簡易檢索 / 詳目顯示

研究生: 歐陽愛雁
AU - DUONG AI NHAN
論文名稱: 碘為殺菌劑之可充式磁性殺菌奈米粒子
Rechargeable Bactericidal Magnetic Nanoparticles Functionalized with Surface-initiated ATRP Poly (N-vinylpyrrolidone)-Iodine Complex
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 何明樺
Ming-Hua Ho
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 59
中文關鍵詞: 碘為殺菌劑之磁性殺菌奈米粒子
外文關鍵詞: PVP-grafted magnetic nanoparticle (MNPs@PVP), surface-initiated atom transfer radical polymeri, recharging
相關次數: 點閱:147下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先將聚乙烯吡咯烷酮(PVP)修飾於磁性奈米粒子(MNPs)表面上,隨後將此經PVP修飾之MNPs(MNPs@PVP)和碘溶液反應,形成不溶於水且具殺菌功能之PVP-I複合物固定化MNPs。本研究使用之核心MNPs是Bayoxide E型,利用表面成長原子自由基轉移聚合法(SI-ATRP)可良好控制並有效的共價聚合PVP鏈接枝於MNPs,改變其奈米結構之化學和物理性質。經SI-ATRP修飾上PVP之MNPs以熱重分析、傅立葉轉換紅外線光譜分析、掃描式電子顯微鏡、動態光散射粒徑分析和硫代硫酸鈉滴定法確認其性質。將具殺菌功能MNPs和菌液接觸後,計算菌液中平均每毫升菌落形成單位(CFU/mL),測試其殺菌能力。MNPs表面經SI-ATRP反應2小時可修飾上0.09 g PVP/g MNPs,且可和10 mg碘形成複合物。當PVP-I修飾之MNPs其濃度為5 g/L,且革蘭氏陰性大腸桿菌和革蘭氏陽性金黃葡萄球菌之菌落數為1010 CFU/mL時可在3分鐘內達100%殺菌率,顯示其殺菌能力極佳。未再次補充碘之MNPs可重複使用至少4次且維持其100%之殺菌率。


    In this study, PVP was first grafted on the surfaces of magnetic nanoparticles (MNPs), then the reaction between PVP-grafted MNPs (MNPs@PVP) and iodine was carried out to form complexation PVP-I immobilized material or water-insoluble bactericidal MNPs. MNPs that are used for the core in this work are Bayoxide E type. And the method to further develop the chemical and physical properties of nanostructures is surface-initiated atom transfer radical polymerization (SI-ATRP); by providing a method to covalently graft of polymer PVP chains in a well-controlled fashion and efficiently. PVP could be effectively grafted onto the surface of MNPs by SI-ATRP method which were confirmed by TGA, FTIR, SEM, DLS and hyposulphite titration method. The anti-bacterial of functional MNPs was tested with the mean colony forming units (CFU) counting. As the result, the as-prepared magnetic nanoparticles were demonstrated the present of PVP on the surface around 0.09 g PVP/g particles within 2 hours of reaction time and could be loaded approximately 10 mg of iodine in the complexation form. The antimicrobial activity of PVP-I functionalized magnetic nanoparticle (at concentration of 5 g/L) was found very effective as reaching 100% bactericidal rate against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus with concentration of 1010 cfu/ml within 3 min. The used obtained MNP could be reused at least 4 times without reducing its 100% antimicrobial rate by recharging iodine.

    Chapter 1 Introduction 1 1.1 Preface 1 1.2 Poly (N-vinylpyrrolidone)-iodine (PVP-I) 1 1.3 Supperparamagnetic nanoparticles 3 1.3.1 The advantages of MNPs 3 1.3.2 Trend in the development of antibacterial MNPs 4 1.4 Motivation and research objective 5 1.5 Surface-initiated atom transfer radical polymerization (SI-ATRP) 8 1.6 The outline of thesis 8 Chapter 2 Litterature review 10 2.1 MNPs surface modification 10 2.1.1 Silica modified on magnetic nanoparticles surface 10 2.1.2 Aminated surface modification of magnetic nanoparticles 11 2.2 SI-ATRP, mechanism and fabrication 12 2.2.1 Mechanism of ATRP 12 2.2.2 Initiator group modified on magnetic nanoparticles surface 14 2.3 Bactericidal activity of functionalized MNPs 14 2.3.1 Zone of Inhibition Test 14 2.3.2 Colony-forming unit (CFU) 15 Chapter 3 Experimental 17 3.1 Experiment 17 3.1.1 Materials 17 3.1.2 Experimental procedure 17 3.1.2.1 Silica modified on magnetic nanoparticles surface 17 3.1.2.2 Amino modified on magnetic nanoparticles surface 19 3.1.2.3 Initiator grafting and PVP chain growing on magnetic nanoparticles surface 19 3.1.2.4 Charging iodine onto MNPs@PVP (MNPs@PVP-I) 20 3.1.2.5 Direct surface coating PVP on magnetic nanoparticles surface 21 3.2 Characterization 22 3.2.1 Thermogravimetric analyzer (TGA) 22 3.2.2 Fourier transform infrared spectra (FTIR) 22 3.2.3 Field Emission Scanning Electron Microscopy (FE-SEM) 23 3.2.4 Dynamic light scattering (DLS) 23 3.2.5 UV-Vis spectroscopy for PVP quantity 23 3.2.6 Ninhydrin assay 23 3.2.7 Peroxydone complex quality 24 3.2.8 Hyposulphite titration 24 3.3 Bactericidal activity of surface functionalized MNPs 24 3.3.1 Zone of Inhibition 24 3.3.2 Colony forming unit 24 Chapter 4 Results and Discussion 26 4.1 Characterization of bactericidal MNPs 26 4.2 Effect of silica source on APTES surface modification 32 4.3 Direct surface coating on MNPs 33 4.4 Antimicrobial activity of MNPs@PVP-I 34 4.5 Rechargeablility of bactericidal activity 40 Chapter 5 Conclusion and Future prospect 42 References 44

    1. Singamaneni, S., et al., Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. Journal of Materials Chemistry, 2011. 21(42): p. 16819-16845.
    2. Lin, Z.-A., et al., Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins. Journal of Materials Chemistry, 2011. 21(2): p. 518-524.
    3. Laurent, S., et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 2008. 108(6): p. 2064-2110.
    4. Barnes, K., et al., Synthesis and antimicrobial applications of 5,5′-ethylenebis[5-methyl-3-(3-triethoxysilylpropyl)hydantoin]. Biomaterials, 2006. 27(27): p. 4825-4830.
    5. Gershenfeld, L. and B. Witlin, Iodine as an antiseptic. Annals of the New York Academy of Sciences, 1950. 53(1): p. 172-182.
    6. Zamora, J.L., Chemical and microbiologic characteristics and toxicity of povidone-iodine solutions. The American Journal of Surgery, 1986. 151(3): p. 400-406.
    7. Schenck, H.-U., P. Simak, and E. Haedicke, Structure of polyvinylpyrrolidone-iodine (povidone-iodine). Journal of Pharmaceutical Sciences, 1979. 68(12): p. 1505-1509.
    8. Durani, P. and D. Leaper, Povidone–iodine: use in hand disinfection, skin preparation and antiseptic irrigation. International Wound Journal, 2008. 5(3): p. 376-387.
    9. Noda, Y., K. Fujii, and S. Fujii, Critical evaluation of cadexomer-iodine ointment and povidone-iodine sugar ointment. International Journal of Pharmaceutics, 2009. 372(1–2): p. 85-90.
    10. Simmons, T.J., et al., Antiseptic single wall carbon nanotube bandages. Carbon, 2009. 47(6): p. 1561-1564.
    11. Halachimi-Eyal, O., et al., Preoperative topical moxifloxacin 0.5% and povidone–iodine 5.0% versus povidone–iodine 5.0% alone to reduce bacterial colonization in the conjunctival sac. Journal of Cataract & Refractive Surgery, 2009. 35(12): p. 2109-2114.
    12. BASF, PVP-Iodine grades. 2010: p. 20.
    13. McDonnell G, R.A., Antiseptics and Disinfectants: Activity, Action, and Resistance. Clin Microbiol Rev., 1999. 12: p. 147–179.
    14. Huber, D.L., Synthesis, Properties, and Applications of Iron Nanoparticles. Small, 2005. 1(5): p. 482-501.
    15. Hubertus Folttmann, A.Q., Polyvinylpyrrolidone (PVP) – One of the Most Widely Used
    Excipients in Pharmaceuticals: An Overview. Drug Delivery Technology, 2008. 8: p. 22-27.
    16. The Colloid Chemistry of Silica. Advances in Chemistry. Vol. 234. 1994: American Chemical Society. 724.
    17. Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. 2009 2013; Available from: http://www.microbelibrary.org/component/resource/laboratory-test/3189-kirby-bauer-disk-diffusion-susceptibility-test-protocol.
    18. Liberman DF, R.R., Evaluation of a rapid Bauer-Kirby antibiotic susceptibility determination. Antimicrob Agents Chemother., 1975. 7(3): p. 250–255.
    19. Cai, Y., M. Stromme, and K. Welch, Bacteria viability assessment after photocatalytic treatment. 3 Biotech, 2014. 4(2): p. 149-157.
    20. Valodkar, M., et al., Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: A green approach. Materials Research Bulletin, 2011. 46(3): p. 384-389.
    21. Chen, W.-Y., et al., Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomedicine, 2010. 5(5): p. 755-764.
    22. Kim, J.S., et al., Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2007. 3(1): p. 95-101.
    23. W, S., S. W, and W. H, Anhydrous hydrogen peroxide solutions. 1973, Google Patents.
    24. Braunecker, W.A. and K. Matyjaszewski, Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science, 2007. 32(1): p. 93-146.
    25. Hadasha, W. and B. Klumperman, Atom transfer radical polymerization as a powerful tool in the synthesis of molecular brushes. Polymer International, 2014. 63(5): p. 824-834.
    26. Weng, L., et al., In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomaterialia, 2013. 9(6): p. 6823-6833.
    27. Bromberg, L., et al., Bactericidal Core-Shell Paramagnetic Nanoparticles Functionalized with Poly(hexamethylene biguanide). Langmuir, 2010. 27(1): p. 420-429.
    28. Heiner, J.D., et al., 10% Povidone-Iodine May Be a Practical Field Water Disinfectant. Wilderness & Environmental Medicine, 2010. 21(4): p. 332-336.
    29. Seymour Stanton Block, C.A.L.L., Febiger, Disinfection, sterilization, and preservation. 5th ed. 1977: Medical.
    30. Yoshida K, S.Y., Kawahara S, Takeda T, Ishikawa T, Murakami T, Yoshioka A, Anaphylaxis to Polyvinylpyrrolidone in Povidone-Iodine for Impetigo Contagiosum in a Boy with Atopic Dermatitis. Int Arch Allergy Immunol, 2008. 146(2).
    31. Chikazumi, S. and C.D.G. Jr, Physics of Ferromagnetism. 1997: Clarendon Press.
    32. Gao, B., et al., Immobilization of povidone-iodine on surfaces of silica gel particles and bactericidal property. Colloids and Surfaces B: Biointerfaces, 2010. 79(2): p. 446-451.
    33. Xing, C.-M., J.-P. Deng, and W.-T. Yang, Synthesis of antibacterial polypropylene film with surface immobilized polyvinylpyrrolidone-iodine complex. Journal of Applied Polymer Science, 2005. 97(5): p. 2026-2031.
    34. Jiang, J., et al., Antifouling and Antimicrobial Polymer Membranes Based on Bioinspired Polydopamine and Strong Hydrogen-Bonded Poly(N-vinyl pyrrolidone). ACS Applied Materials & Interfaces, 2013. 5(24): p. 12895-12904.
    35. Fujiwara, K., Separation functional fibers by radiation induced graft polymerization and application. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007. 265(1): p. 150-155.
    36. Wuang, S.C., et al., Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine. Journal of Materials Chemistry, 2007. 17(31): p. 3354-3362.
    37. Dong, A., et al., Modifying Fe3O4-Functionalized Nanoparticles with N-Halamine and Their Magnetic/Antibacterial Properties. ACS Applied Materials & Interfaces, 2011. 3(11): p. 4228-4235.
    38. Kato, K., et al., Polymer surface with graft chains. Progress in Polymer Science, 2003. 28(2): p. 209-259.
    39. Pieracci, J., J.V. Crivello, and G. Belfort, Photochemical modification of 10kDa polyethersulfone ultrafiltration membranes for reduction of biofouling. Journal of Membrane Science, 1999. 156(2): p. 223-240.
    40. Wu, Z., et al., Protein Adsorption on Poly(N-vinylpyrrolidone)-Modified Silicon Surfaces Prepared by Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2009. 25(5): p. 2900-2906.
    41. Yuan, J., et al., Facile surface glycosylation of PVDF microporous membrane via direct surface-initiated AGET ATRP and improvement of antifouling property and biocompatibility. Applied Surface Science, 2012. 258(7): p. 2856-2863.
    42. Yang, Q., et al., Construction of a Comb-like Glycosylated Membrane Surface by a Combination of UV-Induced Graft Polymerization and Surface-Initiated ATRP. Langmuir, 2007. 23(12): p. 6684-6690.
    43. Xiang, T., et al., Surface hydrophilic modification of polyethersulfone membranes by surface-initiated ATRP with enhanced blood compatibility. Colloids and Surfaces B: Biointerfaces, 2013. 110(0): p. 15-21.
    44. Carlmark, A. and E.E. Malmstrom, ATRP Grafting from Cellulose Fibers to Create Block-Copolymer Grafts. Biomacromolecules, 2003. 4(6): p. 1740-1745.
    45. Burkett, S.L., et al., Covalently Linked Nanocomposites:  Poly(methyl methacrylate) Brushes Grafted from Zirconium Phosphonate. Chemistry of Materials, 2006. 18(21): p. 5137-5143.
    46. Gries, K., et al., Preparation of Gold Nanoparticle– Poly(L-menthyl methacrylate) Conjugates via ATRP Polymerization. Macromolecular Chemistry and Physics, 2011. 212(23): p. 2551-2557.
    47. Bontempo, D., et al., Atom Transfer Radical Polymerization as a Tool for Surface Functionalization. Advanced Materials, 2002. 14(17): p. 1239-1241.
    48. Gai, Q.-Q., et al., Superparamagnetic lysozyme surface-imprinted polymer prepared by atom transfer radical polymerization and its application for protein separation. Journal of Chromatography A, 2010. 1217(31): p. 5035-5042.
    49. Liu, X., et al., Poly(N-vinylpyrrolidone)-grafted poly(dimethylsiloxane) surfaces with tunable microtopography and anti-biofouling properties. RSC Advances, 2013. 3(14): p. 4716-4722.
    50. Hench, L.L. and J.K. West, The sol-gel process. Chemical Reviews, 1990. 90(1): p. 33-72.
    51. Philipse, A.P., M.P.B. van Bruggen, and C. Pathmamanoharan, Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core. Langmuir, 1994. 10(1): p. 92-99.
    52. Coltrain Bradley, K. and W. Kelts Larry, The Chemistry of Hydrolysis and Condensation of Silica Sol?Gel Precursors, in The Colloid Chemistry of Silica. 1994, American Chemical Society. p. 403-418.
    53. Xuan, S., et al., Hierarchical core/shell Fe3O4@SiO2@[gamma]-AlOOH@Au micro/nanoflowers for protein immobilization. Chemical Communications, 2011. 47(9): p. 2514-2516.
    54. Hay, R.W., G.A. Lawrance, and N.F. Curtis, A convenient synthesis of the tetra-aza-macrocyclic ligands trans-[14]-diene, tet a, and tet b. Journal of the Chemical Society, Perkin Transactions 1, 1975(6): p. 591-593.
    55. Russell, H.a.A., Principles and Practice of Disinfection, Preservation and Sterilization. 5th Edition ed. 2013, Wiley-Blackwell. 618.
    56. Liaqat, I. and A. Sabri, Analysis of Cell Wall Constituents of Biocide-Resistant Isolates from Dental-Unit Water Line Biofilms. Current Microbiology, 2008. 57(4): p. 340-347.

    QR CODE