簡易檢索 / 詳目顯示

研究生: 吳馨蘋
Hsin-Ping Wu
論文名稱: 以靜電紡絲法製備聚乳酸奈米纖維膜應用於高效率過濾之研究
A Study of Electrospun PLA Nano-fibrous Membrane Applied in HEPA Filter.
指導教授: 蘇清淵
Ching-Iuan Su
口試委員: 王英靖
Ing-Jing Wang
李俊毅
Jiunn-Yih Lee
陳建宏
Jean-Hong Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 77
中文關鍵詞: 靜電紡絲聚乳酸SES孔隙率過濾效能
外文關鍵詞: PLA-based membrane, SES(Spunbond-Electronspun-Spunbond), Filtration Efficiency
相關次數: 點閱:295下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以靜電紡絲法製備聚乳酸奈米纖維薄膜,其具高比表面積、超細纖維及均勻的孔洞,聚乳酸本身為玉米提煉之環保性可分解原料,結合以上優點可運用在超高效能(HEPA)空氣過濾。然而,因靜電紡絲製備之薄膜強力低,故需結合紡粘不織布 (Spunbond nonwoven) 補強其不足,使其成為多層複合膜,稱之為SES三明治夾層結構 (Spunbpnd-Electrospun-Spunbond) 複合膜。
    實驗第一部分為探討最佳靜電紡絲黏度,利用不同濃度之聚乳酸紡絲液進行測試,找出最佳電紡條件,操作濃度為8wt%、10wt%、12wt%,纖維直徑介於658nm~954nm,第二部份利用最佳靜電紡絲條件電壓25kV、幫浦速率0.5ml/hr、滾筒轉速條件為363rpm、452rpm及626rpm,並測得纖維基重介於7.5 g/m2~15.33g/m2,利用掃描式電子顯微鏡進行表面觀察,並探討上述之SES奈米纖維膜的條件對強力、孔隙率、孔徑及過濾效能的影響。
    實驗結果顯示,纖維直徑會隨著紡絲液濃度及滾筒轉速增加而上升,而纖維薄膜強力隨著滾筒轉速快高而增加,在濃度8wt%且滾筒轉速363rpm時,可達最大強力1.66kgf。電紡薄膜孔徑會隨著滾筒轉速越快而增加,但與濃度無明顯的關係,但孔隙率則隨著濃度及滾筒轉速增加而提升,最後以不同顆粒大小(0.05μm~0.3μm)測得之過濾效能則以濃度8wt%及10wt%為較佳參數,其過濾效能於0.05μm時,過濾效能可達99.985%,在0.2μm時最大可趨近於100.00%,由此推斷由聚乳酸經電紡法所製備之奈米纖維濾膜可成為良好之過濾材料。


    In this study, the Polylactic acid (PLA)-based membranes were manufactured by the technique of electrospinning. The BET characteristics of the nano-fibrous membranes had ultra-high surface area of fine and uniform pores. PLA is refined from a corn, which has great environmental characteristics and can be decomposed in the nature. With the above those characteristics, the PLA-based membranes are applied in the high efficiency particulate air (HEPA) filter. However, due to the lower strength of nano-fibrous membrane, the spunbond nonwoven was devised as a reinforcement material and combined the nano-fibrous membrane. It is a multi-layers filter material named Spunbond-Electronspun-Spunbond (SES) composite membrane.
    The fiber diameter range of the PLA-based membranes approached 658nm~954nm as their spinning dope concentrations and flow rates reached their corresponding optimum values. To understand tensile properties, porosity, pore size, filtration efficiency and SEM morphology analysis of PLA-based membranes were performed in this study.
    Experimental results show that, as the PLA concentration and roller speed decreases, the fiber diameter and strength tensile increases. The tensile strength value is 1.66 kgf of PLA-based membranes prepared using the optimum spinning dope concentration of 8wt%. Furthermore, even better filtration efficiency can be obtained for PLA-based membranes with optimum spinning dope concentration and even higher roller speeds. When the roller speed is increased, the pore size is increased, and when the PLA concentration and roller speed decreases.
    The results infer that by controlling the experimental parameters will expect to obtain the best performance of SES, which can remove 99.97% of airborne particles 0.05 micrometers (μm) and 100.00% of airborne particles 0.2 micrometers (μm).

    摘要 I ABSTRACT II 誌謝 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 奈米纖維材料 2 1.2.1 奈米纖維材料的定義及型態 2 1.2.2 奈米纖維的製備方法 4 1.2.3 奈米纖維的特性 8 1.2.4 奈米纖維的應用 10 1.3 聚乳酸 12 1.3.1 聚乳酸的介紹 12 1.3.2 聚乳酸特性 14 1.4 研究目的 15 第二章 文獻回顧與原理 16 2.1 靜電紡絲發展歷史與原理 16 2.1.1 靜電紡絲發展歷史 16 2.1.2 靜電紡絲原理 19 2.1.3 靜電紡絲組成機構 20 2.2 近年聚乳酸相關文獻回顧 21 2.3 過濾效能相關文獻 23 2.4 空氣微粒過濾原理與機制 28 2.5 過濾效能指標 30 2.5.1 收集效率(Collection Efficiency, E) 30 2.5.2 微粒貫穿率(Aerosol Penetration, P) 30 2.5.3 透氣阻抗,又稱透氣阻抗(Pressure drop, Δp) 31 2.5.4 效能係數(Quality factor) 31 2.5.5 濾材之總過濾效率(Total Filter Efficiency, EΣ) 32 2.6 過濾檢測原理與規範 33 2.7 電紡纖維薄膜於過濾的應用 35 第三章 實驗 36 3.1 實驗材料 36 3.2 實驗儀器 36 3.3 實驗流程 37 3.4 靜電紡絲奈米纖維膜製備 38 3.4.1 聚乳酸紡絲溶液的製備 38 3.4.2 靜電紡絲工程 38 3.4.3 SES三明治夾層結構奈米纖維膜製備 38 3.5 纖維薄膜分析(Membrane analyze) 40 3.5.1 靜電紡絲奈米纖維膜表面觀察 40 3.5.2 孔徑分析(Pore size) 41 3.5.3 基重(Basic weight) 42 3.5.4 強力測試(Tensile strength) 43 3.5.5 孔隙率測定(Porosity) 44 3.6 空氣微粒過濾效能評估(Air filtration efficiency) 45 3.6.1 SES奈米纖維實驗組樣品測試 45 3.6.2 過濾效能(Efficiency)與透氣耗損(Pressure drop) 45 第四章 結果與討論 46 4.1 靜電紡絲參數設定 46 4.1.1 固定工作電壓、流速,改變溶液濃度 46 4.1.2 紡絲溶液黏度探討 48 4.1.3 改變滾筒收集器轉速之探討 49 4.2 奈米纖維膜基重 55 4.3 奈米纖維膜強力測試 55 4.4 奈米纖維薄膜孔徑特性分析 56 4.5 SES奈米纖維薄膜孔隙率分析 60 4.5.1 奈米纖維薄膜真實密度測定 60 4.5.2 奈米纖維薄膜厚度測定 61 4.5.3 奈米纖維薄膜孔隙率之計算 61 4.5.4 SES奈米纖維薄膜透氣阻抗 62 4.6 SES奈米纖維薄膜之過濾效能 63 4.6.1 Spunbond不織布過濾效能 63 4.6.2 SES奈米纖維膜過濾效能 64 4.7 SES奈米纖維薄膜之過濾品質係數 67 第五章 結論 68 參考文獻 71 作者簡介 77

    【1】 詹煜銘, "奈米微粒於薄膜過濾下之負載特性之研究," 碩士論文, 環境工程學研究所, 國立台灣大學, (2006).
    【2】 高子豪, "以靜電紡絲法製備高效能奈米纖維濾膜," 碩士論文, 高分子工程所, 國立台灣科技大學, 台北, (2010).
    【3】 杜仲良, 吳大誠, 高緒珊,, 奈米纖維, (2003).
    【4】 程裕祥, "空氣過濾器材料特性與過濾機制," 化工技術, vol. 12.
    【5】 施鈞瀚, "奈米纖維複合膜應用於海水淡化技術中薄膜蒸餾法的研究," 碩士, 材料科學與工程所, 國立台灣科技大學, (2011).
    【6】 翁智偉, "聚丙烯腈系電紡不織布連續氧化製程之研究," 碩士論文, 材料科學與工程研究所, 國立台灣科技大學, (2012).
    【7】 經濟部工業局, "產業用纖維," 紡織產業綜合研究所, pp. 124-178, (2004).
    【8】 黃楠儒, "氣相成長碳纖維/碳管之研究," 碩士論文, 材料科學及工程學系, 國立成功大學, 台南, (1998).
    【9】 張淇芝, "基材備製對氣相成長碳纖維/管之影響," 碩士論文, 材料科學及工程學系, 國立成功大學, 台南, (2001).
    【10】 T. M. P.V. Adhyapaka, Sushama Pethkarb, A.J. Chandwadkarb, Y.S. Negia, K. Vijayamohananb,, "Application of electrochemically prepared carbon nanofibers in supercapacitors.," Power Sources, vol. 109, pp. 105-110, (2002).
    【11】 林豈瑋, "利用電紡複合紗技術進行改善奈米碳纖維吸附材製程之研究," 碩士論文, 材料科學與工程所, 國立台灣科技大學, 台北, (2013).
    【12】 周华,郭秉臣, "新型化学纤维——海岛型复合超细纤维," 天津工业大学, (2009).
    【13】 吳馨蘋, 王權泉, 蔡瑞哲,楊梅琳, "幾丁聚醣/明膠/蠶絲蛋白不同混合比之靜電紡絲纖維膜抗菌性及吸水膨潤性評估," 紡織綜合所研究期刊, vol. 23, pp. 18-28, (2013).
    【14】 P. F. K.Ko, Nanofiber Tenology Department of Materials Science and Engineering, Drexel University.
    【15】 吳文演, 高科技新功機能性纖維材料與應用: 增光國際股份有限公司, ( 2010).
    【16】 J. Zeleny, "The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces," Physical Review, vol. 3, pp. 69-91, (1914).
    【17】 詹綉惠, "以靜電紡絲製備沒食子酸/聚乙烯醇奈米纖維網及其特性之研究," 碩士論文, 材料與應用科技研究所, 亞東技術學院, (2010).
    【18】 張峰瑋, "靜電紡絲纖維排列均齊性之研究," 碩士論文, 材料科學與奈米科技研究所, 中國文化大學, 台北, (2010).
    【19】 R. S. G. Formhals Anton, US Patent, (1934).
    【20】 G. Taylor, "Disintegration of Water Drops in an Electric Field," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 280, pp. 383-397, (1964).
    【21】 G. I. T. a. A. D. Mcewan, "The stability of a horizontal fluid interface in a vertical electric field.," J. Fluid Mech., vol. 22, pp. 1-15, (1965).
    【22】 G. Taylor, "Studies in Electrohydrodynamics. I. The Circulation Produced in a Drop by Electrical Field," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 291, pp. 159-166, (1966).
    【23】 G. Taylor, "Electrically Driven Jets," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 313, pp. 453-475, (1969).
    【24】 何信法, "以電紡法製造奈米纖維及其應用," 碩士論文, 電子工程研究所, 南台科技大學, (2007).
    【25】 Simons, U.S Patent, (1966).
    【26】 L. Larrondo and R. St. John Manley, "Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt," Journal of Polymer Science: Polymer Physics Edition, vol. 19, pp. 933-940, (1981).
    【27】 D. H. Reneker and I. Chun, "Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, vol. 7, pp. 216-223, (1996).
    【28】 C. J. Thompson, G. G. Chase, A. L. Yarin, and D. H. Reneker, "Effects of parameters on nanofiber diameter determined from electrospinning model," Polymer, vol. 48, pp. 6913-6922, (2007).
    【29】 B. Cramariuc, R. Cramariuc, R. Scarlet, L. R. Manea, I. G. Lupu, and O. Cramariuc, "Fiber diameter in electrospinning process," Journal of Electrostatics, vol. 71, pp. 189-198, (2013).
    【30】 M. M. H. Y. M. Shin, M. P. Brenner and G.C. Rutledge "Experimental characterization of electrospinning the electrically forced jet and instabilities," Polymer, vol. 42, pp. 09955–09967, (2011).
    【31】 J. D. a. D. H. Reneker, "Electrospinning process and applications of electrospun fibers," Journal of ELECTROSTAT, vol. 35, pp. 151-160, (1995).
    【32】 H. Zhou, T. B. Green, and Y. L. Joo, "The thermal effects on electrospinning of polylactic acid melts," Polymer, vol. 47, pp. 7497-7505, (2006).
    【33】 陳彥夫, "PLA/PBAT Blends 之形態學及物性之研究," 碩士論文, 高分子工程研究所, 國立台灣科技大學, 台北, (2008).
    【34】 L. Li, R. Hashaikeh, and H. A. Arafat, "Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid)," Journal of Membrane Science, vol. 436, pp. 57-67, (2013).
    【35】 Y. O. P. Hyun-Seol Park, "Filtration Properties of Electrospun Ultrafine Fiber Webs," Korean J. Chem. Eng, vol. 22, pp. 165-172, (2005).
    【36】 S. Yang and G. W. M. Lee, "Filtration characteristics of a fibrous filter pretreated with anionic surfactants for monodisperse solid aerosols," Journal of Aerosol Science, vol. 36, pp. 419-437, (2005).
    【37】 K. M. Yun, C. J. Hogan, Y. Matsubayashi, M. Kawabe, F. Iskandar, and K. Okuyama, "Nanoparticle filtration by electrospun polymer fibers," Chemical Engineering Science, vol. 62, pp. 4751-4759, (2007).
    【38】 K. K. Xinpeng Wang, Changhwan Lee, and Jooyong Kim, "Prediction of Air Filter Efficiency and Pressure Drop in Air Filtration," Fibers and Polymers, vol. 9, pp. 34-38, (2008).
    【39】 S. Rengasamy, W. P. King, B. C. Eimer, and R. E. Shaffer, "Filtration performance of NIOSH-approved N95 and P100 filtering facepiece respirators against 4 to 30 nanometer-size nanoparticles," J Occup Environ Hyg, vol. 5, pp. 556-64, Sep (2008).
    【40】 K. Kim, C. Lee, I. W. Kim, and J. Kim, "Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning," Fibers and Polymers, vol. 10, pp. 60-64, (2009).
    【41】 J. Xu, J. Zhang, W. Gao, H. Liang, H. Wang, and J. Li, "Preparation of chitosan/PLA blend micro/nanofibers by electrospinning," Materials Letters, vol. 63, pp. 658-660, (2009).
    【42】 黃盛修、陳春萬、張振平、陳志傑, "纖維性濾材與小型靜電集塵器之過濾特性探討," 化工技術, vol. 16.
    【43】 B. E. 1822, "High efficiency air filters (HEPA and ULPA)," ed, 1998.
    【44】 李世光、蔡宜芬, "功能性膜效能檢測與製程優化的先導性研究:以駐極體與濾材應用為平台--總計畫:功能性膜效能檢測與製程優化的先導性研究:以駐極體與濾材應用為平台(第一年)期中進度報告(精簡版)," (2008).
    【45】 張志鵬, "靜電紡絲-奈米纖維科技與應用."
    【46】 A. S. f. T. a. Materials(ASTM), "Standadr Test Methods for Mass Per Unit Area (Weight) of Fabric," vol. D3776/d3776M-09a, ed, 2011.
    【47】 A. S. f. T. a. Materials(ASTM), "Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method)," vol. D5035-11, ed, 2013.
    【48】 王翰浚, "靜電紡絲聚碳酸酯纖維於氣體過濾材之應用研究," 碩士, 紡織工程研究所, 逢甲大學, (2007).

    QR CODE