簡易檢索 / 詳目顯示

研究生: 簡孝瑜
Siao-Yu Chien
論文名稱: 電紡有機金屬框材/三醋酸纖維素奈米纖維膜於可見光催化降解有機汙染物之研究
Visible-light-induced photocatalytic degradation of organic pollutants by MiL-MOF@cellulose triacetate electrospun nanofiber membranes
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 蕭育生
Yu-Sheng Hsiao
吳志明
Jyh-Ming Wu
張棋榕
Chi-Jung Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 97
中文關鍵詞: 有機金屬框材光催化p-n異質結靜電紡絲
外文關鍵詞: metal-organic framework, photocatalyst, p-n heterojunction, electrospinning
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究利用水熱法合成有機金屬框材(MOF),選用水穩定性高的NH2-MIL-53(Fe),並與光催化粉體BiOBr複合,研究此複材在可見光下,光降解有機汙染物的效率。複合材料NH2-MIL-53(Fe)@ BiOBr具有p-n異質結,具有異質結的光催化劑能促進光激發電子-電洞對的分離,有利於光催化反應的進行。且複合材料相比於單一材料的能帶隙相比較低,藉由較低的能帶隙可促使導電度上升,進而降低光催化反應時所需要的能量。
    本實驗研究NH2-MIL-53(Fe)@ BiOBr的重量比對光催化性能所產生的不同影響。結果表明,在120分鐘以內,NH2-MIL-53(Fe)@ BiOBr能降解90%以上的抗生素與染料。
    與使用粉體相比,使用薄膜的回收效率更好,因此本論文選用廢棄偏光板回收之三醋酸纖維素(rTAC),將其藉由靜電紡絲技術與本實驗所合成之NH2-MIL-53(Fe)@ BiOBr粉體混合並製備成薄膜。以此複合材料纖維膜進行光催化實驗,其光效果與粉體材料同樣顯著,並能避免光能的損失與同時解決粉體材料不易回收的問題,本研究之複合材料纖維膜可實現重複使用,達到循環再利用之效果。


    In this study, a metal-organic framework (MOF) was synthesized through a hydrothermal method. NH2-MIL-53(Fe) was selected and combined with a photocatalytic powder BiOBr. The efficiency of photodegradation of organic pollutants of this composite under visible light was then studied.
    The photocatalyst composite material NH2-MIL-53(Fe)@BiOBr has a p-n heterojunction which can promote the separation of photoexcited electron-hole pairs and produce a photocatalytic reaction. In addition, the energy bandgap of the composite material was shown to be lower than that of a single material. This promotes an increase in electrical conductivity, thereby reducing the energy required for photocatalytic reactions.
    In this experiment, the different effects of the weight ratio of NH2-MIL-53(Fe)@BiOBr on the photocatalytic performance were investigated. The results revealed that NH2-MIL-53(Fe)@BiOBr could degrade more than 90% of tetracycline within 120 minutes. Under the irradiation of visible light, the photocatalytic decomposition of water for hydrogen production also exhibited excellent results.
    Due to the powders are not easy to recycle, this study used recycled cellulose triacetate (rTAC) and combined it with NH2-MIL-53(Fe)@BiOBr via electrospinning to form thin films. The composite film exhibits a remarkable photocatalytic effect, which can avoid the loss of light energy and the loss caused by material powder recovery, thereby improving the reuse efficiency.

    摘要 I Abstract II 誌謝 IV 圖目錄 VII 表目錄 IX 第1章 前言 1 1.1. 研究背景 1 1.2. 研究目的及動機 3 第2章 文獻回顧 4 2.1. 金屬有機框架材料之介紹 4 2.1.1. 水穩定性MOF 6 2.1.2. MOF的應用性 6 2.1.3. MOF的種類 7 2.1.4. NH2-MIL-53(Fe) 10 2.2. 光催化 11 2.2.1. 異質結 13 2.2.2. p-n 異質結 16 2.2.3. 鉍基光催化劑 18 2.2.4. BiOBr 19 第3章 實驗 20 3.1. 樣品製備 20 3.1.1. 合成NH2-MIL-53(Fe)粉體 20 3.1.2. 合成BiOBr粉體 20 3.1.3. 合成NH2-MIL-53(Fe) @BiOBr粉體 21 3.1.4. 回收三醋酸纖維素薄膜 (rTAC) 22 3.1.5. 製備NH2-MIL-53(Fe) @BiOBr /rTAC薄膜 22 3.1.6. 光催化實驗 23 3.2. 實驗流程圖 24 3.3. 實驗藥品 25 3.4. 實驗設備及儀器 27 3.5. 分析方法 29 3.5.1. 場發射掃描式電子顯微鏡 (FE-SEM) 29 3.5.2. X射線繞射儀 (XRD) 29 3.5.3. 比表面積分析儀 (BET) 30 3.5.4. X射線光電子能譜儀 (XPS) 30 3.5.5. 紫外光-可見光分析儀 (UV-Vis) 31 3.5.6. 光致發光螢光光譜儀 (PL) 31 3.5.7. 交流阻抗測試 (EIS) 32 3.5.8. 霍爾效應量測量 (Hall effect measurement) 33 第4章 結果與討論 34 4.1. NH2-MIL-53(Fe) @BiOBr複合材料物性分析 34 4.1.1. 微結構分析 (SEM) 34 4.1.2. 結晶度分析 (XRD) 36 4.1.3. 元素鍵結分析 (XPS) 37 4.1.4. 比表面積分析 (BET) 45 4.1.5. 光學特性分析 (UV-vis、PL) 47 4.1.6. 電化學阻抗分析 (EIS) 51 4.1.7. 霍爾效應量測 (Hall effect measurement) 52 4.2. 光催化效能分析 53 4.2.1. 材料對抗生素與染料的降解效果比較 53 4.2.2. 總有機碳量(TOC)分析 64 4.2.3. 粉體重複降解效率 66 4.2.4. 複合材料的光催化機制 67 4.3. 複合材料纖維素薄膜特性分析 69 4.3.1. 微結構分析 (FE-SEM) 69 4.3.2. 結晶度分析 (XRD) 70 4.3.3. TGA 71 4.3.4. 接觸角 72 4.4. 薄膜光降解效能分析 73 4.4.1. 材料對抗生素與染料的降解效果比較 73 4.4.2. 薄膜重複降解效率 76 第5章 結論 77 第6章 參考文獻 78

    [1] Mon M, Bruno R, Tiburcio E, Viciano-Chumillas M, Kalinke LHG, Ferrando-Soria J, Armentano D, Pardo E . Multivariate Metal–Organic Frameworks for the Simultaneous Capture of Organic and Inorganic Contaminants from Water. Journal of the American Chemical Society. 2019;141:13601-9.
    [2] Zhu ZJ, Zhu CM, Hu CY, Liu BJ. Facile fabrication of BiOIO3/MIL-88B heterostructured photocatalysts for removal of pollutants under visible light irradiation. Journal of Colloid and Interface Science. 2022;607:595-606.
    [3] Li N, Zhou L, Jin X, Owens G, Chen Z. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. Journal of hazardous materials. 2019;366:563-72.
    [4] Cai G, Yan P, Zhang L, Zhou H-C, Jiang H-L. Metal–Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chemical Reviews. 2021;121:12278-326.
    [5] Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F. Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews. 2015;44:6804-49.
    [6] Tomic EA. Thermal stability of coordination polymers. Journal of Applied Polymer Science. 1965;9:3745-52.
    [7] Hoskins BF, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-rela. Journal of the American Chemical Society. 1990;112:1546-54.
    [8] Yaghi OM, Li G, Li H. Selective binding and removal of guests in a microporous metal–organic framework. Nature. 1995;378:703-6.
    [9] Amenaghawon AN, Anyalewechi CL, Osazuwa OU, Elimian EA, Eshiemogie SO, Oyefolu PK, Kusuma HS . A Comprehensive Review of Recent Advances in the Synthesis and Application of Metal-Organic Frameworks (MOFs) for the Adsorptive Sequestration of Pollutants from Wastewater. Separation and Purification Technology. 2023:123246.
    [10] Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, Zhou CM . Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials. 2018;30:1704303.
    [11] Wang C, Liu X, Keser Demir N, Chen JP, Li K. Applications of water stable metal–organic frameworks. Chemical Society Reviews. 2016;45:5107-34.
    [12] Burtch NC, Jasuja H, Walton KS. Water Stability and Adsorption in Metal–Organic Frameworks. Chemical Reviews. 2014;114:10575-612.
    [13] Bosch M, Zhang M, Zhou H-C. Increasing the Stability of Metal-Organic Frameworks. Advances in Chemistry. 2014;2014:1-8.
    [14] Lv D, Nong W, Guan Y. Edible ligand-metal-organic frameworks: Synthesis, structures, properties and applications. Coordination Chemistry Reviews. 2022;450:214234.
    [15] Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341:1230444.
    [16] Al Obeidli A, Salah HB, Al Murisi M, Sabouni R. Recent advancements in MOFs synthesis and their green applications. International Journal of Hydrogen Energy. 2022;47:2561-93.
    [17] Millange F, Serre C, Férey G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first Criii hybrid inorganic–organic microporous solids: Criii(OH)·{O2C–C6H4–CO2}·{HO2C–C6H4–CO2H}xElectronic supplementary information (ESI) available: crystal data, atomic c. Chemical Communications. 2002:822-3.
    [18] Millange F, Walton RI. MIL-53 and its Isoreticular Analogues: a Review of the Chemistry and Structure of a Prototypical Flexible Metal-Organic Framework. Israel Journal of Chemistry. 2018;58:1019-35.
    [19] Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Hee K. Chae, Michael O’Keeffe, Omar M. Yaghi . Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences. 2006;103:10186-91.
    [20] Dai Z, Løining V, Deng J, Ansaloni L, Deng L. Poly(1-trimethylsilyl-1-propyne)-Based Hybrid Membranes: Effects of Various Nanofillers and Feed Gas Humidity on CO2 Permeation. Membranes. 2018;8:76.
    [21] Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society. 2008;130:13850-1.
    [22] Lammert M, Wharmby MT, Smolders S, Bueken B, Lieb A, Lomachenko KA, Vos DD, Stock N. Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity. Chemical Communications. 2015;51:12578-81.
    [23] Li C, Zhang Y, Yong M, Liu W, Wang J. Self-assembled membrane manufactured by metal–organic framework (UiO-66) coated γ-Al2O3 for cleaning oily seawater. RSC Advances. 2019;9:10702-14.
    [24] Wang Y, Feng W, Li J, You Z. A novel route for the facile synthesis of NH2-MIL-53 (Fe) and its highly efficient and selective adsorption of congo red. Inorganica Chimica Acta. 2023;547:121332.
    [25] Zhang K, Fu Y, Hao D, Guo J, Ni B-J, Jiang B, Xu L, Wang Q. Fabrication of CN75/NH2-MIL-53 (Fe) pn heterojunction with wide spectral response for efficiently photocatalytic Cr (VI) reduction. Journal of Alloys and Compounds. 2022;891:161994.
    [26] Wilkinson A, McNaught A. IUPAC Compendium of Chemical Terminology,(the “Gold Book”). PAC, 2007, 79 , 293
    [27] Bequerel E. Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques. CR Acad Sci. 1839;9:1.
    [28] Xu J, Shen J, Jiang H, Yu X, Qureshi WA, Maouche C, Gao J, Yang J, Liu Q . Progress and challenges in full spectrum photocatalysts: Mechanism and photocatalytic applications. Journal of Industrial and Engineering Chemistry. 2022; 112-129
    [29] Ahmad I, Zou Y, Yan J, Liu Y, Shukrullah S, Naz MY, Hussain H, Khan WQ, N.R. Khalid . Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Advances in Colloid and Interface Science. 2022:102830.
    [30] Li X, Sun H, Xie Y, Liang Y, Gong X, Qin P, Jiang l, Guo J, Liu C, Wu Z . Principles, synthesis and applications of dual Z-scheme photocatalysts. Coordination Chemistry Reviews. 2022;467:214596.
    [31] Dong H, Zhang X, Li J, Zhou P, Yu S, Song N, Liu C, Che G, Li C. Construction of morphology-controlled nonmetal 2D/3D homojunction towards enhancing photocatalytic activity and mechanism insight. Applied Catalysis B: Environmental. 2020;263:118270.
    [32] Dozzi MV, Selli E. Doping TiO2 with p-block elements: Effects on photocatalytic activity. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2013;14:13-28.
    [33] Li J, Zhang M, Chen J, Jia H. The Effect of Noble-Metal Deposition Routes on the Characteristics and Photocatalytic Activity of M-TiBi 1.9% O 2 (M= Pt and Pd). Topics in Catalysis. 2020;63:882-94.
    [34] Balakrishnan A, Gaware G, Chinthala M. Heterojunction photocatalysts for the removal of nitrophenol: A systematic review. Chemosphere. 2022:136853.
    [35] Che L, Pan J, Cai K, Cong Y, Lv S-W. The construction of pn heterojunction for enhancing photocatalytic performance in environmental application: A review. Separation and Purification Technology. 2023:123708.
    [36] Kaur K, Badru R, Singh PP, Kaushal S. Photodegradation of organic pollutants using heterojunctions: A review. Journal of Environmental Chemical Engineering. 2020;8:103666.
    [37] Murtaza G, Khenata R, Safeer A, Alahmed Z, Omran SB. Shift of band gap from indirect to direct and optical response of CaO by doping S, Se, Te. Computational materials science. 2014;91:43-9.
    [38] Zhao Y, Linghu X, Shu Y, Zhang J, Chen Z, Wu Y, Shan D, Wang B. Classification and catalytic mechanisms of heterojunction photocatalysts and the application of titanium dioxide (TiO2)-based heterojunctions in environmental remediation. Journal of Environmental Chemical Engineering. 2022:108077.
    [39] Zhong X, Li Y, Wu H, Xie R. Recent progress in BiVO4-based heterojunction nanomaterials for photocatalytic applications. Materials Science and Engineering: B. 2023;289:116278.
    [40] Zhang L, Jaroniec M. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. Applied Surface Science. 2018;430:2-17.
    [41] Wang Z, Lin Z, Shen S, Zhong W, Cao S. Advances in designing heterojunction photocatalytic materials. Chinese Journal of Catalysis. 2021;42:710-30.
    [42] Kittel C. Introduction to solid state physics Eighth edition. 2021.
    [43] Sharma P, Kumar A, Dhiman P, Sharma G, Stadler FJ. Recent advances in wide spectral responsive and photothermal heterojunctions for photocatalytic pharmaceutical pollutant degradation and energy conversion. Materials Today Communications. 2023:106333.
    [44] Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chemical Society Reviews. 2014;43:5234-44.
    [45] Chen P, Liu H, Cui W, Lee SC, Wang LA, Dong F. Bi‐based photocatalysts for light‐driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges. EcoMat. 2020;2.
    [46] Song S, Xing Z, Zhao H, Li Z, Zhou W. Recent advances in bismuth-based photocatalysts: Environment and energy applications. Green Energy & Environment. 2022.
    [47] Wang Z, Chen M, Huang D, Zeng G, Xu P, Zhou C, Lai C, Wang H, Cheng M, Wang W. Multiply structural optimized strategies for bismuth oxyhalide photocatalysis and their environmental application. Chemical Engineering Journal. 2019;374:1025-45.
    [48] Bannister F. The crystal-structure of the bismuth oxyhalides. Mineralogical magazine and journal of the Mineralogical Society. 1935;24:49-58.
    [49] Zhang K-L, Liu C-M, Huang F-Q, Zheng C, Wang W-D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Applied Catalysis B: Environmental. 2006;68:125-9.
    [50] Hou J, Dai D, Wei R, Wu X, Wang X, Tahir M, Zou JJ. Narrowing the Band Gap of BiOCl for the Hydroxyl Radical Generation of Photocatalysis under Visible Light. ACS Sustainable Chemistry & Engineering. 2019;7:16569-76.
    [51] Wang W, Huang F, Lin X, Yang J. Visible-light-responsive photocatalysts xBiOBr–(1− x) BiOI. Catalysis Communications. 2008;9:8-12.
    [52] Arumugam M, Choi MY. Recent progress on bismuth oxyiodide (BiOI) photocatalyst for environmental remediation. Journal of Industrial and Engineering Chemistry. 2020;81:237-68.
    [53] Dong J, Li H, Yan P, Xu L, Zhang J, Qian J, Chen J, Li H. A composite prepared from BiOBr and gold nanoparticles with electron sink and hot-electron donor properties for photoelectrochemical aptasensing of tetracycline. Microchimica Acta. 2019;186:1-8.
    [54] Liu B, Wang Y, Hua W, Kang Y. Fabrication of novel p-n heterojunction of BiOBr/Ag2WO4 photocatalysts with efficient visible-light-driven catalytic activity. Materials Letters. 2023:134563.
    [55] Chen J, Li S, Chen Y, Yang J, Dong J. Highly selective detection of adenine and guanine by NH2-MIL-53 (Fe)/CS/MXene nanocomposites with excellent electrochemical performance. Microchimica Acta. 2022;189:328.
    [56] Ma M, Bétard A, Weber I, Al-Hokbany NS, Fischer RA, Metzler-Nolte N. Iron-Based Metal–Organic Frameworks MIL-88B and NH2-MIL-88B: High Quality Microwave Synthesis and Solvent-Induced Lattice “Breathing”. Crystal Growth & Design. 2013;13:2286-91.
    [57] Fu J, Tian Y, Chang B, Xi F, Dong X. BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. Journal of Materials Chemistry. 2012;22:21159-66.
    [58] Yue C, Li C, Zhang P, Fan M, Haryono A, Leng Y, Dong Y, Jiang P. Efficiently selective oxidation of glycerol by BiQDs/BiOBr–Ov: promotion of molecular oxygen activation by Bi quantum dots and oxygen vacancies. New Journal of Chemistry. 2021;45:12938-44.
    [59] He X, Wang L, Sun S, Yang X, Tian H, Xia Z, Dong Y, Jiang P. Self-assembled synthesis of recyclable g-C3N4/NH2-MIL-53 (Fe) aerogel for enhanced photocatalytic degradation of organic pollutants. Journal of Alloys and Compounds. 2023;946:169391.
    [60] Wang D, Li H, Han Q, Jiang W, Liu C, Che G. Optimized design of BiVO4/NH2-MIL-53 (Fe) heterostructure for enhanced photocatalytic degradation of methylene blue and ciprofloxacin under visible light. Journal of Physics and Chemistry of Solids. 2021;154:110027.
    [61] Yi J, Wu X, Wu H, Guo J, Wu K, Zhang L. Facile synthesis of novel NH2-MIL-53(Fe)/AgSCN heterojunction composites as a highly efficient photocatalyst for ciprofloxacin degradation and H2 production under visible-light irradiation. Reaction Chemistry & Engineering. 2022;7:84-100.
    [62] Pan Y, Hu X, Shen D, Li Z, Chen R, Li Y, Lu J, Bao M. Facile construction of Z-scheme Fe-MOF@ BiOBr/M− CN heterojunction for efficient degradation of ciprofloxacin. Separation and Purification Technology. 2022;295:121216.
    [63] Hall EH. On a new action of the magnet on electric currents. American Journal of Mathematics. 1879;2:287-92.
    [64] Wang Y, Feng S, Wu W, Zhou Y, Ye Z, Dai X, Cao X. Ionic liquid-assisted solvothermal construction of NH2-MIL-125 (Ti)/BiOBr heterojunction for removing tetracycline under visible light. Optical Materials. 2022;123:111817.
    [65] Wu M, Huang M, Zhang B, Li Y, Liu S, Wang H, Fan M, Li B, Dong L, Chen G. Construction of 3D porous BiOBr/MIL-101 (Cr) Z-scheme heterostructure for boosted photocatalytic degradation of tetracycline hydrochloride. Separation and Purification Technology. 2023;307:122744.
    [66] Hu Q, Di J, Wang B, Ji M, Chen Y, Xia J, Li H, Zhao Y. In-situ preparation of NH2-MIL-125 (Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity. Applied Surface Science. 2019;466:525-34.
    [67] Jiang W, Li Z, Liu C, Wang D, Yan G, Liu B, Che G. Enhanced visible-light-induced photocatalytic degradation of tetracycline using BiOI/MIL-125 (Ti) composite photocatalyst. Journal of Alloys and Compounds. 2021;854:157166.
    [68] Kaur M, Mehta SK, Devi P, Kansal SK. Bi2WO6/NH2-MIL-88B (Fe) heterostructure: An efficient sunlight driven photocatalyst for the degradation of antibiotic tetracycline in aqueous medium. Advanced Powder Technology. 2021;32:4788-804.
    [69] Yin S, Chen Y, Gao C, Hu Q, Li M, Ding Y, Di J, Xia J, Li H. In-situ preparation of MIL-125 (Ti)/Bi2WO6 photocatalyst with accelerating charge carriers for the photodegradation of tetracycline hydrochloride. Journal of Photochemistry and Photobiology A: Chemistry. 2020;387:112149.
    [70] Hajiali M, Farhadian M, Tangestaninejad S. Synthesis and characterization of Bi2MoO6/MIL-101 (Fe) as a novel composite with enhanced photocatalytic performance: Effect of water matrix and reaction mechanism. Advanced Powder Technology. 2022;33:103546.
    [71] Wang H, Zhang Q, Li J-J, Zhang J-Y, Liu Y, Zhou M, Zhang N, Fang ZY, Ke Q. The covalent Coordination-driven Bi2S3@ NH2-MIL-125 (Ti)-SH heterojunction with boosting photocatalytic CO2 reduction and dye degradation performance. Journal of Colloid and Interface Science. 2022;606:1745-57.
    [72] Tu Y, Ling L, Li Q, Long X, Liu N, Li Z. Greatly enhanced photocatalytic activity over Bi2WO6 by MIL-53 (Fe) modification. Optical Materials. 2020;110:110500.
    [73] Hu Q, Dong J, Chen Y, Yi J, Xia J, Yin S, Li H. In-situ construction of bifunctional MIL-125 (Ti)/BiOI reactive adsorbent/photocatalyst with enhanced removal efficiency of organic contaminants. Applied Surface Science. 2022;583:152423.
    [74] Yin S, Chen Y, Li M, Hu Q, Ding Y, Shao Y, Di J, Xia J, Li H. Construction of NH2-MIL-125 (Ti)/Bi2WO6 composites with accelerated charge separation for degradation of organic contaminants under visible light irradiation. Green Energy & Environment. 2020;5:203-13.
    [75] Zhao K, Zhang Z, Feng Y, Lin S, Li H, Gao X. Surface oxygen vacancy modified Bi2MoO6/MIL-88B (Fe) heterostructure with enhanced spatial charge separation at the bulk & interface. Applied Catalysis B: Environmental. 2020;268:118740.
    [76] Orellana G, Cano-Raya C, López-Gejo J, Santos A. Online monitoring sensors. Treatise on Water Science. 2011; 221-261

    無法下載圖示 全文公開日期 2025/08/18 (校內網路)
    全文公開日期 2033/08/18 (校外網路)
    全文公開日期 2033/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE