簡易檢索 / 詳目顯示

研究生: 莊承澔
CHENG-HAO CHUANG
論文名稱: 以靜電紡絲法製備鑭鍶錳氧化物/聚丙烯腈系碳纖用於鋅空氣電池陰極之研究
Fabrication of La0.8Sr0.2MnO3/Polyacrylonitrile (PAN)-based Carbon Nanofibers by Electrospinning as Cathode for Rechargeable Zinc-Air Battery
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 李奕成
none
周宏隆
Hung-Lung Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 96
中文關鍵詞: 空氣電池靜電紡絲
外文關鍵詞: Zinc-Air Battery, Electrospinning
相關次數: 點閱:227下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來因應減碳排放,綠色電力被全球重視,但由於綠色能源不穩定的特性無法直接用於電網上,需經過儲存後在進行使用。空氣電池有極大的比電容量而備受矚目,唯其低電壓、低電流、較差之充放電穩定性限制其大規模使用於市場上。本研究以鑭鍶錳氧化物(La0.8Sr0.2MnO3)配合靜電紡絲(electrospinning)技術製作連續性一維的奈米纖維型陰極,利用鑭鍶錳氧化物在鹼性電解液中(KOH)中良好的穩定性與奈米纖維極大的比表面積,來達成充放電穩定性佳,且具有良好活性之電極,同時碳纖維也能當作載體提供導電性較差的鑭鍶錳氧化物一個良好的導途徑。

    實驗以聚丙烯腈(PAN)、鑭鍶錳氧(La0.8Sr0.2MnO3)、二甲基亞碸(DMSO),經磁石攪拌器均勻攪拌後,以靜電紡織技術製備奈米纖維型陰極,當鑭鍶錳氧聚丙烯腈重量百分比為45%時,電場強度為10~10.5kV,紡絲距離16cm,流量 0.005ml/min,針頭號數 25Gauge,可得直徑約為300~500nm尺寸之連續奈米線,繼續以升溫速率3°C/min將製備完成的奈米纖維陰極在含氧環境中(30~300°C)進行穩地化反應並持溫1hr,將經過穩定化處理過的纖維以3°C/min在氬氣氣氛中(300~900°C)進行碳化,並持溫1hr形成碳纖維與觸媒之複合陰極。

    將鑭鍶錳氧化物/碳纖維奈米纖維陰極進行電化學活性分析,分別測試半電池極化曲線及全電池充放電曲線。半電池極化曲線確認其ORR反應。接著進行全電池充放電循環穩定度分析,發現其庫倫效率經200次循環後維持近80%。


    In recent years green energy attracts lots of attention in the world owing to needing carbon emission reduction. Unstable properties make green energy not be able to be used directly for electricity grid. Green energy is always needed to be stored before using.
    High energy density makes Zn-air batteries be concerned. Nevertheless, low voltage and low current and low round-trip efficiency limited deployment in market. This research uses electrospinning to form LSM (La0.8Sr0.2MnO3) one-dimensional continuous nanofiber cathode. We used both high stability of LSM in the alkaline electrolyte(KOH) and nanofiber high surface area to build high cycle stability and high activity cathode. Carbon fiber can be used as a carrier to supply LSM, which has poor conductivity a good pathway to conduct electronic.
    This research uses LSM (La0.8Sr0.2MnO3) and Polyacrylonitrile (PAN) stirred with dimethyl sulfoxide (DMSO) to make nanofiber cathode by electrospinning method. When the weight percent of LSM (La0.8Sr0.2MnO3)/Polyacrylonitrile (PAN) was 45wt% using field voltage 10 ~ 10.5kV, working distance 16cm, flow rate 0.005ml/min, number of pin 25 Gauge, creating a uniform size about 300~500nm diameter continuous fiber. The cathode was heated from 30°C to 300°C with 3°C/min in air holding temperature on 300°C 1hr to stabilize, then heated to 300°C~900°C with 3°C/min in an argon atmosphere to be carbonized then stayed at 900°C for 1hr to form cathode catalyst.
    The electrochemical properties of nanofiber cathode were analyzed by half-cell polarization curve and charge/discharge tests, Linear Sweep Voltammetry(LSV) confirmed that the cathode has ORR activity and its coulombic efficiency was maintained at 80 % after 200 times charging/recharging cycles.

    誌謝 I 摘要 II Abstract III 目錄 IV 圖索引 VI 表索引 VIII 第一章 序論 9 1-1. 前言 9 1-2. 空氣電池 9 1-3. 靜電紡絲 10 1-4. 實驗動機 11 第二章 文獻回顧 12 2-1. 電池簡介 12 2-1-1. 一次電池 15 2-1-2. 二次電池 15 2-1-3. 燃料電池 16 2-1-4. 化學電池原理 17 2-2. 金屬空氣電池 19 2-2-1. 金屬空氣電池發展史[14.15.17.] 19 2-2-2. 金屬空氣電池之特性 20 2-2-3. 鋅-金屬空氣電池之化學反應 21 2-2-4. 鋅-金屬空氣電池之陽極反應 23 2-2-5. 鋅-金屬空氣電池之陰極反應 24 2-2-6. 鋅-金屬空氣電池陽極材料 27 2-2-7. 電解液 28 2-2-8. 氣體擴散層 29 2-2-9. 集電網 29 2-2-10. 催化層 30 2-2-10-1. 黏結劑 30 2-2-10-2. 碳材 30 2-2-10-3. 空氣陰極之觸媒 31 2-3. 鈣鈦礦 33 2-4. 靜電紡絲歷史 36 2-4-1. 靜電紡絲原理 36 2-4-2. 靜電紡絲參數[79-88] 38 2-5. 碳纖維前驅物 40 2-5-1. 聚丙烯腈 41 2-5-2. 二甲基亞碸 42 2-6. 聚丙烯腈纖維碳化[91] 42 第三章 實驗程序 44 3-1. 實驗流程 44 3-2. 實驗藥品 45 3-3. 實驗設備 46 3-4. 實驗方法 47 3-4-1. 以靜電紡絲法製備空氣陰極 47 3-4-2. 高分子觸媒纖維的後續處理 49 3-4-3. 鑭鍶錳氧化物活性測試 52 3-4-3. 空氣陰極之氧氣生成/還原活性測試 54 3-4-4. 鋅-空氣電池之全電池充放電測試 55 3-4-4. 檢測儀器 56 第四章 結果與討論 57 4-1. 鑭斯錳氧化物性能評估 59 4-1-1. 鑭鍶錳氧化物線性掃描伏安法(LSV)測試 59 4-1-2. 鑭鍶錳氧化物全電池充放電測試 60 4-2. 靜電紡絲參數設定 61 4-2-1. 靜電紡絲溶液濃度設定 62 4-2-2. 靜電紡絲距離設定 63 4-2-3. 靜電紡絲電壓設定 65 4-2-4. 靜電紡絲流速設定 65 4-3. 熱處理溫度對纖維形貌之影響 67 4-3-1. 熱處理溫度對觸媒晶體結構之影響 69 4-3-2. 熱處理溫度對石墨化之影響 73 4-3-3. 穿透式電子顯微鏡分析 75 4-4. 不同碳化溫度之線性掃描伏安法(LSV)測試 78 4-4-1. 不同比例鑭鍶錳氧/碳纖維之線性掃描伏安法(LSV)測試 79 4-4-2. 全電池充放電循環壽命分析 81 第五章 結論與未來展望 85 5-2. 未來展望 86 參考文獻 87

    [1] R. Tom, “Seven Reasons Cheap Oil Can't Stop Renewables Now’’, available at: January 30, 2015.
    [2] 張永源、康志堅,「全球風力發電市場發展趨勢與展望」,2014。
    [3] 林坤讓,「淺談燃料電池」,2006。
    [4] 張育唐、陳藹然,「科學online-賈法尼電池」,2011。
    [5] 漢聲精選目擊者叢書,「化學」,漢聲雜誌社,1996。
    [6] C. Liu, A. Ridenour, J. S. Lai, “Modeling and Control of a Novel Six-Leg Three-Phase High-Power Converter for Low Voltage Fuel Cell Applications’’, IEEE Transactions on Power Electronics, vol. 21, pp. 1292-1300, 2006.
    [7] 李世興,「電池活用手冊」,全華,1999。
    [8] L. Carrette, K. Andreas Friedrich, U. Stimming, “Principles, Types, Fuels, and Applications’’, ChemPhysChem, vol. 1, pp. 162–193, 2000.
    [9] G. Eni, “Half-cell’’, Croatian-English Chemistry Dictionary & Glossary. Dec. 2015.
    [10] 李文雄,科學發展,「鋰電池 E世代的能源」,2003。
    [11] 楊志忠、林頌恩、韋文誠,「燃料電池的發展現況」,2003。
    [12] C. Chang, “Zinc-Air Batteries”, technology review, vol. 7, pp. 86-87, 2001.
    [13] D. Linden, “Handbook of Batteries”, McGraw-Hill, 2nd ed, 1994.
    [14] J. Goldstein, I. Brown, B. Koretz, “New developments in the Electric Fuel Ltd. zinc/air system”, Journal of Power Sources, vol. 80, pp. 171–179, July 1999.
    [15] 郭炳焜,李新海,「楊松青化學電源:電池原理及制造技術」,中南大學出版,2009。
    [16] B. W. Jensen, M. Forsyth, D. R. MacFarlane, “High Rates of Oxygen Reduction over a Vapor Phase Polymerized PEDOT Electrode”, Science, vol. 80, pp. 671-674, 2008.
    [17] 張雲朋,「由空氣產生電能的新能源」,科學發展,367期, 2003.
    [18] M. Mokhtara, M. Zainal, M. Taliba, “Recent developments in materials for aluminum–air batteries: A review.”, Journal of Industrial and Engineering Chemistry, vol. 32, pp. 1-20, 2015.
    [19] Y. Li, H. Dai, “Recent advances in zinc-air batteries”, Chemical Society Reviews, vol. 43, pp. 5257-5275, 2014.
    [20] 劉奎府, 「氧化銅催化劑應用於鋅-空氣燃料電池陰極之研究」, 國立交通大學碩士論文, 2005。
    [21] D. Linden, “Handbook of Batteries”, McGraw-Hill, 1995.
    [22] D. Linden, T. B. Reddy, “Handbook of Batteries”, McGraw-Hill, 2001.
    [23] J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee and J. Cho, “Metal–air batteries with high energy density: Li–air versus Zn–air Energy”, Advanced Energy Materials, vol. 1, pp. 34-50, 2011.
    [24] F. Cheng, J. Chen, “Metal-Air Batteries: from Oxygen Reduction Electrochemistry to Cathode Catalysts”, Chemical Society Reviews, vol. 41, pp. 2172-2192, 2012.
    [25] P. Zoltowski, D. M. Drazic, L. Vorkapic, “The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution”, Journal of Applied Electrochemistry, vol. 557, pp. 127-134, 2003.
    [26] W. G. Sunu, D. N. Bennion, “Transient and Failure Analysis of the Porous Zinc Electrode I. Theoretical”, Journal of Applied Electrochemistry, vol. 127, pp. 2007-2016, 1980.
    [27] P. Pei, K. Wang, Z. Ma “Technologies for extending zinc–air battery’s cyclelife: A review “Applied Energy, vol. 127 pp. 315–324, 2014.
    [28] 曹玉佳,「鋅-空氣燃料電池陰極之奈米化結構研發」,國立中正大學碩士論文,2007。
    [29] R. E. Durkot, L. Lin and P. B. Harris, US Pat., 6284410, 2001.
    [30] H. Ma, C. S. Li, Y. Su , J. Chen, J. Mater, “Studies on the vapour-transport synthesis and electrochemical properties of zinc micro-, meso- and nanoscale structures”, Journal of Materials Chemistry, vol. 17 pp. 684–691, 2007.
    [31] J.-F. Drillet, M. Adam, S. Barg, A. Herter, D. Koch, V. M. Schmidt and M. Wilhelm, “Development and Characterization of an Electrically Rechargeable Zinc-Air Battery Stack”, ECS Transactions, vol. 28, pp. 13, 2010.
    [32] D. P. Bhatt and R. Udhayan, “Electrochemical studies on a zinc-lead-cadmium alloy in aqueous ammonium chloride solution”, Journal of Power Sources, vol. 47, pp. 177, 1994.
    [33] S. Muralidharan, A. R. S. Kannan, K. B. Sarangapani, V. Balaramachandran and V. Kapali, “Corrosion and anodic behaviour of zinc and its ternary alloys in alkaline battery electrolytes”, Journal of Power Sources, vol. 57, pp. 93, 1995.
    [34] Y. D. Cho, G. T. K. Fey, “Electrochemical and solid-state NMR studies on LiCoO2 coated with Al2O3 derived from carboxylate-alumoxane”, Journal of Power Sources, vol. 184, pp. 610, 2008.
    [35] S. M. Lee, Y. J. Kim, S. W. Eom, N. S. Choi, K.W. Kim, S. B. Cho, “Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density”, Journal of Power Sources, vol. 227, pp. 177, 2013.
    [36] Y. Sato, M. Takahashi, H. Asakura, T. Yoshida, K. Tada, K. Kobayakawa, N. Chiba , K. Yoshida, “Gas evolution behavior of Zn alloy powder in KOH solution”, Journal of Power Sources, vol. 38, pp. 317, 1992.
    [37] J. Y. Huot, “The effects of silicate ion on the corrosion of zinc powder in alkaline solutions”, Journal of Applied Electrochemistry, vol. 22, pp. 443, 1992.
    [38] J. McBreen, E. Gannon, “Bismuth oxide as an additive in pasted zinc electrodes”, Journal of Power Sources, vol. 15, pp. 169, 1985.
    [39] J. McBreen, E. Gannon, “The effect of additives on current distribution in pasted zinc electrodes”, Journal of The Electrochemical Society. Soc., vol. 130, pp.1980, 1983.
    [40] S. J. Banik, R. Akolkar, “Suppressing Dendrite Growth during Zinc Electrodeposition by PEG-200 Additive”, Journal of The Electrochemical Society, vol. 160, pp. 519, 2013.
    [41] C. Iwakura, S. Nohara, N. Furukawa, H. Inoue, “The Possible Use of Polymer Gel Electrolytes in Nickel/Metal Hydride Battery”, Solid State Ionics, vol. 148, pp. 487, 2002.
    [42] T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, M. Srinivasan, “Silver Nanoparticle-Decorated Carbon Nanotubes as Bifunctional Gas-Diffusion Electrodes for Zinc–Air Batteries”, Journal of Power Sources, vol. 195, pp. 4350, 2010.
    [43] F. R. Foulkes, A. J. Appleby, “Fuel Cell Handbook”, Krieger Publishing Company, Melborne, FL,1993.
    [44] J. Yang, J. J. Xu, “Nanostructured Amorphous Manganese Oxide Cryogel as a High-Rate Lithium Intercalation Host”, Electrochemistry Communications, vol. 195, pp. 230-235, 2003.
    [45] M. Maja, C. Orecchia, M. Strano, P. Tosco , M. Vanni, “Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries”, Electrochim Acta, vol. 46, pp. 423-432, 2000.
    [46] D. Chartouni, N. Kuriyama, T. Kiyobayashi, J. Chen, “Air–Metal Hydride Secondary Battery with Long Cycle Life”, Journal of Alloys and Compounds, vol. 330, pp. 766, 2002.
    [47] F. Zhang, T. Saito, S. Cheng, M. A. Hickner, B. E. Logan,“ Microbial Fuel Cell Cathodes With Poly(dimethylsiloxane) Diffusion Layers Constructed around Stainless Steel Mesh Current Collectors”, Environmental Science & Technology, vol. 44, pp. 1490, 2010.
    [48] 劉霖錡,「鋅空氣電池空氣極的製備與性能」,私立逢甲大學碩士論文,2003。
    [49] Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, Z. Chen,“Manganese Dioxide Nanotube and Nitrogen-Doped Carbon Nanotube Based Composite Bifunctional Catalyst for Rechargeable Zinc-Air Battery”, Electrochim Acta, vol. 69, pp. 295, 2012.
    [50] Y. S. Ding, X. F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. B. Crisostomo, S. L. Suib, M. Aindow, “Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method”, Chemistry of Materials, vol. 17, pp. 53-82, 2005.
    [51] K. Kinoshita, “Carbon: electrochemical and physicochemical properties”, Wiley-Interscience, 1988.
    [52] M. Pirjamali, Y. Kiros, “Effects of carbon pretreatment for oxygen Reduction in alkaline electrolyte”, Journal of Power Sources, vol. 109, pp. 446-451, 2002.
    [53] M. E. Lai, A. Bergel, “Electrochemical reduction of oxygen on glassy carbon: catalysis by catalase”, Journal of Electroanalytical Chemistry, vol. 494, pp. 30-40, 2000.
    [54] M. Maja, C. Orecchia, M. Strano, P. Tosco, M. Vanni, “Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries”, Electrochimica Acta, vol. 46, pp. 423-432, 2000.
    [55] P. C. Foller, “Improved slurry zinc/air systems as batteries for urban vehicle propulsion”, Journal of Applied Electrochemistry, vol. 16, pp. 527, 1986.
    [56] H. Meng, P. K. Shen, “Novel Pt-free catalyst for oxygen electroreduction”, Electrochemistry Communications, vol. 8, pp. 588-594, 2006.
    [57] Y. Li, H. Dai, “Recent advances in zinc–air batteries”, Chemical Society Reviews, vol. 43, pp. 52-57, 2014.
    [58] T. Wang, M. Kaempgen, P. Nopphawan, G. Wee, S. Mhaisalkar, M. Srinivasan, “Silver Nanoparticle-Decorated Carbon Nanotubes as Bifunctional Gas-Diffusion Electrodes for Zinc–Air Batteries”, Journal of Power Sources, vol. 195, pp. 4350, 2010.
    [59] Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang, G. Hong, B. Zhang, H. Dai, “Advanced Zinc-Air Batteries Based on High-Performance Hybrid Electrocatalysts”, Nature Communications, vol. 4, pp. 1805, 2013.
    [60] J. Yang, J. J. Xu, “Nanostructured Amorphous Manganese Oxide Cryogel as a High-Rate Lithium Intercalation Host”, Electrochemistry Communications, vol. 5, pp. 306, 2003.
    [61] Y. Yang, Q. Sun, Y. S. Li, H. Li, Z. W. Fu, “A CoOx/Carbon Double-Layer Thin Film Air Eectrode for Nonaqueous Li-Air Batteries”, Journal of Power Sources, vol. 223, pp. 312, 2013.
    [62] Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, Z. Chen, “Manganese Dioxide Nanotube and Nitrogen-Doped Carbon Nanotube Based Composite Bifunctional Catalyst for Rechargeable Zinc-Air Battery”, Electrochimica Acta, vol. 69, pp. 295, 2012.
    [63] Y. S. Ding, X. F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V. M. B. Crisostomo, S. L. Suib, M. Aindow, “Synthesis and Catalytic Activity of Cryptomelane-Type Manganese Dioxide Nanomaterials Produced by a Novel Solvent-Free Method”, Chemistry of Materials, vol. 17, pp. 5382, 2005.
    [64] F. Cheng, Y. Su, J. Liang, Z. Tao, J. Chen, “MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media”, Chemistry of Materials, vol. 22, pp. 898, 2010.
    [65] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, “Co3O4 Nanocrystal on Graphene as a Synergistic Catalyst for Reduction Reaction”, Nature Materials, vol. 10, pp. 780, 2011.
    [66] M. Yuasa, M. Nishida, T. Kida, N. Yamazoe, K. Shimanoe, “Bi-Functional Oxygen Electrodes Using LaMnO3/LaNiO3 for Rechargeable Metal-Air Batteries”, Journal of The Electrochemical Society, vol. 158, pp. 605-610, 2011.
    [67] N. A. Merino, B. P. Barbero, P. Grange, L. E. Cadus, “La1−xCaxCoO3 Perovskite-Type Oxides: Preparation, Characterisation, Stability, and Catalytic Potentiality for the Total Oxidation of Propane”, Journal of Catalysis, vol. 231, pp. 232-244, 2005.
    [68] S. Pathaka, J. Kuebler, A. Payzantc, N. Orlovskaya, “Mechanical Behavior and Electrical Conductivity of La1−xCaxCoO3 (x = 0, 0.2, 0.4, 0.55) Perovskites”, Journal of Power Sources, vol. 195, pp. 3612, 2010.
    [69] M. Maja, C. Orecchia, M. Strano, P. Tosco, M. Vanni, “Effect of Structure of the Electrical Performance of Gas Diffusion Electrodes for Metal Air Batteries”, Electrochimica Acta, vol. 46, pp.423, 2000.
    [70] G. Du, X. Liu, Y. Zong, T. S. A. Hor, A. Yucand, Z. Liu, “Co3O4 Nanoparticle-Modified MnO2 Nanotube Bifunctional Oxygen Cathode Catalysts for Rechargeable Bifunctional Oxygen Cathode Catalysts for Rechargeable Zinc–Air Batteries”, Nanoscale, vol. 5, pp. 46-57, 2013.
    [71] H. Tanaka, M. Misono, “Advances in designing perovskite catalysts”, Current Opinion in Solid State & Materials Science , vol. 5, pp. 381-387, 2001.
    [72] J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, S. H. Yang, “Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal–Air Batteries”, Nature Chemistry, vol. 3, pp. 546, 2011.
    [73] X. Z .Yuan, H. Wang, “Electrocatalytic Activity of Non-Stoichiometric Perovskites toward Oxygen Reduction Reaction in Alkaline Electrolytes”, ECS Transactions. vol. 35, pp. 11-20, 2011.
    [74] K. A. Stoerzinger, L. Weiming, L. Changjian, T. Venkatesan, Y. S. Horn, “Highly Active Epitaxial La(1−x)SrxMnO3 Surfaces for the Oxygen Reduction Reaction: Role of Charge Transfer,” The Journal of Physical Chemistry Letters, vol. 6, pp. 1435-1440, 2015.
    [75] F. H. B. Lima, M. L. Calegaro, E. A. Ticianelli, “Investigations of the Catalytic Properties of Manganese Oxides for the Oxygen Reduction Reaction in Alkaline Media”, Journal of Electroanalytical Chemistry, vol. 590, pp. 152-160, 2006.
    [76] J. F. Cooley, Patent GB 06385 “Improved methods of and apparatus for electrically separating the relatively volatile liquid component from the component of relatively fixed substances of composite fluids” 19th May 1900.
    [77] Y. Zhang, J. Zhu, R. Gu, “Improved biosensor for glucose based on glucose oxidaseimmobilized silk fibroin membrane”, Applied Biochemistry and Biotechnology, vol. 75, pp. 215-233, 1998.
    [78] Y. W. Mai, A. Baji, S. C Wong, M. Abtahi, P. Chen, “Electrospinning of polymer nanofibers: effects on oriented morphology structures and tensile properties” Composites Science and Technology, vol. 70, pp. 703-718, 2010.
    [79] H. L. Jiang, D. F. Fang, B. S .Hsiao, W. L. Chen, “ Optimization and characterization of dextran membranes prepared by electrospinning”, Biomacromolecules , vol. 5, pp. 326-333, 2004.
    [80] B. Kim, H. Park, S. H. Lee, W. H. Sigmund, “ Poly (acrylic acid) nanofibers by electrospinning”, Materials Letters, vol. 59, pp. 829-832, 2005.
    [81] M. M. Demir, I. Yilgor, B. Erman, “Electrospinning of polyurethane fibers”, Polymer, vol. 43, pp. 3303-3309, 2002.
    [82] K. Yim, A. Koski, S. Shivkumar, “Effect of molecular weight on fibrous PVA produced byelectrospinning”, Materials Letters, vol. 58, pp. 493-497, 2004.
    [83] M. Moses, M. M. Hohman, Y. M. Shin, “Electrospinning and electrically forced jets. I. Stability theory”, Physics of Fluids, vol. 13, pp. 2201-2220, 2001.
    [84] K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, S. G. Lee, “The change of bead morphology formed on electrospun polystyrene fibres”, Polymer, vol. 44, pp. 4029-4034,2003.
    [85] C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, “Characterization of gelatin nanofiber prepared from gelatin-formic acid solution”, Polymer, vol. 46, pp. 5094-5102, 2005.
    [86] T. J. Sill, “Electrospinning: applications in drug delivery and tissue
    engineering”, Biomaterials, vol. 29, pp. 1989-2006, 2008.
    [87] C. L. Casper, J. S. Stephens, N. G. Tassi, D .B. Chase, J. F. Rabolt, “Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process”, Macromolecules, vol. 37, pp. 573-578, 2004.
    [88] D. H. Reneker, L. Chun, “Nanometre diameters of polymer, produced by electrospinning”, Nanotechnology, vol. 7, pp. 216-223, 1996.
    [89] S. Koombhongse, A. L. Yarin, D. H. Reneker, “Bending instability in electrospinning of nanofibers”, Journal of Applied Physics , vol. 89, pp. 3018-3026, 2001.
    [90] J. Azamat, J. J. Sardroodi, K. Mansouri, L. Poursoltani, “Molecular dynamics simulation of transport of water/DMSO and water/acetone mixtures through boron nitride nanotube”, Fluid Phase Equilibria, vol. 425, pp. 230-236, 2016.
    [91] F. Ismail, A. Mustafa, “A review of heat treatment on polyacrylonitrile fiber”, Polymer Degradation and Stability, vol. 92, pp. 1421-1432, 2007.
    [92] L. Laffont , M. Monthioux, V. Serin , R. B. Mathur, C. Guimon, M .F. Guimon, “An EELS study of the structural and chemical transformation of PAN polymer to solid carbon”, Carbon, vol. 42, pp. 2485-2494, 2004.
    [93] C. C. Lin, W. J. Yih, L. Shyong, “Effects of La0.67Sr0.33MnO3 protective coating on SOFC interconnect by plasma-sputtering”, HYDROGEN ENERGY, vol. 33, pp. 2536-2546, 2008.
    [94] J. Dvorak, A. Lussier, S. Stadler, J. Holroyd, M. Liberati, E. Arenholz, “Stress relaxation of La1/2Sr1/2MnO3 and La2/3Ca1/3MnO3 at solid oxide fuel cell interfaces”, Thin Solid Films, vol. 516, pp. 880-884, 2008.
    [95] L. Fanliang, W. Yarong, J. Chao, “Microporous La0.8Sr0.2MnO3 perovskite nanorods as efficient electrocatalysts for lithiumeair battery”, Journal of Power Sources, vol. 293, pp. 726-733, 2015.
    [96] G. S. Ying, R. Jie, “Preparation and surface structures of carbon nanofibers produced from electrospun PAN precursors”, New Carbon Materials, vol. 23, pp. 171-176, 2008.
    [97] S. Ojha, D. Stevens, K. Stano, T. Hoffman, L. Clarke, R. Gorga, “Characterization of electrical and mechanical properties for coaxial nanofibers with poly (ethylene oxide) (PEO) core and multiwalled carbon nanotube/PEO sheath”, Macromolecules, vol. 41, pp. 2509-2513, 2008.
    [98] N. Grassie, R. McGuchan, “Pyrolysis of polyacrylonitrile and related polymers-III. Thermal analysis of preheated polymers”, European Polymer Journal, vol. 7, pp. 1357-1371, 1971.
    [99] T. T. Wang, Z. H. Yang, J. H. Huang, R. J. Wang, Z. Y. Zhao, “The electrochemical performances of La2O3-doped ZnO in Ni–Zn secondary batteries”, vol. 112, Electrochimica Acta, pp. 104-110, 2013.

    QR CODE