa, A.; Naritsuka, S.; Iizumi, Y.; Okazaki, T.; Iijima, S. Single-walled carbon nanotube synthesis using Pt catalysts under low ethanol pressure via cold-wall chemical vapor deposition in high vacuum. carbon 2016, 96, 6-13.
    4. Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K.; Smalley, R. E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 1999, 313, 91-97.
    5. Dai, H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035-1044.
    6. Wang, H.; Bao, Z. Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today 2015, 10, 737-758.
    7. Bati, A. S.; Yu, L.; Batmunkh, M.; Shapter, J. G. Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. Nanoscale 2018, 10, 22087-22139.
    8. Xu, L.; Valášek, M.; Hennrich, F.; Sedghamiz, E.; Penaloza-Amion, M.; Häussinger, D.; Wenzel, W.; Kappes, M. M.; Mayor, M. Enantiomeric Separation of Semiconducting Single-Walled Carbon Nanotubes by Acid Cleavable Chiral Polyfluorene. ACS Nano 2021, 15, 4699-4709.
    9. Sato, N.; Tatsumi, Y.; Saito, R. Circular dichroism of single-wall carbon nanotubes Phys. Rev. B Condens. Matter. 2017, 95, 155436.
    10. Peng, X.; Komatsu, N.; Bhattacharya, S.; Shimawaki, T.; Aonuma, S.; Kimura, T.; Osuka, A. Optically active single-walled carbon nanotubes. Nat. Nanotechnol. NAT 2007, 2, 361-365.
    11. Itkis, M. E.; Perea, D. E.; Jung, R.; Niyogi, S.; Haddon, R. C. Comparison of analytical techniques for purity evaluation of single-walled carbon nanotubes. J. Am. Chem. Soc.2005, 127, 3439-3448.
    12. Lim, Y.-S.; Nugraha, A. R.; Cho, S.-J.; Noh, M.-Y.; Yoon, E.-J.; Liu, H.; Kim, J.-H.; Telg, H.; Hároz, E. H.; Sanders, G. Ultrafast generation of fundamental and multiple-order phonon excitations in highly enriched (6, 5) single-wall carbon nanotubes. Nano Lett. 2014, 14, 1426-1432.
    13. Gao, B.; Duan, X.; Zhang, J.; Wu, T.; Son, H.; Kong, J.; Liu, Z. Raman Spectral Probing of Electronic Transition Energy E ii Variation of Individual SWNTs under Torsional Strain. Nano Lett. 2007, 7, 750-753.
    14. Tange, M.; Okazaki, T.; Iijima, S. Selective extraction of large-diameter single-wall carbon nanotubes with specific chiral indices by poly (9, 9-dioctylfluorene-alt-benzothiadiazole). J. Am. Chem. Soc 2011, 133, 11908-11911.
    15. Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 2005, 4, 86.
    16. Qian, L.; Xu, W.; Fan, X.; Wang, C.; Zhang, J.; Zhao, J.; Cui, Z. Electrical and photoresponse properties of printed thin-film transistors based on poly (9, 9-dioctylfluorene-co-bithiophene) sorted large-diameter semiconducting carbon nanotubes. J. Phys. Chem. C 2013, 117, 18243-18250.
    17. Liang, L.; Xie, W.; Fang, S.; He, F.; Yin, B.; Tlili, C.; Wang, D.; Qiu, S.; Li, Q. High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions. J. Mater. Chem. C 2017, 5, 11339-11368.
    18. Ding, J.; Li, Z.; Lefebvre, J.; Cheng, F.; Dubey, G.; Zou, S.; Finnie, P.; Hrdina, A.; Scoles, L.; Lopinski, G. P. Enrichment of large-diameter semiconducting SWCNTs by polyfluorene extraction for high network density thin film transistors. Nanoscale. 2014, 6, 2328-2339.
    19. Tanaka, T.; Jin, H.; Miyata, Y.; Fujii, S.; Suga, H.; Naitoh, Y.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Kataura, H. Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett. 2009, 9, 1497-1500.
    20. Ghosh, S.; Bachilo, S. M.; Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. NAT 2010, 5, 443.
    21. Krupke, R.; Hennrich, F.; Löhneysen, H. v.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science. 2003, 301, 344-347.
    22. Janas, D. Towards monochiral carbon nanotubes: A review of progress in the sorting of single-walled carbon nanotubes. Mater. Chem. Front. 2018, 2, 36-63.
    23. Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science. 2001, 292, 706-709.
    24. Collins, P. G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3128.
    25. Tunnell, A.; Ballarotto, V.; Cumings, J. The selective removal of metallic carbon nanotubes from As-grown arrays on insulating substrates. Appl. Phys. Lett. 2012, 101, 193109.
    26. Otsuka, K.; Inoue, T.; Chiashi, S.; Maruyama, S. Selective removal of metallic single-walled carbon nanotubes in full length by organic film-assisted electrical breakdown. Nanoscale 2014, 6, 8831-8835.
    27. Zhang, Y.; Zhang, Y.; Xian, X.; Zhang, J.; Liu, Z. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using xenon-lamp irradiation. J. Phys. Chem. C 2008, 112, 3849-3856.
    28. Huang, H.; Maruyama, R.; Noda, K.; Kajiura, H.; Kadono, K. J. Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. J. Phys. Chem. B 2006, 110, 7316-7320.
    29. Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Electronic structure control of single-walled carbon nanotube functionalization. Science. 2003, 301, 1519-1522.
    30. Zhang, G.; Qi, P.; Wang, X.; Lu, Y.; Li, X.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science. 2006, 314, 974-977.
    31. Hassanien, A.; Tokumoto, M.; Umek, P.; Vrbanič, D.; Mozetič, M.; Mihailović, D.; Venturini, P.; Pejovnik, S. Selective etching of metallic single-wall carbon nanotubes with hydrogen plasma. Nanotechnology. 2005, 16, 278.
    32. Song, J.; Seo, H.; Park, J.; Kim, J.; Choi, D.; Han, C.-S. Selective removal of metallic SWNTs using microwave radiation. Curr Appl Phys. 2008, 8, 725-728.
    33. Priya, B.; Byrne, H. J. Quantitative analyses of microwave-treated HiPco carbon nanotubes using absorption and Raman spectroscopy. J. Phys. Chem. C 2009, 113, 7134-7138.
    34. Csizmók, V.; Szőllősi, E.; Friedrich, P.; Tompa, P. Proteomics, C., A novel two-dimensional electrophoresis technique for the identification of intrinsically unstructured proteins. Mol. Cell Proteomics. 2006, 5, 265-273.
    35. Tanaka, T.; Takahashi, F.; Fukui, T.; Fujiwara, S.; Atomi, H.; Imanaka, T. Characterization of a novel glucosamine-6-phosphate deaminase from a hyperthermophilic archaeon. J. Biotechnol. 2005, 187, 7038-7044.
    36. Tanaka, T.; Jin, H.; Miyata, Y.; Kataura, H. High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis. Appl. Phys. Express 2008, 1, 114001.
    37. Mesgari, S.; Poon, Y. F.; Yan, L. Y.; Chen, Y.; Loo, L. S.; Thong, Y. X.; Chan-Park, M. B. High selectivity cum yield gel electrophoresis separation of single-walled carbon nanotubes using a chemically selective polymer dispersant. J. Phys. Chem. C 2012, 116, 10266-10273.
    38. Liu, H.; Tanaka, T.; Kataura, H. J. N. l., Optical isomer separation of single-chirality carbon nanotubes using gel column chromatography. Nano Lett. 2014, 14, 6237-6243.
    39. Tanaka, T.; Urabe, Y.; Hirakawa, T.; Kataura, H. Simultaneous chirality and enantiomer separation of metallic single-wall carbon nanotubes by gel column chromatography. Anal. Chem. 2015, 87, 9467-9472.
    40. Wei, X.; Tanaka, T.; Yomogida, Y.; Sato, N.; Saito, R.; Kataura, H. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra. Nat. Commun. 2016, 7, 1-9.
    41. Dukovic, G.; Balaz, M.; Doak, P.; Berova, N. D.; Zheng, M.; Mclean, R. S.; Brus, L. E. Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. J. Am. Chem. Soc. 2006, 128, 9004-9005.
    42. Tu, X.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature. 2009, 460, 250-253.
    43. Fagan, J. A.; Khripin, C. Y.; Silvera Batista, C. A.; Simpson, J. R.; Hároz, E. H.; Hight Walker, A. R.; Zheng, M. Isolation of specific small‐diameter single‐wall carbon nanotube species via aqueous two‐phase extraction. Adv.Mater. 2014, 26, 2800-2804.
    44. Li, H.; Gordeev, G.; Garrity, O.; Reich, S.; Flavel, B. S. Separation of small-diameter single-walled carbon nanotubes in one to three steps with aqueous two-phase extraction. ACS Nano 2019, 13, 2567-2578.
    45. Ao, G.; Khripin, C. Y.; Zheng, M. J. DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems. J. Am. Chem. Soc. 2014, 136, 10383-10392.
    46. Ghosh, S.; Bachilo, S. M.; Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. NAT 2010, 5, 443-450.
    47. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. NAT 2006, 1, 60-65.
    48. Qiu, S.; Wu, K.; Gao, B.; Li, L.; Jin, H.; Li, Q. Solution‐Processing of High‐Purity Semiconducting Single‐Walled Carbon Nanotubes for Electronics Devices. Adv. Mater. 2019, 31, 1800750.
    49. Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 1-8.
    50. Zheng, M.; Semke, E. D. Enrichment of single chirality carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 6084-6085.
    51. Kim, S. N.; Kuang, Z.; Grote, J. G.; Farmer, B. L.; Naik, R. Enrichment of (6, 5) single wall carbon nanotubes using genomic DNA. Nano Lett. 2008, 8, 4415-4420.
    52. Lyu, M.; Meany, B.; Yang, J.; Li, Y.; Zheng, M. J. Toward complete resolution of DNA/carbon nanotube hybrids by aqueous two-phase systems. J. Am. Chem. Soc. 2019, 141, 20177-20186.
    53. Zheng, M.; Diner, B. A. Solution redox chemistry of carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 15490-15494.
    54. Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338-342.
    55. Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly (3-alkylthiophene) s. Nat. Commun. 2011, 2, 1-8.
    56. Von Bargen, C. D.; MacDermaid, C. M.; Lee, O.-S.; Deria, P.; Therien, M. J.; Saven, J. G. Origins of the helical wrapping of phenyleneethynylene polymers about single-walled carbon nanotubes. J. Phys. Chem. B 2013, 117, 12953-12965.
    57. Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. NAT 2007, 2, 640-646.
    58. Xu, W.; Zhao, J.; Qian, L.; Han, X.; Wu, L.; Wu, W.; Song, M.; Zhou, L.; Su, W.; Wang, C. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED). Nanoscale. 2014, 6, 1589-1595.
    59. Aumaitre, C.; Fong, D.; Adronov, A.; Morin, J.-F. Anthanthrene-based conjugated polymers for the dispersion of single-walled carbon nanotubes. Polym. Chem. 2019, 10, 6440-6446.
    60. Si, R.; Wei, L.; Wang, H.; Su, D.; Mushrif, S. H.; Chen, Y. J. Extraction of (9, 8) Single‐Walled Carbon Nanotubes by Fluorene‐Based Polymers. Chem. Asian J. 2014, 9, 868-877.
    61. Wang, H.; Hsieh, B.; Jiménez‐Osés, G.; Liu, P.; Tassone, C. J.; Diao, Y.; Lei, T.; Houk, K. N.; Bao, Z. Solvent effects on polymer sorting of carbon nanotubes with applications in printed electronics. Small. 2015, 11, 126-133.
    62. Hwang, J.-Y.; Nish, A.; Doig, J.; Douven, S.; Chen, C.-W.; Chen, L.-C.; Nicholas, R. J. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. J. Am. Chem. Soc 2008, 130, 3543-3553.
    63. Rice, N. A.; Subrahmanyam, A. V.; Laengert, S. E.; Adronov, A. J. The effect of molecular weight on the separation of semiconducting single‐walled carbon nanotubes using poly (2, 7‐carbazole). J. Polym. Sci. Pol. Chem. 2015, 53, 2510-2516.
    64. Imin, P.; Cheng, F.; Adronov, A. The effect of molecular weight on the supramolecular interaction between a conjugated polymer and single-walled carbon nanotubes. Polym. Chem. 2011, 2, 1404-1408.
    65. Berton, N.; Lemasson, F.; Hennrich, F.; Kappes, M. M.; Mayor, M. Influence of molecular weight on selective oligomer-assisted dispersion of single-walled carbon nanotubes and subsequent polymer exchange. Chem. Commun. 2012, 48, 2516-2518.
    66. Schießl, S. P.; Fröhlich, N.; Held, M.; Gannott, F.; Schweiger, M.; Forster, M.; Scherf, U.; Zaumseil, J. interfaces, Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors. Appl. Mater. Interfaces 2015, 7, 682-689.
    67. J Jakubka, F.; Schießl, S. P.; Martin, S.; Englert, J. M.; Hauke, F.; Hirsch, A.; Zaumseil, J. Effect of polymer molecular weight and solution parameters on selective dispersion of single-walled carbon nanotubes. ACS Macro Lett. 2012, 1, 815-819.
    68. Gomulya, W.; Costanzo, G. D.; de Carvalho, E. J. F.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Fröhlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A. Semiconducting single‐walled carbon nanotubes on demand by polymer wrapping. Adv. Mater. 2013, 25, 2948-2956.
    69. Lee, D. T.; Chung, J. W.; Park, G.; Kim, Y.-T.; Lee, C. Y.; Cho, Y.; Yoo, P. J.; Han, J.-H.; Shin, H.-J.; Kim, W.-J. Effect of semiconductor polymer backbone structures and side-chain parameters on the facile separation of semiconducting single-walled carbon nanotubes from as-synthesized mixtures. Appl. Surf. Sci. 2018, 429, 264-271.
    70. Benda, R.; Zucchi, G.; Cancès, E.; Lebental, B. Insights into the π–π interaction driven non-covalent functionalization of carbon nanotubes of various diameters by conjugated fluorene and carbazole copolymers. J. Chem. Phys. 2020, 152, 064708.
    71. Gu, H.; Swager, T. M. Fabrication of Free‐Standing, Conductive, and Transparent Carbon Nanotube Films. Adv. Mater. 2008, 20, 4433-4437.
    72. Chen, F.; Wang, B.; Chen, Y.; Li, L.-J. Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 2007, 7, 3013-3017.
    73. Gao, J.; Loi, M. A.; de Carvalho, E. J. F.; Dos Santos, M. C. Selective wrapping and supramolecular structures of polyfluorene–carbon nanotube hybrids. ACS Nano. 2011, 5, 3993-3999.
    74. Mistry, K. S.; Larsen, B. A.; Blackburn, J. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano. 2013, 7, 2231-2239.
    75. Zou, J.; Liu, L.; Chen, H.; Khondaker, S. I.; McCullough, R. D.; Huo, Q.; Zhai, L. Dispersion of pristine carbon nanotubes using conjugated block copolymers. Adv. Mater. 2008, 20, 2055-2060.
    76. Lee, H. W.; You, W.; Barman, S.; Hellstrom, S.; LeMieux, M. C.; Oh, J. H.; Liu, S.; Fujiwara, T.; Wang, W. M.; Chen, B. Lyotropic Liquid‐Crystalline Solutions of High‐Concentration Dispersions of Single‐Walled Carbon Nanotubes with Conjugated Polymers. Small. 2009, 5, 1019-1024.
    77. Wang, H.; Koleilat, G. I.; Liu, P.; Jiménez-Osés, G.; Lai, Y.-C.; Vosgueritchian, M.; Fang, Y.; Park, S.; Houk, K. N.; Bao, Z. High-yield sorting of small-diameter carbon nanotubes for solar cells and transistors. ACS Nano. 2014, 8, 2609-2617.
    78. Wang, C.; Qian, L.; Xu, W.; Nie, S.; Gu, W.; Zhang, J.; Zhao, J.; Lin, J.; Chen, Z.; Cui, Z. High performance thin film transistors based on regioregular poly (3-dodecylthiophene)-sorted large diameter semiconducting single-walled carbon nanotubes. Nanoscale. 2013, 5, 4156-4161.
    79. Fong, D.; Adronov, A. Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chem. Sci. 2017, 8, 7292-7305.
    80. Lemasson, F. A.; Strunk, T.; Gerstel, P.; Hennrich, F.; Lebedkin, S.; Barner-Kowollik, C.; Wenzel, W.; Kappes, M. M.; Mayor, M. Selective dispersion of single-walled carbon nanotubes with specific chiral indices by poly (N-decyl-2, 7-carbazole). J. Am. Chem. Soc. 2011, 133, 652-655.
    81. Wang, J.; Lei, T. Separation of Semiconducting Carbon Nanotubes Using Conjugated Polymer Wrapping. MDPI 2020, 12, 1548.
    82. Lemasson, F.; Berton, N.; Tittmann, J.; Hennrich, F.; Kappes, M. M.; Mayor, M. Polymer library comprising fluorene and carbazole homo-and copolymers for selective single-walled carbon nanotubes extraction. Macromolecules 2012, 45, 713-722.
    83. Yuen, J. D.; Wudl, F. Science, E., Strong acceptors in donor–acceptor polymers for high performance thin film transistors. Energy Environ. Sci. 2013, 6, 392-406.
    84. Zhang, X.; Zhao, J.; Tange, M.; Xu, W.; Xu, W.; Zhang, K.; Guo, W.; Okazaki, T.; Cui, Z. Sorting semiconducting single walled carbon nanotubes by poly (9, 9-dioctylfluorene) derivatives and application for ammonia gas sensing. Carbon. 2015, 94, 903-910.
    85. Salazar‐Rios, J. M.; Gomulya, W.; Derenskyi, V.; Yang, J.; Bisri, S. Z.; Chen, Z.; Facchetti, A.; Loi, M. Selecting Semiconducting Single‐Walled Carbon Nanotubes with Narrow Bandgap Naphthalene Diimide‐Based Polymers. Adv. Electron. Mater. 2015, 1, 1500074.
    86. Lei, T.; Lai, Y. C.; Hong, G.; Wang, H.; Hayoz, P.; Weitz, R. T.; Chen, C.; Dai, H.; Bao, Z. Diketopyrrolopyrrole (DPP)‐Based Donor–Acceptor Polymers for Selective Dispersion of Large‐Diameter Semiconducting Carbon Nanotubes. Small. 2015, 11, 2946-2954.
    87. Lei, T.; Pitner, G.; Chen, X.; Hong, G.; Park, S.; Hayoz, P.; Weitz, R. T.; Wong, H. Bao, Z. Dispersion of High‐Purity Semiconducting Arc‐Discharged Carbon Nanotubes Using Backbone Engineered Diketopyrrolopyrrole (DPP)‐Based Polymers. Adv. Electron. Mater. 2016, 2, 1500299.
    88. Wang, H.; Li, Y.; Jiménez‐Osés, G.; Liu, P.; Fang, Y.; Zhang, J.; Lai, Y. C.; Park, S.; Chen, L.; Houk, K. N‐Type Conjugated Polymer‐Enabled Selective Dispersion of Semiconducting Carbon Nanotubes for Flexible CMOS‐Like Circuits. Adv. Funct. Mater. 2015, 25, 1837-1844.
    89. Ozawa, H.; Ide, N.; Fujigaya, T.; Niidome, Y.; Nakashima, N. One-pot separation of highly enriched (6, 5)-single-walled carbon nanotubes using a fluorene-based copolymer. Chem. Lett 2011, 40, 239-241.
    90. Chortos, A.; Pochorovski, I.; Lin, P.; Pitner, G.; Yan, X.; Gao, T. Z.; To, J. W.; Lei, T.; Will III, J. W.; Wong, H.-S. Universal selective dispersion of semiconducting carbon nanotubes from commercial sources using a supramolecular polymer. ACS Nano 2017, 11, 5660-5669.
    91. Stranks, S. D.; Baker, A. M.; Alexander‐Webber, J. A.; Dirks, B.; Nicholas, R. Production of High‐Purity Single‐Chirality Carbon Nanotube Hybrids by Selective Polymer Exchange. Small. 2013, 9, 2245-2249.
    92. Ozawa, H.; Fujigaya, T.; Niidome, Y.; Hotta, N.; Fujiki, M.; Nakashima, N. S., Rational concept to recognize/extract single-walled carbon nanotubes with a specific chirality. J. Am. Chem. Soc. 2011, 133, 2651-2657.
    93. Li, H.; Zhang, F.; Qiu, S.; Lv, N.; Zhao, Z.; Li, Q.; Cui, Z. Designing large-plane conjugated copolymers for the high-yield sorting of semiconducting single-walled carbon nanotubes. Chem. Commun. 2013, 49, 10492-10494.
    94. Tange, M.; Okazaki, T.; Iijima, S. Influence of structure-selective fluorene-based polymer wrapping on optical transitions of single-wall carbon nanotubes. Nanoscale 2014, 6, 248-254.
    95. Brady, G. J.; Joo, Y.; Singha Roy, S.; Gopalan, P.; Arnold, M. S. High performance transistors via aligned polyfluorene-sorted carbon nanotubes. Appl. Phys. Lett. 2014, 104, 083107.
    96. Llanes-Pallas, A.; Yoosaf, K.; Traboulsi, H.; Mohanraj, J.; Seldrum, T.; Dumont, J.; Minoia, A.; Lazzaroni, R.; Armaroli, N.; Bonifazi, D. Modular engineering of H-bonded supramolecular polymers for reversible functionalization of carbon nanotubes. J. Am. Chem. Soc. 2011, 133, 15412-15424.
    97. Pochorovski, I.; Wang, H.; Feldblyum, J. I.; Zhang, X.; Antaris, A. L.; Bao, Z. S., H-bonded supramolecular polymer for the selective dispersion and subsequent release of large-diameter semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 2015, 137, 4328-4331.
    98. Ouyang, J.; Ding, J.; Lefebvre, J.; Li, Z.; Guo, C.; Kell, A. J.; Malenfant, P. R. Sorting of semiconducting single-walled carbon nanotubes in polar solvents with an amphiphilic conjugated polymer provides general guidelines for enrichment. ACS Nano. 2018, 12, 1910-1919.
    99. Tange, M.; Okazaki, T.; Iijima, S. interfaces, Selective extraction of semiconducting single-wall carbon nanotubes by poly (9, 9-dioctylfluorene-alt-pyridine) for 1.5 μm emission. ACS Appl. Mater. Interfaces 2012, 4, 6458-6462.
    100. Kanimozhi, C.; Brady, G. J.; Shea, M. J.; Huang, P.; Joo, Y.; Arnold, M. S.; Gopalan, P. interfaces, Structurally Analogous Degradable Version of Fluorene–Bipyridine Copolymer with Exceptional Selectivity for Large-Diameter Semiconducting Carbon Nanotubes. ACS Appl. Mater. Interfaces 2017, 9, 40734-40742.
    101. Shin, H.-J.; Kim, S. M.; Yoon, S.-M.; Benayad, A.; Kim, K. K.; Kim, S. J.; Park, H. K.; Choi, J.-Y.; Lee, Y. H. Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and-withdrawing groups. J. Am. Chem. Soc. 2008, 130, 2062-2066.
    102. Varghese, N.; Ghosh, A.; Voggu, R.; Ghosh, S.; Rao, C. Selectivity in the interaction of electron donor and acceptor molecules with graphene and single-walled carbon nanotubes. J. Phys. Chem. C 2009, 113, 16855-16859.
    103. Wei, X.; Maimaitiyiming, X. Enrichment of highly pure large-diameter semiconducting SWCNTs by polyfluorene-containing pyrimidine ring. RSC Adv. 2019, 9, 32753-32758.
    104. Cheng, F.; Imin, P.; Maunders, C.; Botton, G.; Adronov, A. Soluble, discrete supramolecular complexes of single-walled carbon nanotubes with fluorene-based conjugated polymers. Macromolecules 2008, 41, 2304-2308.
    105. Fong, D.; Bodnaryk, W. J.; Rice, N. A.; Saem, S.; Moran‐Mirabal, J. M.; Adronov, A. Influence of Polymer Electronics on Selective Dispersion of Single‐Walled Carbon Nanotubes. Chem. Eur. J. 2016, 22, 14560-14566.
    106. Bodnaryk, W. J.; Fong, D.; Adronov, A. Enrichment of metallic carbon nanotubes using a two-polymer extraction method. ACS Omega 2018, 3, 16238-16245.
    107. Rice, N. A.; Subrahmanyam, A. V.; Coleman, B. R.; Adronov, A. Effect of induction on the dispersion of semiconducting and metallic single-walled carbon nanotubes using conjugated polymers. Macromolecules 2015, 48, 5155-5161.
    108. Szleifer, I.; Yerushalmi-Rozen, R. Polymers and carbon nanotubes—dimensionality, interactions and nanotechnology. Polymer 2005, 46, 7803-7818.
    109. Shvartzman-Cohen, R.; Levi-Kalisman, Y.; Nativ-Roth, E.; Yerushalmi-Rozen, R. Generic approach for dispersing single-walled carbon nanotubes: the strength of a weak interaction. Langmuir 2004, 20, 6085-6088.
    110. Cotiuga, I.; Picchioni, F.; Agarwal, U. S.; Wouters, D.; Loos, J.; Lemstra, P. Block‐copolymer‐assisted solubilization of carbon nanotubes and exfoliation monitoring through viscosity. Macromol. Rapid Commun. 2006, 27, 1073-1078.
    111. Xin, X.; Xu, G.; Zhao, T.; Zhu, Y.; Shi, X.; Gong, H.; Zhang, Z. Dispersing carbon nanotubes in aqueous solutions by a starlike block copolymer. J. Phys. Chem. C 2008, 112, 16377-16384.
    112. Fernandes, R. M.; Dai, J.; Regev, O.; Marques, E. F.; Furó, I. Block copolymers as dispersants for single-walled carbon nanotubes: modes of surface attachment and role of block polydispersity. Langmuir 2018, 34, 13672-13679.
    113. Ozawa, H.; Yi, X.; Fujigaya, T.; Niidome, Y.; Asano, T.; Nakashima, N. Supramolecular hybrid of gold nanoparticles and semiconducting single-walled carbon nanotubes wrapped by a porphyrin–fluorene copolymer. J. Am. Chem. Soc. 2011, 133, 14771-14777.
    114. Kwak, M.; Gao, J.; Prusty, D. K.; Musser, A. J.; Markov, V. A.; Tombros, N.; Stuart, M. C.; Browne, W. R.; Boekema, E. J.; ten Brinke, G. DNA Block Copolymer Doing It All: From Selection to Self‐Assembly of Semiconducting Carbon Nanotubes. Angew. Chem. 2011, 50, 3206-3210.
    115. Xu, L.; Valášek, M.; Hennrich, F.; Fischer, R.; Kappes, M. M.; Mayor, M. Degradable Fluorene-and Carbazole-Based Copolymers for Selective Extraction of Semiconducting Single-Walled Carbon Nanotubes. Macromolecules 2021, 54, 4363-4374.
    116. Lei, T.; Shao, L.-L.; Zheng, Y.-Q.; Pitner, G.; Fang, G.; Zhu, C.; Li, S.; Beausoleil, R.; Wong, H.-S. P.; Huang, T.-C., Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 2019, 10, 1-10.
    117. Devaraju, S.; Lee, T.; Mohanty, A. K.; Hong, Y. K.; Yoon, K. H.; Lee, Y. S.; Han, J. H.; Paik, H.-j. Fabrication of durable and flexible single-walled carbon nanotube transparent conductive films. RCS Adv. 2017, 7, 19267-19272.
    118. Gifford, B. J.; Weight, B. M.; Kilina, S. J. Interplay between Conjugated Backbone Units and Side Alkyl Groups in Chirality Sensitive Interactions of Single Walled Carbon Nanotubes with Polyfluorenes. J. Phys. Chem. C 2019, 123, 24807-24817.
    119. Tallury, S. S.; Pasquinelli, M. A. Molecular dynamics simulations of flexible polymer chains wrapping single-walled carbon nanotubes. J. Phys. Chem. B 2010, 114, 4122-4129.
    120. Samanta, S. K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S. Z.; Loi, M. A. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping. Acc. Chem. Res. 2014, 47, 2446-2456.
    121. Kawahara, S.; Sato, K.; Akiyama, S. Negative excess volume of mixing in polybutadiene/polyisoprene blends. J. Polym. Sci. 1994, 32, 15-20.
    122. D Diani, J.; Fayolle, B.; Gilormini, P. Study on the temperature dependence of the bulk modulus of polyisoprene by molecular dynamics simulations. Mol Simul 2008, 34, 1143-1148.
    123. Liu, J.; Wang, Z.; Li, S.; Li, S. Physicochemical, S. A.; Aspects, E., Development of trans-1, 4-polyisoprene (TPI) nanocomposite reinforced with nano-SiO2 functionalized graphene oxide. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123790.
    124. Shokri, A.-a.; Talebi, S.; Salami-Kalajahi, M. Research, E. C. Polybutadiene Rubber/Graphene Nanocomposites Prepared via In Situ Coordination Polymerization Using the Neodymium-Based Ziegler–Natta Catalyst. Ind. Eng. Chem. Res. 2020, 59, 15202-15213.
    125. Wu, Y.; Yao, K.; Nie, H.; He, A. Confirmation on the compatibility between cis-1, 4-polyisoprene and trans-1, 4-polyisoprene. Polymer 2018, 153, 271-276.
    126. Pandey, Y. N.; Brayton, A.; Burkhart, C.; Papakonstantopoulos, G. J.; Doxastakis, M. J. o. c. p., Multiscale modeling of polyisoprene on graphite. J. Chem. Phys. 2014, 140, 054908.
    127. Heffner, S. A.; Mirau, P. A. Identification of intermolecular interactions in 1, 2-polybutadiene/polyisoprene blends. Macromolecules 1994, 27, 7283-7286.
    128. Zou, S.; Maspoch, D.; Wang, Y.; Mirkin, C. A.; Schatz, G. C. Rings of single-walled carbon nanotubes: molecular-template directed assembly and Monte Carlo modeling. Nano letters 2007, 7, 276-280.
    129. Qiu, Z.; Hammer, B. A.; Muellen, K. Conjugated polymers–Problems and promises. Prog. Polym. Sci. 2020, 100, 101179.
    130. Wan, H.; Cao, Y.; Lo, L.-W.; Zhao, J.; Sepulveda, N.; Wang, C. Flexible carbon nanotube synaptic transistor for neurological electronic skin applications. ACS Nano. 2020, 14, 10402-10412.
    131. Alba-Martin, M.; Firmager, T.; Atherton, J.; Rosamond, M. C.; Ashall, D.; Al Ghaferi, A.; Ayesh, A.; Gallant, A. J.; Mabrook, M. F.; Petty, M. C. Improved memory behaviour of single-walled carbon nanotubes charge storage nodes. J. Phys. D: Appl. Phys. 2012, 45, 295401.
    132. Sun, D. M.; Liu, C.; Ren, W. C.; Cheng, H. M. review of carbon nanotube‐and graphene‐based flexible thin‐film transistors. Small 2013, 9, 1188-1205.
    133. Luo, Z.-D.; Xia, X.; Yang, M.-M.; Wilson, N. R.; Gruverman, A.; Alexe, M. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano. 2019, 14, 746-754.
    134. Li, J.; Yang, Y.-H.; Chen, Q.; Zhu, W.-Q.; Zhang, J.-H. Aqueous-solution-processed proton-conducting carbon nitride/polyvinylpyrrolidone composite electrolytes for low-power synaptic transistors with learning and memory functions. J. Mater. Chem. C 2020, 8, 4065-4072.
    135. Lee, Y. R.; Trung, T. Q.; Hwang, B.-U.; Lee, N.-E. A flexible artificial intrinsic-synaptic tactile sensory organ. Nat. Commun. 2020, 11, 1-11.
    136. Xu, J.; Wang, S.; Wang, G.-J. N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V. R.; To, J. W. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 2017, 355, 59-64.
    137. Zhao, S.; Wang, Y.; Huang, W.; Jin, H.; Huang, P.; Wang, H.; Wang, K.; Li, D.; Xu, M.; Yang, D. Developing near-infrared quantum-dot light-emitting diodes to mimic synaptic plasticity. Springer 2019, 62, 1470-1478.
    138. Steuerman, D. W.; Star, A.; Narizzano, R.; Choi, H.; Ries, R. S.; Nicolini, C.; Stoddart, J. F.; Heath, J. R. Interactions between conjugated polymers and single-walled carbon nanotubes. J. Phys. Chem. B 2002, 106, 3124-3130
    139. Borghetti, J.; Derycke, V.; Lenfant, S.; Chenevier, P.; Filoramo, A.; Goffman, M.; Vuillaume, D.; Bourgoin, J. P. Optoelectronic switch and memory devices based on polymer‐functionalized carbon nanotube transistors. Adv. Mater. 2006, 18, 2535-2540.
    140. Nikolka, M.; Nasrallah, I.; Rose, B.; Ravva, M. K.; Broch, K.; Sadhanala, A.; Harkin, D.; Charmet, J.; Hurhangee, M.; Brown, A. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 2017, 16, 356-362.
    141. Lee, H.; Moon, B.; Son, S. Y.; Park, T.; Kang, B.; Cho, K. Interfaces, Charge Trapping in a Low-Crystalline High-Mobility Conjugated Polymer and Its Effects on the Operational Stability of Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2021, 13, 16722-16731.
    142. Wang, Y.; Maspoch, D.; Zou, S.; Schatz, G. C.; Smalley, R. E.; Mirkin, C. A. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. PNAS 2006, 103, 2026-2031.
    143. Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Carbon nanotubes--the route toward applications. Science 2002, 297, 787-792.
    144. Lefebvre, J.; Ding, J.; Li, Z.; Finnie, P.; Lopinski, G.; Malenfant, P. R. High-purity semiconducting single-walled carbon nanotubes: a key enabling material in emerging electronics. Acc. Chem. Res. 2017, 50, 2479-2486.
    145. Krupke, R.; Hennrich, F.; Löhneysen, H. v.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science. 2003, 301, 344-347.
    146. Chiang, W.-H.; Iihara, Y.; Li, W.-T.; Hsieh, C.-Y.; Lo, S.-C.; Goto, C.; Tani, A.; Kawai, T.; Nonoguchi, Y. interfaces, Enhanced Thermoelectric Properties of Boron-Substituted Single-Walled Carbon Nanotube Films. ACS Appl. Mater. Interfaces 2018, 11, 7235-7241.
    147. Chiang, W.-H.; Sankaran, R. M. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning Ni x Fe 1− x nanoparticles. Nat. Mater. 2009, 8 (11), 882-886.
    148. Au-Duong, A.-N.; Wu, C.-C.; Li, Y.-T.; Huang, Y.-S.; Cai, H.-Y.; Jo Hai, I.; Cheng, Y.-H.; Hu, C.-C.; Lai, J.-Y.; Kuo, C.-C. Synthetic Concept of Intrinsically Elastic Luminescent Polyfluorene-Based Copolymers via RAFT Polymerization. Macromolecules 2020, 53, 4030-4037.
    149. Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R. Direct spectroscopic evidence of energy transfer from photo-excited semiconducting polymers to single-walled carbon nanotubes. Nanotechnology 2008, 19, 095603.
    150. Chen, J.; Liu, H.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. Noncovalent engineering of carbon nanotube surfaces by rigid, functional conjugated polymers. J. Am. Chem. Soc. 2002, 124, 9034-9035.
    151. Collison, C. J.; Spencer, S.; Preske, A.; Palumbo, C.; Helenic, A.; Bailey, R.; Pellizzeri, S. A new model for quantifying the extent of interaction between soluble polyphenylene-vinylenes and single-walled carbon nanotubes in solvent dispersions. J. Phys. Chem. B 2010, 114, 11002-11009.
    152. Li, M.; Xu, P.; Yang, J.; Ying, H.; Haubner, K.; Dunsch, L.; Yang, S. Synthesis of pyrene-substituted poly (3-hexylthiophene) via postpolymerization and its noncovalent interactions with single-walled carbon nanotubes. J. Phys. Chem. C 2011, 115, 4584-4593.
    153. Philips, A.; Wang, S. Q. Transitional flow behavior of entangled polyisoprene solutions. J. Polym. Sci. B Polym. Phys. 2004, 42, 4132-4138.
    154. Liu, H.; Feng, Y.; Tanaka, T.; Urabe, Y.; Kataura, H. Diameter-selective metal/semiconductor separation of single-wall carbon nanotubes by agarose gel. J. Phys. Chem. C 2010, 114, 9270-9276.
    155. Mirka, B.; Fong, D.; Rice, N. A.; Melville, O. A.; Adronov, A.; Lessard, B. H. Polyfluorene-sorted semiconducting single-walled carbon nanotubes for applications in thin-film transistors. Chem. Mater. 2019, 3, 2863-2872.
    156. Chen, D.; Shao, H.; Yao, W.; Huang, B. Fourier transform infrared spectral analysis of polyisoprene of a different microstructure. Int. J. Polym. Sci. 2013, 2013, 937284
    157. Arjunan, V.; Subramanian, S.; Mohan, S. Spectroscopy, B., Fourier transform infrared and Raman spectral analysis of trans-1, 4-polyisoprene. Spectrochim Acta A Mol Biomol Spectrosc 2001, 57, 2547-2554.
    158. Nishio, Y.; Hirotani, J.; Kishimoto, S.; Kataura, H.; Ohno, Y. Low‐Voltage Operable and Strain‐Insensitive Stretchable All‐Carbon Nanotube Integrated Circuits with Local Strain Suppression Layer. Adv. Electron. Mater. 2021, 7, 2000674.
    159. Li, H.; Gordeev, G.; Garrity, O.; Peyyety, N. A.; Selvasundaram, P. B.; Dehm, S.; Krupke, R.; Cambré, S.; Wenseleers, W.; Reich, S. Separation of specific single-enantiomer single-wall carbon nanotubes in the large-diameter regime. ACS Nano. 2019, 14, 948-963.
    160. Yu, Y.; Ma, Q.; Ling, H.; Li, W.; Ju, R.; Bian, L.; Shi, N.; Qian, Y.; Yi, M.; Xie, L. Small‐molecule‐based organic field‐effect transistor for nonvolatile memory and artificial synapse. Adv. Funct. Mater. 2019, 29, 1904602.
    161. Lv, Z.; Chen, M.; Qian, F.; Roy, V. A.; Ye, W.; She, D.; Wang, Y.; Xu, Z. X.; Zhou, Y.; Han, S. T. Mimicking neuroplasticity in a hybrid biopolymer transistor by dual modes modulation. Adv. Funct. Mater. 2019, 29, 1902374.
    162. Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591-595.
    163. Buonomano, D. V.; Maass, W. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 2009, 10, 113-125.
    164. Alibart, F.; Pleutin, S.; Guérin, D.; Novembre, C.; Lenfant, S.; Lmimouni, K.; Gamrat, C.; Vuillaume, D. An organic nanoparticle transistor behaving as a biological spiking synapse. Adv. Funct. Mater. 2010, 20, 330-337.
    165. Ren, Y.; Yang, J. Q.; Zhou, L.; Mao, J. Y.; Zhang, S. R.; Zhou, Y.; Han, S. T. Gate‐Tunable Synaptic Plasticity through Controlled Polarity of Charge Trapping in Fullerene Composites. Adv. Funct. Mater. 2018, 28, 1805599.
    166. Kuzum, D.; Yu, S.; Wong, H. P. Synaptic electronics: materials, devices and applications. Nanotechnology 2013, 24, 382001.
    167. Yan, X.; Qin, C.; Lu, C.; Zhao, J.; Zhao, R.; Ren, D.; Zhou, Z.; Wang, H.; Wang, J.; Zhang, L. Interfaces, Robust Ag/ZrO2/WS2/Pt Memristor for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2019, 11, 48029-48038.
    168. Wang, Z.; Rao, M.; Han, J.-W.; Zhang, J.; Lin, P.; Li, Y.; Li, C.; Song, W.; Asapu, S.; Midya, R. Capacitive neural network with neuro-transistors. Nat. Commun. 2018, 9, 1-10
    169. Li, J.; Duan, Q.; Zhang, T.; Yin, M.; Sun, X.; Cai, Y.; Li, L.; Yang, Y.; Huang, R. Tuning analog resistive switching and plasticity in bilayer transition metal oxide based memristive synapses. RSC Adv. 2017, 7, 43132-43140.
    170. Jang, S.; Jang, S.; Lee, E.-H.; Kang, M.; Wang, G.; Kim, T.-W. interfaces, Ultrathin conformable organic artificial synapse for wearable intelligent device applications. ACS Appl. Mater. Interfaces 2018, 11, 1071-1080.
    171. Yao, P.; Wu, H.; Gao, B.; Eryilmaz, S. B.; Huang, X.; Zhang, W.; Zhang, Q.; Deng, N.; Shi, L.; Wong, H.-S. P. Face classification using electronic synapses. Nat. Commun. 2017, 8, 1-8.
    172. Shi, J.; Ha, S. D.; Zhou, Y.; Schoofs, F.; Ramanathan, S. A correlated nickelate synaptic transistor. Nat. Commun. 2013, 4, 1-9.
    173. Fang, L.; Dai, S.; Zhao, Y.; Liu, D.; Huang, J. Light‐Stimulated Artificial Synapses Based on 2D Organic Field‐Effect Transistors. Adv. Electron. Mater. 2020, 6, 1901217.
    174. Yu, T.-F.; Chen, H.-Y.; Liao, M.-Y.; Tien, H.-C.; Chang, T.-T.; Chueh, C.-C.; Lee, W.-Y. Interfaces, Solution-Processable Anionic Doped Conjugated Polymer for Nonvolatile Organic Transistor Memory with Synaptic Behaviors. ACS Appl. Mater. Interfaces 2020, 12, 33968–33978.
    175. Dai, S.; Wu, X.; Liu, D.; Chu, Y.; Wang, K.; Yang, B.; Huang, J. interfaces, Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors. ACS Appl. Mater. Interfaces 2018, 10, 21472-21480.
    176. Lee, M.; Lee, W.; Choi, S.; Jo, J. W.; Kim, J.; Park, S. K.; Kim, Y. H. Brain‐Inspired Photonic Neuromorphic Devices using Photodynamic Amorphous Oxide Semiconductors and their Persistent Photoconductivity. Adv.Mater. 2017, 29, 1700951.
    177. Wang, K.; Dai, S.; Zhao, Y.; Wang, Y.; Liu, C.; Huang, J. Light‐stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 2019, 15, 1900010.
    178. Kumar, M.; Abbas, S.; Kim, J. interfaces, All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl. Mater. Interfaces 2018, 10, 34370-34376.
    179. Li, H. K.; Chen, T.; Liu, P.; Hu, S.; Liu, Y.; Zhang, Q.; Lee, P. light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx–Al2O3 thin film structure. ACS Appl. Mater. Interfaces 2016, 119, 244505.
    180. Wang, H.; Zhao, Q.; Ni, Z.; Li, Q.; Liu, H.; Yang, Y.; Wang, L.; Ran, Y.; Guo, Y.; Hu, W. A Ferroelectric/Electrochemical Modulated Organic Synapse for Ultraflexible, Artificial Visual‐Perception System. Adv. Mater. 2018, 30, 1803961.
    181. Xie, D.; Jiang, J.; Hu, W.; He, Y.; Yang, J.; He, J.; Gao, Y.; Wan, Q. interfaces, Coplanar multigate MoS2 electric-double-layer transistors for neuromorphic visual recognition. ACS Appl. Mater. Interfaces 2018, 10, 25943-25948.
    182. Mburu, M. M.; Au‐Duong, A. N.; Li, W. T.; Wu, C. C.; Cheng, Y. H.; Chen, K. L.; Chiang, W. H.; Chiu, Y. C. The Impacts of Polyisoprene Physical Interactions on Sorting of Single‐Wall Carbon Nanotubes. Macromol. Rapid Commun. 2021, 42, 2100327.
    183. Wang, X.; Wasapinyokul, K.; De Tan, W.; Rawcliffe, R.; Campbell, A. J.; Bradley, D. D. Device physics of highly sensitive thin film polyfluorene copolymer organic phototransistors. J. Appl. Phys. 2010, 107, 024509.
    184. Pavia, D. L.; Lampman, G. M.; Kriz, G. S.; Vyvyan, J. A. Introduction to spectroscopy. Cengage learning: 4th ed.; Cengage learning: Boston, 2014.
    185. Park, S. H.; Jin, S. H.; Jun, G. H.; Jeon, S.; Hong, S. H. Enhanced electrical properties in carbon nanotube/poly (3-hexylthiophene) nanocomposites formed through non-covalent functionalization. Springer 2011, 4, 1129-1135.
    186. Pizzutto, C. E.; Suave, J.; Bertholdi, J.; Pezzin, S. H.; Coelho, L. A. F.; Amico, S. C. Study of epoxy/CNT nanocomposites prepared via dispersion in the hardener. Mater. Res. 2011, 14, 256-263.
    187. Zhang, S.; Cheng, Y. H.; Galuska, L.; Roy, A.; Lorenz, M.; Chen, B.; Luo, S.; Li, Y. T.; Hung, C. C.; Qian, Z. Tacky Elastomers to Enable Tear‐Resistant and Autonomous Self‐Healing Semiconductor Composites. Adv. Funct. Mater. 2020, 30, 2000663.
    188. Yu, T.-F.; Chen, H.-Y.; Liao, M.-Y.; Tien, H.-C.; Chang, T.-T.; Chueh, C.-C.; Lee, W.-Y. nterfaces, Solution-Processable Anion-doped Conjugated Polymer for Nonvolatile Organic Transistor Memory with Synaptic Behaviors. ACS Appl. Mater. Interfaces 2020, 12, 33968-33978.
    189. Wang, Y.; Lv, Z.; Chen, J.; Wang, Z.; Zhou, Y.; Zhou, L.; Chen, X.; Han, S. T. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 2018, 30, 1802883.
    190. Yu, Y.; Bian, L. Y.; Chen, J. G.; Ma, Q. H.; Li, Y. X.; Ling, H. F.; Feng, Q. Y.; Xie, L. H.; Yi, M. D.; Huang, W. 4, 5‐Diazafluorene‐Based Donor–Acceptor Small Molecules as Charge Trapping Elements for Tunable Nonvolatile Organic Transistor Memory. Adv. Sci 2018, 5, 1800747.
    191. Chiu, Y.-C.; Liu, C.-L.; Lee, W.-Y.; Chen, Y.; Kakuchi, T.; Chen, W.-C. Multilevel nonvolatile transistor memories using a star-shaped poly ((4-diphenylamino) benzyl methacrylate) gate electret. NPG Asia Mater. 2013, 5, e35-e35.
    192. Chen, C. H.; Wang, Y.; Tatsumi, H.; Michinobu, T.; Chang, S. W.; Chiu, Y. C.; Liou, G. S. Novel Photoinduced Recovery of OFET Memories Based on Ambipolar Polymer Electret for Photorecorder Application. Adv. Funct. Mater. 2019, 29, 1902991.
    193. Latini, G.; Tan, L. W.; Cacialli, F.; Silva, S. R. Superficial fluoropolymer layers for efficient light-emitting diodes. Org. Electron. 2012, 13, 992-998.
    194. Pfohl, M.; Glaser, K.; Graf, A.; Mertens, A.; Tune, D. D.; Puerckhauer, T.; Alam, A.; Wei, L.; Chen, Y.; Zaumseil, J. Probing the diameter limit of single walled carbon nanotubes in SWCNT: fullerene solar cells. Adv. Energy Mater. 2016, 6, 1600890.
    195. Zhao, J.; Han, J.; Lu, Work functions of pristine and alkali-metal intercalated carbon nanotubes and bundles. Phys. Rev. B 2002, 65, 193401.
    196. Graham, A.; Duesberg, G.; Hoenlein, W.; Kreupl, F.; Liebau, M.; Martin, R. Rajasekharan, B.; Pamler, W.; Seidel, R.; Steinhoegl, W. How do carbon nanotubes fit into the semiconductor roadmap Springer 2005, 80, 1141-1151.
    197. Hsu, J.-C.; Lee, W.-Y.; Wu, H.-C.; Sugiyama, K.; Hirao, A.; Chen, W.-C. Nonvolatile memory based on pentacene organic field-effect transistors with polystyrene para-substituted oligofluorene pendent moieties as polymer electrets. J. Mater. Chem. 2012, 22, 5820-5827.
    198. Yu, R.; Li, E.; Wu, X.; Yan, Y.; He, W.; He, L.; Chen, J.; Chen, H.; Guo, T. interfaces, Electret-Based Organic Synaptic Transistor for Neuromorphic Computing. ACS Appl. Mater. Interfaces 2020, 12, 15446-15455.
    199. Chen, C.-H.; Wang, Y.; Michinobu, T.; Chang, S.-W.; Chiu, Y.-C.; Ke, C.-Y.; Liou, G.-S. interfaces, Donor–Acceptor Effect of Carbazole-Based Conjugated Polymer Electrets on Photoresponsive Flash Organic Field-Effect Transistor Memories. ACS Appl. Mater. Interfaces 2020, 12, 6144-6150.
    200. Schumacher, S.; Ruseckas, A.; Montgomery, N. A.; Skabara, P. J.; Kanibolotsky, A. L.; Paterson, M. J.; Galbraith, I.; Turnbull, G. A.; Samuel, I. D. Effect of exciton self-trapping and molecular conformation on photophysical properties of oligofluorenes. J. Chem. Phys. 2009, 131 (15), 154906.
    201. Vezie, M. S.; Few, S.; Meager, I.; Pieridou, G.; Dörling, B.; Ashraf, R. S.; Goñi, A. R.; Bronstein, H.; McCulloch, I.; Hayes, S. C. Exploring the origin of high optical absorption in conjugated polymers. Nat. Mater. 2016, 15, 746-753.
    202. Monkman, A.; Rothe, C.; King, S.; Dias, F. Polyfluorene photophysics. Springer 2008, 212, 187-225.
    203. Ke, C. Y.; Chen, M. N.; Chen, M. H.; Li, Y. T.; Chiu, Y. C.; Liou, G. S. Novel Authentic and Ultrafast Organic Photorecorders Enhanced by AIE‐Active Polymer Electrets via Interlayer Charge Recombination. Adv. Funct. Mater. 2021, 31, 2101288.
    204. Gioti, M. Optical, photophysical, and electrooptical studies on slot-die polyfluorene-based flexible OLED devices. Opt. Mater. Express 2021, 11, 1442-1456.
    205. Liang, S.; Subrahmanyam, A. V.; Khadem, M.; Zhao, Y.; Adronov, A. Selective dispersion of single-walled carbon nanotubes with electron-rich fluorene-based copolymers. RSC Adv 2016, 6, 25733-25740.
    206. Abbott, L.; Regehr, W. G. Synaptic computation. Nature 2004, 431, 796-803.
    207. Zucker, R. S.; Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64 (1), 355-405.
    208. Raeis‐Hosseini, N.; Park, Y.; Lee, J. S. Flexible Artificial Synaptic Devices Based on Collagen from Fish Protein with Spike‐Timing‐Dependent Plasticity. Adv. Funct. Mater. 2018, 28, 1800553.
    209. Engert, F.; Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 1999, 399, 66-70.
    210. Sun, Y.-G.; Beierlein, M. J. Receptor saturation controls short-term synaptic plasticity at corticothalamic synapses. Neurophysiol. 2011, 105, 2319-2329.
    211. Abbott, L. F.; Nelson, S. B. Synaptic plasticity: taming the beast. Nat. Neurosci. 2000, 3, 1178-1183.
    212. Mao, J.-Y.; Hu, L.; Zhang, S.-R.; Ren, Y.; Yang, J.-Q.; Zhou, L.; Zeng, Y.-J.; Zhou, Y.; Han, S.-T. Artificial synapses emulated through a light mediated organic–inorganic hybrid transistor. J. Mater. Chem. 2019, 7, 48-59.
    213. Saïghi, S.; Mayr, C. G.; Serrano-Gotarredona, T.; Schmidt, H.; Lecerf, G.; Tomas, J.; Grollier, J.; Boyn, S.; Vincent, A. F.; Querlioz, D. Plasticity in memristive devices for spiking neural networks. J. Neural Eng. 2015, 9, 51.
    214. Hsu, H.-T.; Yang, D.-L.; Wiyanto, L. D.; Chen, J.-Y. Red‐Light‐Stimulated Photonic Synapses Based on Nonvolatile Perovskite‐Based Photomemory. Adv. photonics 2021, 2, 2000185.
    215. Yang, B.; Wang, Y.; Hua, Z.; Zhang, J.; Li, L.; Hao, D.; Guo, P.; Xiong, L.; Huang, J. Low-power consumption light-stimulated synaptic transistors based on natural carotene and organic semiconductors. Chem. Commun. 2021, 57, 8300-8303.
    216. Chen, J. Y.; Yang, D. L.; Jhuang, F. C.; Fang, Y. H.; Benas, J. S.; Liang, F. C.; Kuo, C. C. Ultrafast Responsive and Low‐Energy‐Consumption Poly (3‐hexylthiophene)/Perovskite Quantum Dots Composite Film‐Based Photonic Synapse. Adv. Funct. Mater. 2021, 31, 2105911.
    217. Hennrich, F.; Li, W.; Fischer, R.; Lebedkin, S.; Krupke, R.; Kappes, M. Length-sorted, large-diameter, polyfluorene-wrapped semiconducting single-walled carbon nanotubes for high-density, short-channel transistors. ACS Nano 2016, 10, 1888-1895.
    218. Lei, T.; Pochorovski, I.; Bao, Z. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method. Acc. Chem. Res. 2017, 50 (4), 1096-1104.
    219. Fong, D.; Adronov, A. Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes. Macromolecules 2017, 50, 8002-8009.
    220. Di Crescenzo, A.; Kopf, I.; Pieraccini, S.; Masiero, S.; Del Canto, E.; Spada, G. P.; Giordani, S.; Fontana, A. Lipophilic guanosine derivatives as carbon nanotube dispersing agents. Carbon 2012, 50, 4663-4672.
    221. Berton, N.; Lemasson, F.; Poschlad, A.; Meded, V.; Tristram, F.; Wenzel, W.; Hennrich, F.; Kappes, M. M.; Mayor, M. Selective Dispersion of Large‐Diameter Semiconducting Single‐Walled Carbon Nanotubes with Pyridine‐Containing Copolymers. Small 2014, 10, 360-367.
    222. Lei, T.; Chen, X.; Pitner, G.; Wong, H.-S. P.; Bao, Z. J. Removable and recyclable conjugated polymers for highly selective and high-yield dispersion and release of low-cost carbon nanotubes. J. Am. Chem. Soc 2016, 138, 802-805.
    223. Li, Z.; Ding, J.; Finnie, P.; Lefebvre, J.; Cheng, F.; Kingston, C. T.; Malenfant, P. R. Raman microscopy mapping for the purity assessment of chirality enriched carbon nanotube networks in thin-film transistors. Springer 2015, 8, 2179-2187.
    224. Brown, S.; Jorio, A.; Corio, a. P.; Dresselhaus, M.; Dresselhaus, G.; Saito, R.; Kneipp, K. Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys. Rev. B 2001, 63, 155414.
    225. Kawamoto, H.; Uchida, T.; Kojima, K.; Tachibana, M. J. The feature of the Breit-Wigner-Fano Raman line in DNA-wrapped single-wall carbon nanotubes. J. Appl. Phys. 2006, 99, 094309.
    226. Tan, F. W.; Hirotani, J.; Nonoguchi, Y.; Kishimoto, S.; Kataura, H.; Ohno, Y. Low-voltage carbon nanotube complementary electronics using chemical doping to tune the threshold voltage. Appl. Phys. Express 2021, 14, 045002.
    227. Guo, C.; Ouyang, J.; Shin, H.; Ding, J.; Li, Z.; Lapointe, F.; Lefebvre, J.; Kell, A. J.; Malenfant, P. R. Enrichment of semiconducting single-walled carbon nanotubes with indigo-fluorene-based copolymers and their use in printed thin-film transistors and carbon dioxide gas sensors. ACS Sens. 2020, 5, 2136-2145.
    228. Liu, Z.; Li, H.; Qiu, Z.; Zhang, S. L.; Zhang, Z. B., SMALL‐hysteresis thin‐film transistors achieved by facile dip‐coating of nanotube/polymer composite. Adv. Mater. 2012, 24, 3633-3638.
    229. Yu, B.; Fu, S.; Wu, Z.; Bai, H.; Ning, N.; Fu, Q. Manufacturing, Molecular dynamics simulations of orientation induced interfacial enhancement between single walled carbon nanotube and aromatic polymers chains. Compos. - A: Appl. Sci. Manuf. 2015, 73, 155-165.
    230. Bishop, R. Organic crystal engineering beyond the Pauling hydrogen bond. CrystEngComm 2015, 17, 7448-7460.

    無法下載圖示 全文公開日期 2025/06/15 (校內網路)
    全文公開日期 2027/06/15 (校外網路)
    全文公開日期 2027/06/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE